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ABSTRACT This study demonstrates the feasibility of image inpainting using both visual information
and radio frequency (RF) signals. Recent developments in imaging and vision-based technologies using
RF signals have revealed the potential of leveraging multimodal information to enhance image inpainting
performance. In this context, we propose RF-Inpainter—a novel inpainting method that integrates visual and
wireless information by fusing defective RGB images with received signal strength indicator (RSSI) using a
deep auto-encoder model. The inpainting performance of RF-Inpainter is evaluated using experimentally
obtained images and RSSI datasets in an indoor environment. Image-only inpainting and RSSI-only
inpainting models are used as baselines to illustrate the superiority of RF-Inpainter over inpainting methods
based on a single modality. The results establish that RF-Inpainter generates satisfactory inpainted images
in most experimental scenarios, achieving a maximum improvement of 36.4% and 14.6% in terms of mean
peak signal-to-noise ratio (PSNR) and mean structural similarity index (SSIM), respectively.

INDEX TERMS Image inpainting, multi-modal, WiFi sensing, deep learning, RSSI fingerprint.

I. INTRODUCTION
The goal of image inpainting is to repair missing or damaged
areas in defective images to match the original content as
closely as possible. Image inpainting techniques have a wide
range of applications in computer vision (e.g., [1], [2], and
[3]) and public safety maintenance scenarios which involve
the deployment of surveillance devices in public places to
protect monitored areas or investigate crimes. Almost all
existing image inpainting methods are based on a common
principle—they use pixels from uncorrupted image regions to
fill the gaps, similar to physical inpainting methods [4]. How-
ever, although these techniques are effective for recovering
small-sized missing areas, they are not effective correspond-
ing to very large missing areas, owing to the small amount
of visual information remaining in the severely defective
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images. In this case, other informationmust be sued for image
inpainting.

RF signal-based imaging has been suggested as a novel
solution to this problem. Radar sensing is among the most
traditional methods used to obtain images from RF signals—
radar antennas are used to determine the distance between
the antenna and the reflecting object, the amplitude of the
echo, and its phase by transmitting thousands of pulses of
microwave radiation and measuring the characteristics of the
associated echoes [5]. By processing and combining these
measurements together, images can be acquired. Over the last
decade, various imaging methods based on wireless commu-
nication signals, such as WiFi, have been proposed [6], [7],
[8], [9]. The successful acquisition of images from wireless
information indicates the feasibility of image inpainting using
RF information. However, the most appropriate types of RF
information for image inpainting remain to be determined.
Some studies have used commercial radar systems to obtain
high-resolution images of objects, but constructing such
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FIGURE 1. The existing inpainting techniques are not effective
corresponding to very large missing regions.

complex systems is often expensive [10], [11]. In contrast, the
use of ready-made wireless information enables accessible
imaging at the cost of clarity of the imaging procedure.
Recently, several studies have demonstrated that the channel
state information (CSI) or received signal strength indicator
(RSSI) of RF signals can be used as reliable sources of visual
information (e.g., [12], [13], [14], and [15]). These features
contain visual clues about defective regions in images, which
provide prior information for image inpainting and improve
its accuracy.

In this study, we propose RF-Inpainter—a novel inpaint-
ing method that integrates visual and wireless information.
The fundamental operational idea is to use multimodal deep
learning to fuse defective RGB images with RSSI of WiFi
signals to produce inpainted images. We utilize WiFi signals
because of their ubiquity. RSSI fingerprints are employed
as wireless information because they can be easily mea-
sured using off-the-shelf electronic devices, such as laptops
and smartphones. Although CSI contains greater propagation
information, it cannot be obtained using commercial devices.
The proposed method can also be employed based on CSI,
yielding better inpainting results—we relegate this investiga-
tion to future works.

The primary contributions of this study are summarized as
follows:

• A novel method called RF-Inpainter is proposed to per-
form high-resolution image inpainting based on het-
erogeneous modalities, namely vision and RF signals.
Unlike traditional methods that rely solely on visual
information for image inpainting or RF information for
imaging, RF-Inpainter leverages both undamaged pixels
surrounding a target missing region and RSSI to obtain
inpainted images.

• The feasibility of image inpainting using RF-Inpainter
is demonstrated using two experimentally obtained

multimodal datasets. Moreover, the superiority of
RF-Inpainter over inpainting methods leveraging a sin-
gle modality is demonstrated by comparing its perfor-
mance to those of Image-only and RSSI-only inpainting
models.

• Experimental results reveal the relationship between the
length of RSSI vectors and the image inpainting perfor-
mance of RF-Inpainter— the quality of inpainted image
is observed to be a function of RSSI vector length.

The remainder of the paper is organized as fol-
lows: Section II elaborates on related works, followed by
Section III, where we introduce the image inpainting mecha-
nism based on RF-Inpainter. Section IV evaluates the image
inpainting results under different occlusion scenarios using
Camera 1 and Camera 2 image datasets. Finally, the conclu-
sions are presented in Section V.

II. RELATED WORKS
A. INPAINTING LARGE MISSING REGIONS BASED ON
VISUAL INFORMATION
In computer vision, various image inpainting methods have
been proposed to fill in defective regions in images to match
ground-truth images as closely as possible. Several com-
prehensive reviews of image inpainting methods have been
reported over the past decade [4], [16]. These methods can be
classified into two primary categories—deep learning-based
methods that are currently widely used, and traditional non-
deep learning-based methods.

Traditional methods are suitable for filling in small
or regular-sized missing regions in images. However,
the inpainting task becomes more difficult when larger
regions need to be filled in, irrespective of their posi-
tion in the image. Traditional methods are not capa-
ble of filling in large complex regions satisfactorily—
this has motivated the development of deep learning-based
methods.

In recent years, deep learning-based methods have per-
formed exceptionally in filling in large missing regions in
image-inpainting tasks. For instance, Ma et al. proposed a
generic inpainting framework capable of inpainting incom-
plete images containing both contiguous and discontiguous
large missing areas based on generative adversarial networks
(GANs) [17]. However, GAN is more suited to capture data
distributions rather than image content or semantics. As a
result, it may produce images that are significantly different
from ground truth images [18]. To address this problem,
Jia Q et al. presented a weighted face similarity (WFS)-
Net-based face inpainting framework to improve inpainting
performance [18]. First, they constructed a WFS set based
on SSIM to gather a great amount of information for filling
in missing regions. Subsequently, they designed a WFS-Net
to inpaint damaged face images by exploring the relationship
between missing regions and reference information including
the remaining image parts and theirWFSs. Li et al. proposed a
recurrent learning-based approach to solve this problem [19].
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They first mapped the RGB image to be repaired into a
convolutional feature space. Next, they employed a recurrent
feature reasoning (RFR) network to infer the boundaries of
the missing parts in the feature maps repeatedly. Eventually,
the feature maps were restored, combined, and transformed
back into an RGB image.

Despite significant advancements in deep learning-based
methods, filling in large missing image regions remains
a challenging task. Although state-of-the-art methods have
achieved satisfactory inpainting results, they can only
restore semantically reasonable and visually realistic images.
These methods infer missing content solely based on an
image’s residual information, inducing a difference between
reconstructed image and ground truth image. This short-
coming is unacceptable for practical applications, such
as criminal investigations and traffic cameras. In addi-
tion, these inpainting methods often leverage standard
convolutional structures, which may lead to problems
such as color discrepancies and blurring in reconstructed
images [16].

B. IMAGING USING RF SIGNALS
Over the last decade, various techniques have been pro-
posed for non-line-of-sight imaging using RF signals. These
techniques overcome the drawbacks of traditional optical
imaging (e.g., vulnerability to illumination conditions and
occlusions). In [7], Vakalis et al. broadly classified all
existing RF-based imaging systems into three categories—
mechanical and electronic scanning imagers [20], holo-
graphic imaging systems [21], and staring-type imagers [22],
[23]. However, a common drawback of these systems is that
they cannot achieve cost-effective and real-time imaging.
Therefore, Vakalis et al. developed a new microwave compu-
tational imaging system that requires a low receiver gain and
does not rely on mechanical or electrical beam scanning [7].
Nevertheless, the construction of such an imaging system
is time-consuming, and the imaging performance requires
further improvements.

More recently, several studies have proposed RF imaging
methods that can extract visual information from easy-to-
acquire wireless signal features (e.g., RSSI or CSI) obtained
byWiFi devices, which greatly simplifies the hardware struc-
ture of imaging system. For example, Kato et al. proposed
a GAN-based technique called CSI2Image to reconstruct
images using CSI. They also developed two applications—
material sensing, and device-free user localization—to
demonstrate the versatility of CSI2Image [12]. In [13], Dubey
et al. developed an extended Rytov phaseless imaging (xRPI)
technique that images object shapes and refractive indices in
an indoor environment using RSSI of WiFi signals. These
advanced imaging techniques have motivated novel ideas to
improve image inpainting performance. By fusing defective
RGB images with wireless features, such as RSSI, inpainted
images in high resolution can be acquired under various
situations.

C. FUSING WIRELESS SIGNALS WITH RGB IMAGES
The fusion of wireless signals and RGB images has driven
technological advances in two tasks—vision to communica-
tion (V2C) and communication to vision (C2V) [24]. In V2C,
several studies have demonstrated that the robustness of wire-
less communication systems can be significantly enhanced
with the aid of visual information, such as RGB depth
(RGB-D) images and light detection. In [25], we consid-
ered the scenario of a communication link randomly blocked
by obstacles in an indoor environment, and we achieved
more accurate prediction of millimeter-wave wireless chan-
nel dynamics, such as future received power and channel
blockage, by transmitting RGB-D images into a deep neu-
ral network. Another example is a vision-assisted proactive
handover framework [26]. With the help of time-continuous
camera images, this study generated a better handover strat-
egy based on a prior perception of obstacles by utilizing deep
reinforcement learning to predict future transitions between
line-of-sight and non-line-of-sight communication.

Recent studies on C2V have primarily focused on the
integration of wireless and visual information to implement
CV tasks, such as high-precision indoor localization and
trajectory prediction. For example, Jiao et al. proposed a
smartphone-based indoor positioning algorithm, in which
wireless signals and RGB images are deeply fused to improve
indoor human localization performance [27]. Zhu et al. pro-
posed a system for identification and target tracking by com-
bining wireless signals and computer vision [28]. The system
achieves reliable trajectory matching and re-identification
that can provide identity information of visual trajectories.
The system also helps mitigate the effects of occlusion and
illumination conditions on localization.

In the context of image inpainting, our previous work sug-
gested carrying out research in RF-assisted image inpainting
and demonstrated the possibility of performance improve-
ment by fusing RF signals with RGB images in a prelimi-
nary experiment using mmWave communications, which is
strongly attenuated by human blockage [24]. Building on the
previous preliminary study, we propose an image inpainting
method by integrating visual and wireless information in this
study and demonstrate the feasibility of RF-assisted image
inpainting in the lower frequency band (i.e., 5 GHz).

III. RF-INPAINTER: MULTIMODAL IMAGE INPAINTING
A. SYSTEM MODEL
We consider a scenario comprising multiple surveillance
devices deployed in public places, such as corridors, secu-
rity checkpoints, and bank counters, to monitor target areas.
These sites are usually covered by wireless communication
networks, such as WiFi systems—thus, we leverage the sig-
nals from multiple WiFi access points (APs) that are installed
in the environment beforehand. When surveillance is active,
the line of sight between the target area and the camera
may be continuously obstructed by moving obstacles (e.g.,
pedestrians). This non-line-of-sight artifact results in partial
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FIGURE 2. The system model of RF-Inpainter.

or complete absence of valuable information from captured
images, which poses a severe problem in practical appli-
cations. In this case, we employ RF-Inpainter to perform
inpainting tasks on captured defective images using WiFi
signals already existing in the environment.

The system model of RF-Inpainter is depicted in Fig. 2.
The system consists of APs that transmit WiFi signals, RGB
cameras, RF sensors, and a server with an image-inpainting
module based on heterogeneous modalities. RGB cameras
capture real-time images of the target area. Simultaneously,
RF sensors continuously measure the RSSI fluctuations of
WiFi signals emitted from theAPs. The images andRSSI data
obtained via the RGB cameras and RF sensors, respectively,
are uploaded to the server. The server detects images with
missing regions and transmits them into the image inpainting
module with their corresponding RSSI sequences to obtain
distortion-free images.

B. RF-INPAINTER OVERVIEW
RF-Inpainter employs deep learning to enable image inpaint-
ing based on vision and radio signals. The deep learning
model is called multimodal inpainting (MMI) model, which
is further elaborated upon in Section II-E. The MMI model
accepts a defective image and its corresponding RSSI values
as inputs simultaneously and outputs a complete image by
restoring the missing content.

The operations of the proposed RF-Inpainter can be
roughly divided into model training and prediction (i.e.,
inpainting) phases. Fig. 3 illustrates the procedures of the
training and prediction. First, model training is conducted
on successfully obtained images. RF-Inpainter automatically
constructs training data for the MMI model based on the
observed RSSI and complete images and updates the MMI
model, as detailed in Section II-D. Following model train-
ing, prediction is performed for observed images containing
missing regions. Specifically, the trained MMI model takes a
defective image and the corresponding RSSI values recorded
in the same time window and generates a complete image
without any missing regions.

FIGURE 3. The inpainting procedure of RF-Inpainter.

RF-Inpainter performs image inpainting using RSSI of
WiFi signals. WiFi is the most appropriate candidate for RF
signals because of its ubiquity and low cost. In public places,
such as offices, airports, and shopping malls, a large number
of WiFi APs are usually already deployed, which can effec-
tively improve the accuracy of image inpainting. Currently,
several existingWiFi-based imaging techniques employ fine-
grained features, such as CSI, for imaging by identifying
the multi-path characteristics of radio channels [12], [14],
[15]. Nevertheless, CSI can only be obtained using a few
commercial devices, and its measurement requires a deep
investigation of the PHY layer [29]. In contrast, RSSI not
only characterizes the attenuation of radio signals during
propagation but can also be measured using most off-the-
shelf wireless devices—thus, the measurement of RSSI is
faster and easier.

The key to inpainting with RF-Inpainter is imaging using
RSSI of WiFi signals. The rationale for why RSSI can be
used for imaging is that the strength of RSSI is impacted by
the displacements andmovements of the transmitter, receiver,
and surrounding objects like humans. RSSI attenuates when
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the wireless communication path is blocked by pedestrians
or other obstacles. Based on the shape and location of dif-
ferent obstacles, the degree of attenuation of RSSI varies,
which makes RSSI captures the wireless characteristics of the
environment around the communication path. These charac-
teristics, assisted by mathematical modeling or deep-learning
algorithms, can be used for sensing applications like imaging.
Since such attenuation of RSSI can only be described by
multiple values, we need to prepare a temporally continuous
sequence of RSSI (i.e., RSSI vectors) for each image to be
restored. In addition, the acquisition moment of each image
should be as close as possible to the acquisition moment of
its corresponding RSSI vector.

Moreover, inspired by existing RSSI-based sensing tech-
niques, we utilize a multi-AP network to improve imaging
accuracy by fusing RSSI values obtained from different
APs. The use of multiple APs expands signal coverage by
including signals on different propagation paths, thereby
avoiding the existence of blind spots and completely sens-
ing the environment. Additionally, environmental factors
(e.g., ubiquitous noise, changes in temperature and humidity,
and variations in illumination intensity at different times of
the day) might affect the accuracy of RSSI measurements,
which can also be addressed by fusing RSSI of WiFi signals
obtained from APs deployed at different locations.

C. DATA PREPROCESSING AND THE GENERATION OF
MULTIMODAL DATASETS
Asmentioned in Section II-A, the process of inpainting using
RF-Inpainter can be broadly divided into two phases—model
training and real-time prediction. During each phase, col-
lected defective images and RSSI vectors are preprocessed
to generate a multimodal dataset. As the data preprocessing
methodologies in both phases are roughly identical, we focus
on the generation of a multimodal training dataset and Fig. 4
summarizes this process. The steps involved are described
below.

1) DATA ACQUISITION AND DOWNSAMPLING
Initially, the defective images and corresponding RSSI data
are collected to train and validate the MMI model. We first
sample clear and complete images and the corresponding
RSSI values obtained from around the target area, and then
upload the sampled data to the server. After that, variousmiss-
ing regions are artificially generated on the images to simulate
that the camera’s field of view is blocked by obstacles. During
data acquisition, RSSI is sampled at a rate equal to or higher
than that of RGB images to ensure that each image possesses
sufficiently many corresponding RSSI values to constitute a
vector. And we must ensure that the RSSI acquisition period
and the image acquisition period roughly overlap.

Subsequently, each image is numbered in the order of
its acquisition time to facilitate the sorting and deleting of
images. The server then performs image downsampling to
reduce the computational effort. To illustrate the downsam-
pling process, let t ∈ Z denote a time index and it be the

RGB image captured by a camera at time t . Suppose that
the size of the RGB image is H × W , where H and W
denote the height and width of the image, respectively. After
downsampling, the image size is compressed from H ×W to
h×w (h ≤ H ,w ≤ W ).We use i′t to denote the downsampled
it . If s images are acquired between time 0 and time t in
aggregate, the tensor xt = [i′t−s+1, i′t−s+2, . . . , i′t ] can be
employed to represent all downsampled images.

2) LABELING IMAGES WITH RSSI VECTORS
In this step, each image is labeled with multiple sequential
RSSI values (i.e., an RSSI vector). Labeling enables theMMI
model to learn the mapping from wireless information to
vision.

Suppose Rt is the RSSI vector to be allocated as a label
for the image i′t . To obtain Rt , L (L = 2l) time-sequential
RSSI values whose acquisition times are centered on t are
required. In general, the value of L should not be too small nor
too large—if L is too small, the RSSI vector does not contain
sufficient spatial information about the environment; whereas
if L is too large, it increases the computational complexity and
introduces interference. In Section IV-F, we elaborate on the
selection of the optimal value for L.

The RSSI value measured using the RF sensor at time
t is denoted by yt . Assuming that the sampling rate of
the RSSI values is F , the time required to measure the
RSSI value is k = 1/F s. In this case, the RSSI vec-
tor, Rt , used to label the image i′t , can be represented
as Rt = [yt−lk , yt−l(k−1), . . . , yt , . . . , yt+l(k−2), yt+l(k−1)],
where yt−lk , . . . yt−1 and yt+1, . . . , yt+l(k−1) denote past and
future RSSI values based on yt , respectively. Let T denote the
index set of t corresponding to the captured samples. Then,
the produced RSSI vector-image multimodal dataset can be
represented as D = {i′t ,Rt |t ∈ T }.
When multiple RF sensors are deployed, the image, i′t ,

corresponds to multiple RSSI vectors. Assuming that there
are n RF sensors, the RSSI values measured via each RF
sensor at time t can be expressed as y1t , y

2
t , . . . , y

n
t . Accord-

ing to the labeling method described above, we obtain
R1
t ,R

2
t , . . . ,R

n
t as the corresponding RSSI vectors of i′t

from each RF sensor. Thus, the eventually generated RSSI
vector–image multimodal dataset is expressed as Dn =
{i′t ,R1

t ,R
2
t , . . . ,R

n
t |t ∈ T }.

3) MASKING RAW IMAGES TO GENERATE TRAINING DATA
Subsequently, we simulate the camera views being blocked
by obstacles through masking the captured raw images to
produce defective images for model training.

First, we employ two classical image-masking methods—
horizontal and vertical masking—to remove all information
from a fixed region of the image consistently and steadily.
In addition, for more common situations, we configure
random- occlusion scenarios by arbitrarily varying the size
and position of the missing region in an image to imitate
realistic scenarios in which various objects may block the
cameras.
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FIGURE 4. The workflow for generating multimodal training dataset.

D. MODEL ARCHITECTURE
The MMI model is a modified U-net architecture consisting
of two encoders (an image encoder and an RSSI encoder)
and one decoder. To highlight the contribution of RSSI to the
inpainting performance, twoMMImodels containing one and
four RSSI data input channels are constructed, respectively.
The structure of the MMI model with four RSSI-input is
depicted (see Fig. 5). The structure of the other model is
identical to this one except the number of RSSI inputs.

The image encoder accepts a 64× 64-pixel defective RGB
image as input. Subsequently, four downsampling modules
are used. Each downsampling module sequentially contains
a 2D convolution layer, a batch normalization layer (only for
the last three modules), and a leaky ReLU layer. The data is
transmitted through all four downsampling modules, yielding
a 4× 4× 256 output tensor.

An RSSI encoder is designed to extract spatial features
from an RSSI vector. RSSI data obtained from each of the
four APs are transmitted to its four input layers, and subse-
quently fused in a concatenate layer to obtain a 1×4L tensor.
The tensor first enters a batch normalization layer, then passes
through a structure comprising a dense layer, a batch normal-
ization layer, and a ReLU layer thrice successively. Finally,
the tensor shape is transformed into 4×4×8 using a reshaping
layer. At the bottleneck of the MMI model, a concatenate
layer is employed to fuse the 4 × 4 × 256 tensor obtained
from the image encoder with the 4 × 4 × 8 tensor obtained
from the RSSI encoder, which is then fed into the decoder.

The decoder contains four upsampling modules. Each of
the first three modules consists of a transposed 2D convo-
lution layer, a batch normalization layer, and a ReLU layer.
After passing through these three modules, the tensor is trans-
mitted to a transposed 2D convolution layer with an activation
function of tanh and a filter number of three. Skip connections
are used to link the image encoder and decoder at different
levels of spatial feature abstraction. Finally, the decoder out-

puts a reconstructed image with the size of 64×64×3. In the
entire model, only convolution and transposed convolution
layers with stride of two and filter size of three are used.
Adam is used as the optimizer for the MMI model, the mean
squared error (MSE) is used as the loss function.

IV. EVALUATION
A. EXPERIMENTAL CONFIGURATION
The feasibility of implementing multimodal image inpaint-
ing using RF-Inpainter is evaluated in a typical indoor
environment. The experiment comprises two phases—data
acquisition and model training. The facile application of
RF-Inpainter to various daily scenarios is demonstrated by
acquiring experimental data using off-the-shelf devices (e.g.,
WiFi routers and laptops). In particular, four WZR-HP-
AG300H APs manufactured by Buffalo are used. These APs
exhibit a maximum data transmission rate of 54 Mbps and
transmit beacon frames in the 5 GHz band at 100 ms inter-
vals. The beacon frames are captured using the laptop to
measure the RSSI values obtained from different APs. The
APs are placed on four shelves located on a straight line
along the wall—each shelf is approximately one meter high,
and the distance between two adjacent shelves is also nearly
one meter. The distance between the RF sensors and APs is
approximately 3–4 m. Both RGB images and corresponding
RSSI are collected simultaneously on the laptop at a frame
rate of 10 fps for approximately 10 min. Fig. 6 depicts the
experimental configuration, and Fig. 7 and 8 illustrate the
indoor experimental environment from the perspectives of
Camera 1 and Camera 2, respectively.

The simplest possible indoor application scenario is uti-
lized, comprising a singlemoving pedestrian in each camera’s
view in addition to the background. The trajectory of this
pedestrian is taken to lie between the APs and the RF sensor
(see Fig. 6). The trajectory is 8 m long, with vertical distances
of approximately 1.5 m from the APs and approximately
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FIGURE 5. The architecture of the MMI model with four RSSI-input.

FIGURE 6. The experimental configuration.

2.5 m from the RF sensor. The entire walk is observed to
last approximately 20 s on average. To imitate the passage
of pedestrians through the cameras’ views from different
directions, the pedestrian moves back and forth along the
trajectory. During this process, Camera 1 captures the sides
of the pedestrian, while Camera 2 captures images depicting
the back and front of the pedestrian.

The movement of the pedestrian is observed to affect the
RSSI values measured by the RF sensor by varying degrees.

FIGURE 7. A snapshot of the experimental environment from the
perspective of Camera 1.

When the pedestrian walks close to an AP, most WiFi signals
emitted by the AP are reflected by the pedestrian—thus, the
RSSI obtained from that particular AP is reduced. As a result,
the RSSI values fluctuate, and the degree of this fluctuation
affects inpainting results significantly—the more extensive
the fluctuation, the richer the environmental information con-
tained in the RSSI, and consequently, the more beneficial it
is to the production of a clear image. To emphasize RSSI
fluctuation, the pedestrian is asked to hold a white board
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FIGURE 8. A snapshot of the experimental environment from the
perspective of Camera 2.

while walking, which increases the proportion of reflected
WiFi signals.

In the aforementioned experimental configuration,
5745 and 5740 clear images with a resolution of 1280 ×
720 pixels are captured using Camera 1 and 2, respectively.
The image size is reduced to 64 × 64 pixels after down-
sampling. 6029, 6036, 6033, and 6032 RSSI values are
received by the RF sensors from AP1, AP2, AP3, and AP4,
respectively. Subsequently, these collected data are used to
produce amultimodal dataset following themethod described
in Section III-C, assuming the length of the RSSI vector to be
200.

Next, the multimodal dataset, D, is divided into training
and validation datasets. To avoid data leakage, which pro-
duces models with high training performance but poor pre-
diction performance, time-based data splitting with a splitting
ratio of 80% is utilized.

Finally, the models with split datasets are trained for
30 epochs and validated. Training and validation are con-
ducted using Google Colab on a Tesla T4 GPU.

B. METRICS FOR THE EVALUATION OF INPAINTED
IMAGES
The twomost commonly used objective image quality assess-
ment (IQA) metrics for complete reference images are sued
to measure the quality of the reconstructed images quantita-
tively.
• Peak Signal-to-Noise Ratio (PSNR)
PSNR is a well-known error-based objective IQA met-
ric. It represents the average of the squares of the
‘‘errors’’ between the original image and the degraded
image. PSNR is positively correlated to the similarity
between the reconstructed image and the original image,
i.e., the quality of inpainting performance.

• Structural Similarity Index (SSIM)
PSNR is not highly indicative of perceived similarity
during image comparison, and SSIM aims to address
this shortcoming. SSIM is a structural similarity-based
metric used to measure the similarity between a refer-
ence image and a degraded image by taking texture into
account. SSIM takes a value between 0 and 1, which

is positively correlated with the quality of the recon-
structed image, i.e., the accuracy of the image inpainting
method.

Additionally, the efficiency of RF-Inpainter is quantita-
tively evaluated—to this end, the mean inference time of
inpainting using the MMI model is calculated. The inference
time presents the duration required for a forward propaga-
tion process that, given an input, obtains the output. In this
experiment, and the mean inference time is the average time
required by a trained model to restore a test image. The mean
inference time is inversely correlated with the efficiency of
the inpainting method.

C. BASELINE METHODS
Single-modal image inpainting methods, i.e., image-only
inpainting and RSSI-only inpainting methods, are considered
as baselines. Specifically, single-modal inpainting models are
constructed using images or RSSI as input.

The structure of the image-only model is identical to the
U-Net structure in the MMI model, with the exception that
the RSSI encoder and concatenate layer used to fuse image
and RSSI information are removed.

The RSSI-only inpainting model is based on a modified
auto-encoder architecture. To highlight the fact that increas-
ing RSSI information to a certain extent improves the quality
of images, as in the MMI models, RSSI-only inpainting mod-
els with only one RSSI channel and four RSSI channels are
constructed. These models are denoted by RSSI-only inpaint-
ing (w/ single AP) and RSSI-only inpainting (w/ 4 APs),
respectively. The encoder of the RSSI-only inpaintingmodels
follows the RSSI encoder in the MMI model, and only the
output size of its reshaping layer is changed to 8×8×2. The
output tensor of the RSSI encoder passes through three suc-
cessive upsampling structures in the decoder, each containing
one 2D convolutional layer and one 2D upsampling layer. All
2D convolutional layers contain a convolutional kernel with a
size of three, stride of one, and ReLU as the activation func-
tion. The 2D upsampling layers contain upsampling factors of
2× 2 for rows and columns. Finally, the tensor is transmitted
through two 2D convolutional layers and a sigmoid activation
layer, resulting in an output of size 64× 64× 3.
The inpainting performances of the aforementioned base-

line methods are compared with those of RF-Inpainter when
four APs are available and when only a single AP is available,
that i.e., with those of RF-Inpainter (w/ 4 APs) and RF-
Inpainter (w/ single AP).

D. IMAGE OCCLUSION SCENARIOS
Three scenarios are considered based on the following occlu-
sion patterns—horizontal, vertical, and random image occlu-
sions.

In the horizontal occlusion scenario, nearly 70% of the
lower area of all images is occluded, ensuring that the por-
trait is completely obscured in the images captured by Cam-
era 1. The masking method is also used for images captured
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FIGURE 9. An example of occlusion of Camera 1’s images in each
scenario.

FIGURE 10. An example of occlusion of Camera 2’s images in each
scenario.

by Camera 2. From Camera 1’s perspective, the pedestrian
always moves back and forth horizontally along the same
line—so information about the pedestrian exists on a fixed
horizontal band. In the images captured by Camera 2, the
pedestrian also walks linearly, but his distance from the cam-
era keeps varying. Overall, the portrait changes dynamically
in size and is always confined to a fixed vertical rectangular
area. Thus, adding a horizontal block can remove all informa-
tion about the pedestrian fromCamera 1, but not fromCamera
2 images, as parts of his body, such as the head and hands, are
sometimes visible at the top of some images.

In the vertical occlusion scenario, 50% of themiddle region
of each Camera 2 image and 50% of the right region of
all Camera 1 images are occluded. This method allows the
complete occlusion of portraits in Camera 2 images, and
pedestrians in all Camera 1 images are left unmasked with
approximately half probability.

In the random occlusion scenario, the minimum size of
the random blocking object on each image is taken to be
40 × 40 to ensure that most of the pedestrians in the images
are occluded, regardless of whether the image comes from
Camera 1 or 2.

E. EVALUATION OF RESULTS
Fig. 11 depicts a sample of the experimental results. The
RF-Inpainter (w/ 4 APs) is observed to recover clear and
complete portraits in all scenarios using multimodal infor-
mation, irrespective of the occlusion of the portrait informa-
tion in the input image. Conversely, RF-Inpainter (w/ single
AP) and Image-only inpainting only recover portraits when
residual portraits are present in the input images (i.e., in the
random occlusion case), and these portraits are not as clear
and complete as those reconstructed by RF-Inpainter (w/
4 APs). In addition, RSSI-only inpainting (w/ 4 APs) recovers
portraits that closely resemble the original ones. In contrast,
RSSI-only inpainting (w/ single AP) does not reconstruct
any portrait. Visually, the output of the four-input RSSI-
only inpainting model is comparable to that of the four-input
MMI model in Scenario 1 and 2. These observations indicate
that using both image and RSSI information significantly

enhances the robustness and accuracy of image inpainting.
Furthermore, RSSI data obtained from multiple APs are
required to improve inpainting performance.

Table 1 lists the objective assessment metrics (i.e., mean
PSNR and mean SSIM) for all inpainting methods. In image
occlusion scenarios, especially in the first two cases where
portrait information is scarce, the accuracy of RF-Inpainter
(w/ 4 APs) is the highest, followed by that of RF-Inpainter
(w/ single AP). Image-only inpainting exhibits the worst
accuracy. The maximum difference between its mean PSNR
and that of RF-Inpainter (w/ single AP) is approximately
8 dB, and the maximum discrepancy in SSIM is approxi-
mately 12%. These observations reinforce the conclusion that
the simultaneous use of both types of information improves
image inpainting performance considerably.

Moreover, in the random blocking scenario, the accuracy
of all three models is observed to be significantly improved
compared to the first two scenarios, and all values are
approximately comparable. Randomly generated occlusion
often does not mask all portraits in an image, leading to
leakage of portrait information, which aids inpainting. The
main structure of MMImodels and the Image-only inpainting
model is U-Net, which is a robust neural network capable of
reconstructing images to match the original images closely,
even based on a small amount of information. As a result,
the contribution of image information to image inpainting is
significantly higher than that of RSSI—the image informa-
tion almost completely determines the accuracy of the recon-
structed images in this case. Therefore, RF-Inpainter and
Image-only inpainting methods always yield similar results.
Moreover, even when the percentage of the occluded area in
the image is increased (e.g., theminimum size of the occluded
area is 60 × 60), identical results are acquired, owing to the
inclusion of cases where the randomly generated occluded
area fails to block the pedestrian completely.

The results obtained in the RSSI-only scenarios demon-
strate that images of satisfactory quality can be obtained using
only RSSI, although the results are not as good as those
obtained using RF-Inpainter. The results also suggest that
appropriately increasing the quantity of RSSI data improves
imaging performance.

Additionally, the accuracy of the reconstructed Camera
1 images is observed to be significantly higher than that of the
inpainted Camera 2 images, which may be attributed to the
positional relationship of APs, cameras, RF anchors, and the
movement trajectory of the pedestrian.

From the perspective of efficiency, the mean inference time
of each model is similar in all cases and is less than 1 ms.
Further, the maximum inference time is only 4.097 ms, which
enables the real-time restoration of images and facilitates the
practical application of RF-Inpainter.

F. THE EFFECT OF RSSI VECTOR LENGTH
The RSSI vector length, L, affects the quality of the recon-
structed images. To ensure that a vector contains sufficient
RSSI values to capture the spatial environment completely, L
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FIGURE 11. Sample inpainting results in each scenario: (a). Results for Camera 1 images; (b). Results for Camera 2 images.

TABLE 1. Objective assessment metrics for each inpainting method corresponding to Camera 1 images.

must not be too small. However, if L is too large, interference
information is increased, which impairs the inpainting perfor-
mance. Therefore, optimizing the value of L is essential.

Fig. 12 depicts the images reconstructed by RF-Inpainter
(w/ 4 APs) with RSSI vector lengths of 150, 250, and 550.
When the number of RSSI values in the vector is insuffi-
cient (L = 150), the reconstructed human image is blurred,
as depicted in Fig. 12. a. In contrast, when toomany RSSI val-
ues are included in the vector (L = 550), the result depicted
in Fig. 12. c is obtained—the portrait in the reconstructed

image does not match the original image. However, when
the number of RSSI values included in the vector is moder-
ate (L = 250), an accurate and precise result is obtained,
as depicted in Fig. 12. b. Thus, it is reasonable to believe
that there might be an optimum value of L (i.e., m) between
150 and 550 that maximizes inpainting accuracy.

Similar conclusions can be drawn from Fig. 13 and 14 that
capture the variations of the mean PSNR and mean SSIM
of the reconstructed images as a functions of L, separately.
A peak is observed in the middle of each curve in each
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FIGURE 12. Image inpainting results corresponding to different RSSI vector lengths. (a) L = 150. (b) L = 250. (c) L = 550.

FIGURE 13. Dependence of mean PSNR on the length of RSSI vector.

FIGURE 14. Dependence of the mean SSIM on the length of RSSI vector.

graph, indicating the existence of maximum values for both
PSNR and SSIM. For mean PSNR and mean SSIM, the peaks
correspond to the range of L between 200 and 300, and
between 250 and 350, respectively.

However, the accurate determination of m in a particular
environment is a daunting task owing to a great number
of factors affecting m, such as the positional relationship
between APs and the RF sensor, the density of human traffic
in the space, and the size of the indoor space. In addition, most
of these factors change dynamically over time, causing m to
change constantly. Thus, we reserve the precise determination
of m in real time as a topic for future research.

V. CONCLUSION
This article propose RF-Inpainter—a novel multimodal
image inpainting method that integrates visual and wireless
information. The underlying architecture of RF-Inpainter is

a deep neural network called MMI model, which restores
complete and clear images by fusing temporally correspond-
ing defective RGB images and RSSI vectors. The feasi-
bility and advantages of inpainting using RF-Inpainter are
illustrated by evaluating the inpainting performances of two
MMI models and three baseline models in a typical indoor
environment using experimentally obtained datasets. The
results reveal that the fusion of RF information improves
image quality significantly in most scenarios, with maximum
improvements in mean PSNR and mean SSIM of 36.4%
and 14.6%, respectively. Moreover, the mean inference time
of the MMI model is lower than 1 ms, which indicates
that RF-Inpainter enables real-time restoration of defective
images.

We expect several directions of future research to emerge
regarding this work as a baseline. Firstly, the evaluation of
inpainting performance of RF-Inpainter by applying it to
computer vision applications, such as object recognition and
moving path prediction, rather than solely based on metrics
such as mean PSNR and mean SSIM, may be desirable.
Secondly, we intend to explore optimizing the performance of
both wireless communication and image inpainting in future
work. In other words, we expect to maximize the coverage
and throughput of a wireless communication network by
determining the optimal location of access points, RF sensors
and cameras, while ensuring good sensing capabilities of that
network.

ACKNOWLEDGMENT
The authors would like to thank Dr. Ryo Yonetani for the
insightful comments and helpful discussions.

REFERENCES
[1] A. R. Widya, Y. Monno, M. Okutomi, S. Suzuki, T. Gotoda, and K. Miki,

‘‘Whole stomach 3D reconstruction and frame localization from monocu-
lar endoscope video,’’ IEEE J. Transl. Eng. Health Med., vol. 7, pp. 1–10,
2019.

[2] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic,
T. Pajdla, and A. Torii, ‘‘InLoc: Indoor visual localization with dense
matching and view synthesis,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7199–7209.

[3] T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Okutomi, and
T. Pajdla, ‘‘Are large-scale 3D models really necessary for accurate visual
localization?’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1637–1646.

[4] J. Jam, C. Kendrick, K. Walker, V. Drouard, J. G.-S. Hsu, and M. H. Yap,
‘‘A comprehensive review of past and present image inpainting methods,’’
Comput. Vis. Image Understand., vol. 203, Feb. 2021, Art. no. 103147.

VOLUME 10, 2022 110699



C. Chen et al.: RF-Inpainter: Multimodal Image Inpainting Based on Vision and Radio Signals

[5] X. Zhuge, ‘‘Short-range ultra-wideband imaging with multiple-input
multiple-output arrays,’’ Ph.D. thesis, Dept. Telecommun., Delft Univ.
Technol., Delft, The, Netherlands, 2010. [Online]. Available:
http://resolver.tudelft.nl/uuid:5a7ce119-6ed2-420b-9a5a-200896fb3445

[6] W. Zhong, K. He, and L. Li, ‘‘Through-the-wall imaging using WiFi
signals,’’ J. Eng., vol. 2019, no. 20, pp. 6940–6942, 2019.

[7] S. Vakalis, L. Gong, and J. A. Nanzer, ‘‘Imaging withWiFi,’’ IEEE Access,
vol. 7, pp. 28616–28624, 2019.

[8] S. Fowler, G. G. Baravdish, and G. Baravdish, ‘‘3D imaging of sparse
wireless signal reconstructions via machine learning,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

[9] S. Zhou, L. Guo, Z. Lu, X. Wen, W. Zheng, and Y. Wang, ‘‘Subject-
independent human pose image construction with commodity Wi-Fi,’’ in
Proc. IEEE Int. Conf. Commun., Jun. 2021, pp. 1–6.

[10] C. Oliver, ‘‘Synthetic-aperture radar imaging,’’ J. Phys. D, Appl. Phys.,
vol. 22, no. 7, p. 871, 1989.

[11] L. Ferro-Famil and E. Pottier, ‘‘SAR imaging using coherent
modes of diversity: SAR polarimetry, interferometry and
tomography,’’ in Microwave Remote Sensing of Land Surface.
U.K.: Elsevier, 2016, pp. 67–147. [Online]. Available:
https://www.sciencedirect.com/book/9781785481598/microwave-remote-
sensing-of-land-surfaces

[12] S. Kato, T. Fukushima, T. Murakami, H. Abeysekera, Y. Iwasaki,
T. Fujihashi, T. Watanabe, and S. Saruwatari, ‘‘CSI2Image: Image recon-
struction from channel state information using generative adversarial net-
works,’’ IEEE Access, vol. 9, pp. 47154–47168, 2021.

[13] A. Dubey, P. Sood, J. Santos, D. Ma, C.-Y. Chiu, and R. Murch,
‘‘An enhanced approach to imaging the indoor environment using
WiFi RSSI measurements,’’ IEEE Trans. Veh. Technol., vol. 70, no. 9,
pp. 8415–8430, Sep. 2021.

[14] M. H. Kefayati, V. Pourahmadi, and H. Aghaeinia, ‘‘Wi2 Vi: Generating
video frames from WiFi CSI samples,’’ IEEE Sensors J., vol. 20, no. 19,
pp. 11463–11473, Oct. 2020.

[15] L. Guo, Z. Lu, X. Wen, S. Zhou, and Z. Han, ‘‘From signal to image: Cap-
turing fine-grained human poses with commodity Wi-Fi,’’ IEEE Commun.
Lett., vol. 24, no. 4, pp. 802–806, Apr. 2020.

[16] N.M. F. Salem, ‘‘A survey on various image inpainting techniques,’’Future
Eng. J., vol. 2, no. 2, p. 1, 2021.

[17] Y. Ma, X. Liu, S. Bai, L. Wang, A. Liu, D. Tao, and E. R. Hancock,
‘‘Regionwise generative adversarial image inpainting for large miss-
ing areas,’’ IEEE Trans. Cybern., early access, Aug. 17, 2022, doi:
10.1109/TCYB.2022.3194149.

[18] J. Qin, H. Bai, and Y. Zhao, ‘‘Face inpainting network for large missing
regions based on weighted facial similarity,’’ Neurocomputing, vol. 386,
pp. 54–62, Apr. 2020.

[19] J. Li, N. Wang, L. Zhang, B. Du, and D. Tao, ‘‘Recurrent feature reasoning
for image inpainting,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 7760–7768.

[20] S. S. Ahmed, A. Schiessl, and L.-P. Schmidt, ‘‘A novel fully electronic
active real-time imager based on a planar multistatic sparse array,’’ IEEE
Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3567–3576, Dec. 2011.

[21] P. M. Holl and F. Reinhard, ‘‘Holography of Wi-Fi radiation,’’ Phys. Rev.
Lett., vol. 118, no. 18, May 2017, Art. no. 183901.

[22] J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady,
and D. R. Smith, ‘‘Metamaterial apertures for computational imaging,’’
Science, vol. 339, no. 6117, pp. 310–313, Jan. 2013.

[23] L. Yujiri, M. Shoucri, and P. Moffa, ‘‘Passive millimeter wave imaging,’’
IEEE Microw. Mag., vol. 4, no. 3, pp. 39–50, Sep. 2003.

[24] T. Nishio, Y. Koda, J. Park, M. Bennis, and K. Doppler, ‘‘When wireless
communications meet computer vision in beyond 5G,’’ IEEE Commun.
Standards Mag., vol. 5, no. 2, pp. 76–83, Jun. 2021.

[25] T. Nishio, H. Okamoto, K. Nakashima, Y. Koda, K. Yamamoto,
M. Morikura, Y. Asai, and R. Miyatake, ‘‘Proactive received power pre-
diction using machine learning and depth images for mmWave networks,’’
IEEE J. Sel. Areas Commun., vol. 37, no. 11, pp. 2413–2427, Nov. 2019.

[26] Y. Koda, K. Nakashima, K. Yamamoto, T. Nishio, andM.Morikura, ‘‘Han-
dover management for mmWave networks with proactive performance
prediction using camera images and deep reinforcement learning,’’ IEEE
Trans. Cognit. Commun. Netw., vol. 6, no. 2, pp. 802–816, Jun. 2020.

[27] J. Jiao, F. Li, W. Tang, Z. Deng, and J. Cao, ‘‘A hybrid fusion of wireless
signals and RGB image for indoor positioning,’’ Int. J. Distrib. Sens. Netw.,
vol. 14, no. 2, pp. 1–11, 2018.

[28] D. Zhu, H. Sun, and D.Wu, ‘‘Fusion of wireless signal and computer vision
for identification and tracking,’’ in Proc. 28th Int. Conf. Telecommun.
(ICT), Jun. 2021, pp. 1–7.

[29] Z. Yang, Z. Zhou, and Y. Liu, ‘‘From RSSI to CSI: Indoor localization via
channel response,’’ ACM Comput. Surv., vol. 46, no. 2, pp. 1–32, 2013.

CHENG CHEN received the B.E. degree in infor-
mation and communications engineering from
the National University of Defence Technology,
in 2019. He is currently pursuing the M.I. degree
with the School of Engineering, Tokyo Institute of
Technology.

TAKAYUKI NISHIO (Senior Member, IEEE)
received the B.E. degree in electrical and elec-
tronic engineering and the master’s and Ph.D.
degrees in informatics from Kyoto University,
in 2010, 2012, and 2013, respectively. He was
an Assistant Professor in communications and
computer engineering at the Graduate School of
Informatics, Kyoto University, from 2013 to 2020.
From 2016 to 2017, he was a Visiting Researcher
at the Wireless Information Network Laboratory

(WINLAB), Rutgers University, USA. Since 2020, he has been an Associate
Professor at the School of Engineering, Tokyo Institute of Technology, Japan,
and the Wireless Information Network Laboratory (WINLAB), Rutgers
University. His current research interests include machine learning-based
network control, machine learning in wireless networks, vision-aided wire-
less communications, and heterogeneous resource management.

MEHDI BENNIS (Fellow, IEEE) is currently
a Professor with the Centre for Wireless
Communications, University of Oulu, Finland,
an Academy of Finland Research Fellow, and
the Head of the Intelligent Connectivity and Net-
works/Systems Group (ICON). He has published
over 200 research papers in international confer-
ences, journals, and book chapters. His research
interests include radio-resource management, het-
erogeneous networks, game theory, and distributed

machine learning in 5G networks and beyond. He has been a recipient of
several prestigious awards, including the 2015 Fred W. Ellersick Prize from
the IEEE Communications Society, the 2016 Best Tutorial Prize from the
IEEE Communications Society, the 2017 EURASIP Best Paper Award for
the Journal of Wireless Communications and Networking, the University of
Oulu Award for Research, the 2019 IEEE ComSoc Radio Communications
Committee Early Achievement Award, and the 2020 Clarviate Highly
Cited Researcher from the Web of Science. He is also an Editor of IEEE
TRANSACTIONS ON COMMUNICATIONS and the Specialty Chief Editor for Data
Science for Communications and the Frontiers in Communications and
Networks journal.

JIHONG PARK (Senior Member, IEEE) received
the B.S. and Ph.D. degrees fromYonsei University,
South Korea. He is currently a Lecturer at the
School of IT, Deakin University, Australia. His
research interests include ultra-dense ultra-reliable
mmWave system design, distributed learning
control ledger technologies, and their applica-
tions in beyond-5G/6G communication systems.
He served as a Conference Workshop Program
Committee Member for IEEE GLOBECOM, ICC,

and WCNC, and for NeurIPS, ICML, and IJCAI. He is also an Associate
Editor of Frontiers inData Science for Communications and a Review Editor
of frontiers in Aerial and Space Networks.

110700 VOLUME 10, 2022

http://dx.doi.org/10.1109/TCYB.2022.3194149

