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ABSTRACT PIPO is a lightweight block cipher proposed at ICISC 2020, which has a byte-oriented structure
suitable for bit-sliced implementation and allows for efficient higher-order masking implementations. In this
study, we use bit-based division property techniques to construct 6-round integral distinguishers, and propose
key-recovery attacks on 8 rounds of PIPO-64/128 and 10 rounds of PIPO-64/256. The data complexity of
both attacks is 26% chosen plaintexts and the time complexities are 2'?° and 22338 respectively. Our results
complement the security analysis of PIPO, and show that the PIPO structure is resistant to recently researched
cryptanalysis methods. Because only differential and linear attacks were carefully considered to determine
the number of rounds of PIPO, our work, based on division property, is important for verifying the security
margin.

INDEX TERMS Division Property, integral cryptanalysis, PIPO.

1. INTRODUCTION TABLE 1. Integral attacks on PIPO-64/128 and PIPO-64/256.

PIPO is a lightweight block cipher proposed at ICISC

2020 [1]. It has a byte-oriented structure suitable for bit-sliced Target Attacked Data . Time .
implementation, and provides good performance on an 8-bit Rounds | Complexity | Complexity
ici - PIPO-64/128 8 263 2125
AVR platform. It also allows for efficient higher-order mask-
PIPO-64/256 10 263 92538

ing implementations. The designers claimed that differential,
linear, impossible differential, boomerang, and meet-in-the-
middle attacks work at most 9, 9, 6, 8, and 6 rounds for

PIPO-64/128, and at most 11, 11, 8, 10, and 10 rounds for In this study, we examine the division property for

PIPO-64/256, respectively.

Integral cryptanalysis [2] exploits a distinguisher causing
a zero sum for a target structure, similar to higher-order
cryptanalysis [3] and square attack [4]. Todo [5] pro-
posed a remarkable approach of division property, allowing
the construction of many rounds of integral distinguishers
for target structures. His work led to the first attack on
full-round MISTY cipher [6] and developed into bit-based
techniques [7], [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.
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PIPO and find that the division property can propagate
up to 6 rounds. Then, we construct 6-round integral dis-
tinguishers [2] based on the observations and perform a
key-recovery attack on 8-round PIPO-64/128 and 10 rounds
of PIPO-64/256. The attack on 8-round PIPO-64/128 recov-
ers a 128-bit key with 26% chosen plaintexts and 2!?> encryp-
tions, whereas the attack on 10-round PIPO-64/256 recovers a
256-bit key with 293 chosen plaintexts and 22338 encryptions.
Our results are summarized in Table 1. Integral cryptanaly-
sis is an important tool for analyzing the security of block
ciphers; however, to the best of our knowledge, the resistance
of PIPO to integral cryptanalysis has never been published,
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TABLE 2. Comparisons of attacks on reduced-round PIPO-64/128 and PIPO-64/256.

« Full-Round PIPO-64/128 : 13 Rounds

« Full-Round PIPO-64/256 : 17 Rounds

Cryptanalysis Type Key Size Distinguisher Key Recovery Source
Differential Chosen-Plaintext 128»bft 6 Rounds 9 Rounds
Attack 256-bit 11 Rounds
Linear Known-Plaintext 128-b1At 6 Rounds 9 Rounds
Attack 256-bit 11 Rounds
hosen-Plaintext 128-bit Rounds
Impossible differential | CnoSen-Flaintex 8-bi 4 Rounds 6 Rounds [
Attack 256-bit 8 Rounds
Boomerang/Rectangle A'dap tive Chosen- 128»bft 6 Rounds 8 Rounds
Ciphertext Attack 256-bit 10 Rounds
Meet-in-the-Middle Chosen-Plaintext 128—b¥t 6 Rounds 6 Rounds
Attack 256-bit 10 Rounds 10 Rounds
Integral Chosen-Plaintext 128—b{t 6 Rounds 8 Rounds This paper
Attack 256-bit 10 Rounds
Col. index S—]ayer S R-layer R KCy—XOR
<« 0 sk ay [ og | oy | @) |2y |2y |
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FIGURE 1. i-th round of PIPO.

even in [1]. Although our results do not weaken the security
claim of full-round PIPO as presented in Table 2, these com-
plement the security analysis by conducting attacks on the
reduced-round versions.

The remainder of this paper is organized as follows.
In Section II, we present the basic background and related
work. Section III discusses how the PIPO structure is mod-
eled as suitable for an MILP solver. In Section IV, we analyze
the division properties of PIPO structure. Section V presents
the integral distinguishers and attacks on reduced rounds of
PIPO. In Section VI, we present our conclusions.

Il. PRELIMINARIES

A. SYMBOLS AND NOTATIONS

An n-bit binary vector x € I} is defined as
(Xp—1,Xp—2,...,x0), where x; € IF, for 0 < i < n. This
can also be denoted by x = x,_1x,—2---x9. We define
X < i as an operation rotating a binary vector x in the left
direction by i bits. We denote the concatenation of the two
binary vectors x and y by x|y. We represent a sequence of
consecutive identical bits with the superposition of a single
bit. For example, a 7-bit string 1111000 or a 7-bit binary
vector (1, 1, 1, 1,0, 0, 0) can be denoted by 140°.

Let X be a multiset of n-bit vectors. We denote the output
multiset of a map f : F5 — F7' by f(X) := {f(x) : x € X},
where x € ;5 and y € 5. We define w(x) = Z?z_ol x; as the
Hamming weight of x, x > y asx; > y; for 0 < i < n, and
xX-y= @?;01 x;y; as the inner product of x and y, where x;y;
is the AND of x; € [F, and y; € [F». In addition, we define x¥

. 17y
as a monomial [/, x)".
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Let f be a Boolean function from [/} to IF; and the algebraic
normal form (ANF) of f be f (x) = @yeﬂ«‘" ayx? with ay € 5.
We define a set ANFy of all the terms of fasANF, = {y €
F5 | ey =1}

Let E : ]F’é x 5 — I be a block cipher with k-bit key
and n-bit block. ¢ = E,(p) indicates that plaintext p € [F7 is
encrypted to ciphertext ¢ € I} through block cipher E with
key k € IFIE Furthermore, Y = E,(X) implies that Y is the
(multi)set of ciphertexts to which the block cipher E encrypts
all plaintexts in the (multi)set X with the key « € IFS

B. BLOCK CIPHER PIPO

Block cipher PIPO was proposed at ICISC 2020 [1]. The
block length of PIPO is 64 bits. PIPO is denoted by
PIPO-64/128 for 128-bit keys and by PIPO-64/256 for
256-bit keys, respectively. PIPO-64/128 and PIPO-64/256
have the SPN (Substitution-Permutation Network) structure
with 13 and 17 rounds, respectively.

As Fig. 1 shows, it is convenient to represent a 64-bit state
vector x of PIPO as an 8 x 8 binary matrix {x;;} whose
(i, )-th entry x;; is equal to xgi1; for 0 < i,j < 8. Its
i-th Tow Xx; x is (x;,7, Xi,6, - - > Xi,0) = (X8i47, - -+ » X8i+1, X8i)s
and its j-th column x, ; is defined as (x7, x¢j, . . . ,xo,j)’ =
(X56-+j> X485 - - - ,xj)’ . Note that the column index starts on
the right.

The key schedule of PIPO-64/128 splits a 128-bit master
key k into two 64-bit parts k = k1 ||ko. Subsequently, subkeys
are defined as sk' = k;moa2 @ i for 0 < i < 13. The
key schedule of PIPO-64/256 splits a 256-bit « into four
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FIGURE 2. Overall structure of Sg.

64-bit parts k = k3|k2|k1]ko. Subsequently, the subkeys
are defined as sk’ = Kimod4 @ifor0 <i<17.

The round function of PIPO consists of an S-layer S for
nonlinear operation, an R-layer R for linear operation, and
Key-XOR for adding round keys (see Fig. 1). The input x of
the first round is the XOR of the plaintext p and whitening
subkey sk: x* = p @ sk®. In the first round, S applies the
8-bit S-box Sg to each column of x°, and the output y of S is
the concatenation of the outputs of the S-boxes. The output z
of R is the concatenation of the left rotation of each row of y.
The numbers of rotated bits are 0, 7, 4, 3, 6, 5, 1, and 2 from
0-th row to 7-th row of y, respectively. The output of the first
round is x' = z @ sk' which is the input of the second round.
Each of the remaining rounds has the same process: S-layer,
R-layer, and Key-XOR (with sk’ fori = 2,3, ...).

1) - 8-BIT S-BOX of PIPO
The 8-bit S-box Sg of S-layer is constructed with a 3-bit S-box
S3 and two 5-bit S-boxes 551 and S52. Fig. 2 illustrates the
structure of Sg. The 3-bitinputx = (x2, x1, xo) can be updated
to the output S3(x) of S3 as follows:

Xy < x2 @ (x1 A Xxp);

Xo < X0 D (x2 V x1);

x1 < x1 @ (x2 V Xp);

Xy < xp D 1.
The 5-bit input x = (x4, x3, X2, X1, X0) can be updated to the
output S51 (x) of 551 as follows:

X < X2 @ (x4 A x3);

x| < x1 @ (x2 A xp0);

X4 < X4 D x1;

X3 <— X3 D xp;

Xo < X0 ® (x2 V x1);

Xy <= xp D x4,

X| < X1 B (33 Ax2).
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The 5-bit input x = (x4, x3, X2, X1, X9) can be updated to the
output S52(x) of S52 as follows:

X4 < x4 B (X3 A X0);

Xg < Xxo D x4;

X4 < x4 @ (X2 V x1);

X] < X1 D x3;

X3 < X3 (x4 V x2);

Xy < x3 D (x1 A Xxp).

Finally, for the 8-bit input x = (x7, ..
8-bit S-box Sy is computed as follows:

., Xo), the output of

(X7, X6, X5, X4, X3) < Sa(x7, X6, X5, X4, X3);

(x2, x1, X0) < S3(x2, X1, X0);
Iy <= X4 < x4 D x0;
) < x7 < x7 D xy;
1 < X3 < x3 P x7;

(X6» X5, 12, 11, 10) < S2(x6, X5, 12, 11, 10);
X2 < X2 @ fo;
X0 < x0 D 11;
X1 < X1 @ n;
(x7, ..., x0) < (x1, X3, X4, X5, X6,

X2, X0, X7).

The unbalanced-bridge structure, which combines S3, SS1 ,and
SSZ, provides high differential and linear branch numbers as
well as efficient masking implementations [1].

C. INTEGRAL CRYPTANALYSIS

Integral cryptanalysis stemmed from the security evaluation
of block cipher Square [4] and was formalized in [2]. This
method uses integral distinguishers.

We denote the state of an active bit variable, on which 0 and
1 both appear, by ‘a’ and the state of a constant bit variable,
on which the value is fixed as constant, by ‘c’. For example,
if the state of the 4-bit variable (x3, x2, x1, xg) is (ccaa), four
4-bit values can appear with (x1, xo) = (0, 0), (0, 1), (1, 0),
and (1, 1) for a certain constant value of (x3, x2). An integral
distinguisher requires an input multiset whose state consists
of active and constant bits, and exploits the fact that the
XOR-sum of the corresponding output multiset is always zero
at some bits.

Definition 1 (Integral Distinguisher): LetE : Flé x Fy —
[F} be an r-round block cipher with k-bit key and n-bit block.
Let X and Y = E.(X) be a plaintext multiset and ciphertext
multiset under a key k € FX, respectively. If there exists any
index i such that

Dyi= PE):=0 Ve cF,
yeY xeX

we say that the i-th bit variable y; of the ciphertext is bal-
anced, and call the transition from X to Y an r-round integral
distinguisher for E.
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Assuming that an integral distinguisher has m balanced
bits, the probability that random permutation P on 7 sat-
isfies m balanced bits is 27™. Hence, we can use such an
integral distinguisher to distinguish block cipher E from P.

D. DIVISION PROPERTY

The notion of the division property was proposed by Todo at
EUROCRYPT 2015 [5] as an efficient method for construct-
ing integral distinguishers, and was subsequently generalized
to bit-based division property [7]. In this study, we focus on
the conventional bit-based division property. The definition
is given in Definition 2.

Definition 2 (Conventional Bit-Based Division Prop-
erty [6]): Let X be a multiset whose elements take the value
of Fg, and let k be an n-dimensional vector whose i-th element
takes O or 1. When multiset X has the conventional bit-based
division property D, it satisfies the following conditions:

ki if 3k € Ks.t.u > k,
@x": gn nown i eKs.tu> )

otherwise.
xeX

For simplicity, the conventional bit-based division property
is mentioned as a division property in the remainder of this
paper. If k € K and k' € K satisfy k > k', we can remove
k from K because k does not affect the condition (1). In [8],
Xiang et al. defined operation SizeReduce(KK) by removing
redundant vectors from K and returning the reduced set of K.

1) DIVISION PROPERTY PROPAGATION RULE

Todo [7] demonstrated how the division property is prop-
agated through copy, and, and xor. In this section,
we briefly present propagation rules. In the following rules,
the notation A <= B for sets A, B denotes A = AU B.

a: - RULE 1 (copy)

Letf :F, — IF% be a copy function, where the input (xp) €
F, and the output is calculated as (xg, xo). Let X and Y be
the input and output multisets of f. If X has DL Y has D]%g,,
where K’ is computed for all k € K as

S (G
(0, 1),1,0)

o =0, @)
if k() =1.

b: - RULE 2 (and)

Let f : IF% — F; be an and function, where the input
(x1,x0) € IF% and the output is calculated as (x; A xp). Let
X and Y be the input and output multisets of f, respectively.

If X has D]%(, Y has Dﬁg,, where K’ is computed for all k € K
as

ecffm=)) o

c: - RULE 3 (xor)

Let f : IF% — [, be an xor function, where the input
(x1,x0) € IF% and the output is calculated as (x; & xg). Let
X and Y be the input and output multisets of f, respectively.
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Algorithm 1 Calculating DP(f, k)
Input: The input division property D} of f where k € I}
Output: A set K of vectors such that the output multiset has
the division property Dy
1S« {k' | K =k}
2K« g
3: foru € F5' do
4 if ANFr« NS # @ then
5: K < {u}
6
7
8
9

end if
: end for
: DP(f, k) = SizeReduce(K)
: return DP(f , k)

If X has D]%(, Y has D]%C, where K’ is computed for all k € K
as

K' < {(max{ki, ko})} . 4)

d: - RULE 4 (S-BOX)

In addition to the above basic operations, the division prop-
erty propagation through the S-box can be derived by analyz-
ing its ANF [8].

Letf : 5 — IF7' be a function of the S-box, where the
input x € [} and the outputy € . Let X and Y be the input
and output multisets of f. If X has D, Y has Dﬂ’g,, where K’
is computed for all k € K as

K' < DP(f k).
For each k € K, DP(f, k) C I is defined as
&\ f ¥ contains any term x* satisfying u 3= k},

where f K s ]_[;":_Ol fi(x)ki/ . We can calculate DP(f, k) using
Algorithm 1, which was introduced in [8]. As mentioned
above, the redundant vectors of K’ do not affect the division
property. Therefore, Algorithm 1 considers the reduced set by
applying SizeReduce(K) in Line 8.

2) DIVISION TRAIL

As shown in [8], the propagation of the division property can
be regarded as a transition of vectors, from k € K of the
division property Dj tok’ € K’ of the division property DJf,.
In [8], Xiang et al. defined a chain of propagation as a division
trail.

Definition 3 (Division Trail [8]): Let E : Fg x 5 — )
be an iterated block cipher, and let f; denote the i-th round
function of E. Assume that the input multiset to £ has an
initial division property Dy, and denote the division property
after r-round propagation through f; by Df(,' Thus, we have
the following chain of division property propagations.

=K, bk, B, vk,

Moreover, for any vector kl’-‘ in K; (i > 1), there exists
a vector kI | in K;_; such that k7 , can propagate to k;
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by the division property propagation rules. Furthermore, for
(ko ki, ..., k) € Ko xK; x---xK,,if kj_j can propagate
tok; foralli e {1,2,...,r}, then we call (kg,k;,...,k,)an
r-round division trail.

Definition 3 implies that the set of last vectors of all r-
round division trails starting with k is equal to K. Therefore,
checking for the existence of a useful integral distinguisher
after r-round encryption (i.e., obtaining K, such that there
exists any unit vector ¢ ¢ K,) is equivalent to finding all
r-round division trails starting with k. Based on this observa-
tion, Xiang et al. proposed an approach for finding all divi-
sion trails by constructing a linear inequality system whose
feasible solutions represent all division trails.

E. MILP-AIDED DIVISION PROPERTY

Mixed-integer linear programming (MILP) has been applied
to cryptanalytic problems. An MILP model M comprises a
variable set M.var, a constraint set M.con, and the objective
function M.obj.

The above propagation rules for MILP should be adjusted
to determine the division property. To determine the division
property of f : ) — 7', we should create an MILP model
M such that M has only division trails of f as solutions.
There are two requirements for it for a||b € Fg+’":

1) Ifa i) b is a division trail of f, a||b is a solution of M,

2) Ifa||b s a solution of M, a L b is a division trail of f.

a: - MILP MODEL FOR copy
When (ag) —=5 (by, bo) is a division trail of copy(xo) =
(x0, x0), then the MILP model M can be

M.con <= ag — by — by = 0;
M.var < ag, by, by : binaries

to satisfy Rule 1 of Equation (2).

b: - MILP MODEL FOR and
When (ay, ap) and (bp) is a division trail of and(x, x9) =
X1 A xo, then the MILP model M can be

M.con <= by —a; > 0;

M.con <= by —ag = 0;

M.con <= by —a; —ay <0;

M.uvar < ay, ay, by : binaries

to satisfy Rule 2 of Equation (3).

c: - MILP MODEL FOR xor
When (a1, ag) — (by) is a division trail of xor(x;, x9) =
x1 @ xo, then the MILP model M can be

M.con <= ay +agp — by = 0;
M.var < ay, ag, by : binaries

to satisfy Rule 3 of Equation (4).
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d: - MILP MODEL FOR S-BOX

Compared with the basic operations copy, and, and xor,
various approaches can be considered to construct an MILP
model M for the S-box. Constructing M for S-box f : 5 —
IF%! is equivalent to converting a set of (n + m)-bit vectors

{allb | b € DP(f, a)}

into a set of linear inequalities, M.con. The conversion can be
conducted in two ways: using the product-of-sum representa-
tion of Boolean functions [9] and the Inequality_generator()
function in Sagemath software.! Each of the two conversions
is detailed in the following section when constructing MILP
models for the S-box of PIPO.

lll. MILP MODEL FOR PIPO BLOCK CIPHER

In this section, we propose three methods of constructing
MILP models for the S-box Sg of PIPO and compare them.
Moreover, we introduce a method for exploiting the rotational
symmetry of PIPO to analyze the division properties more
efficiently.

A. MILP MODEL FOR S-BOX OF PIPO
We attempted to construct MILP models for S-box Sg of PIPO
in three ways.

1) BY H-REPRESENTATION: A1 H-repre
First, we applied Rule 4 (S-box) directly to Sg and obtained
the set

Py = | J{alb |b € DP(Ss, a)}

8
aclFy

of division trails for Sg. We convert Pg into the correspond-
ing linear inequalities using the Inequality_generator() func-
tion in the Sagemath software. Specifically, the function
Inequality_generator() determines an H-representation (a set
of inequalities) of the convex hull of Pg. We denote this model
for Sg by MHTePre  Although the greedy approaches in [10],
[11] can optimize MHTP™ by computing a small number of
inequalities that exactly describe Pg, this reduction is only
possible when the original H-representation is given.

2) BY PRODUCT-OF-SUM REPRESENTATION: M QM
Second, we applied the conversion of [9] to Pg. We define the

Boolean function g : F} ™" — F, as
1 ifx e Pg,
gx) = .
0 ifx ¢ Pg.

This gives the product-of-sum representation of g(x) as

g = A\ [Vuv V=

u¢Pg \u;=0 ui=1

! Available at http://www.sagemath.org/
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The product-of-sum representation trivially corresponds to a
set of inequalities which exactly describe Pg as

Doxi+ Yy (I—x)=1|ugPg

ui=0 ui=1

Therefore, we can simplify the set of inequalities for Sg by
minimizing the number of terms in the product-of-sum rep-
resentation. We apply the Quine-McClusky algorithm to min-
imize and obtain the MILP model MM for Sg.

3) BY CONSIDERING STRUCTURE OF Sg: Aqstruct
Finally, considering the structure of Sg, we derive an MILP
model MUt for Sg from the sets

Py = | J{alb |b € DP(S3,a)}

ae]Fg

Py = | J{allb | b € DP(S3. a))
acF3

P3 = | Jlallb | b € DP(S3, a))
ackF3

of division trails for S3, Ssl, and S52 respectively. As explained
in Section II-B and described in Fig. 2, Sg is constructed
with an unbalanced-bridge structure with S3, Ssl and Ssz.
We obtain the corresponding MILP models for P3, P}, and P2
by applying the Quine-McClusky algorithm. We then com-
bine them with the MILP models for copy and xor opera-
tions explained in Section II-E to obtain M3t for Sg.

4) COMPARISON OF MILP MODELS FOR Sg

METerre and MM gllow accurate analysis of Sg. However,
MHUTePTe g efficient only for S-boxes whose sizes are less
than 8 bits, because the computational complexity required to
obtain linear inequalities and optimize them increases in pro-
portion to the size of the S-box. MM also does not guarantee
its efficiency over 8-bit S-boxes, but fortunately, we obtained
it on Sg of PIPO around one hour.

However, Mt does not guarantee analysis as accurate
as MHrepre and MM because it does not cover monomials
cancelled through XORs in the ANF of Sg. For some input
division property k, M5 occurs a larger unknown set” of
Equation (1)

{u = k' | k||k' is feasible in|lout in MU} )

than MHTePre and MM Nevertheless, we proceeded to
obtain M5 because of its efficiency in modeling simple
operations and small S-boxes. Note that modeling simple
operations, such as copy and xor costs, is negligible. See
Table 3 for a comparison of the time complexities for model-
ing Ss.

2Note that the unknown set of MM is included in that of MSTUCt for
any input division property k. This implies some integral distinguishers may
not be found in the model AMSTUCt,
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TABLE 3. Comparison of MILP models for Sg.

MILP Model Modeling time X #ofk —> w
in Equation (5)
MHrepre Infeasible -
MM About 1 hour 55832
Mstruct Less than 1 sec. 55832 + 829

B. ROTATIONAL SYMIMETRY OF PIPO

We can find an MILP model M for r rounds of PIPO,
based on the analysis given in Section III-A. Then, we solve
M to construct any r-round division trail (ao, al, ... ,a’).
To obtain an integral distinguisher from the trail, we need
to start the trail with k of the division property D,?4 for the
plaintext multiset. We can achieve this by adding the follow-
ing constraints to M.con.

d) =k forj=0,1,....n—1.

Moreover, we should set w(k) = 63 to obtain the longest
integral distinguishers, for which we can search.
PIPO has the rotational property stated in Theorem 4.
Theorem 4 (Rotational Symmetry of PIPO): Let k be an
8 x 8 array of 64-bit binary vector. Let t(k) be the 64-bit
vector in which each row of k is right rotated by one bit. For

the round function f of PIPO, if k £> k' is a division trail of

f, k) L) 7(k') is a division trail of f as well.

Proof: We omit the Key-XOR operation considering the
components of the round function f of PIPO because it does
not have any impact on the division property. Subsequently,

a division trail k £ &' is regarded as k Sexy

First, we demonstrate that t(k) i) T(k*). We have
T(k)xj = K (—1) mod 8 and R(K*),.j = ki, ;) moa - Because

k i) k* is a division trail of the S-layer, ks (i—1)mod 8 can be
propagated to ki’(]._l) mod g through the S-box Sg. Therefore,

we have 7(k) 5 T(k*)sjfor0 < j <7, and t(k) EN (k).
Finally, we demonstrate that 7 (k%) LY (k). Tt is trivial

from the assumption k* K k', because both t and the R-layer
belong to rotation operations on 8 x 8 arrays of 64-bit values.
This completes this proof. |

Rotational symmetry can be used to reduce the number of
initial division properties to be considered for search, because
searching for trails starting with k covers trails starting with
k), T2(k), ..., or T/ (k).

IV. DIVISION PROPERTY ANALYSIS WITH LINEAR
TRANSFORMATIONS

A. EXTENDED INTEGRAL DISTINGUISHERS

Lambin et al. [12] presented a method for identifying more
integral distinguishers. Their approach involves searching for
Loy o E o Ly, instead of a block cipher E : ]F'2c x 3 — 7,
where L;, and L,,;, € GL,(F>) and where we regard E as
a nonlinear permutation on F,, a block cipher with a ran-
domly selected secret key over IF'E Generally, their method
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finds an extended integral distinguisher. This is defined as
Definition 5.

Definition 5 ((Extended) Integral Distinguisher): Let E :
Fg x [y — I} be an r-round block cipher with k-bit key
and n-bit block. Let X and Y be the plaintext and ciphertext
multisets of E, respectively. For any key k € FX, if there exists
some v € IF5 \ {0} such that

@v-y:@wEK(x):O,

yeY xeX

(X, v) is called an r-round integral distinguisher of £, and v -y
is called a balanced bit.

B. LINEAR TRANSFORMATIONS ON INPUT AND OUTPUT
We consider L;, only as a concatenation of eight 8 x 8 matrices
L{n € GLg(IF,) for 0 < j < 8, because it is computation-
ally impossible to try all the 64 x 64 binary linear matrices.
Similarly, we consider L, only as a concatenation of eight
8 x 8 matrices L, € GLg(IF) for 0 < j < 8.

Each output bit of L, o Sg for 0 < j < 8 has the form
of vour - Sg for the corresponding row v, of L{,m. Therefore,
we only need to check whether there exists v,,; such thatv,,; -
Sg is balanced for the j-th S-box in the last round function in
order to find integral distinguishers with L/ ,,.

Considering the rotational symmetry of PIPO, we can force
the initial division property D,?“ to have a single zero bit at the
least significant position of k. In other words, we assume that
the initial division property is ngg o and that the initial multi-
setis (a - - - ac) where the least significant bit is constant, and
the other bits are active. Under this assumption, Theorem 6
implies that L{n for 1 <j < 8 donotchange its initial division
properties.

Theorem 6: 1f the input division property is DY,, for any
invertible f : ) — IF7, the output division property is D7,.

Proof: Assume f(x) = y. According to Proposition 1
in [13], deg(y*) = n only when u is an n-bit all-one vector 1”.
Therefore, DP(f, 1") = {1"}, and the output division property
is DY,. O

Now, we can consider only Ll% with the given input division
property D%o‘ Because DP(Sg o ng 170) depends only on
linear combinations of bits that become constant, we can
classify 8 x 8 invertible matrices into 28 _ 1 classes, in which
each matrix instantiating ng has the same DP(Sg o ng 170).

For Dy, we define Succ(k) := {u € F; | u > k} for
k € K and Succ(K) := ey Succtk). Let DY and Dggl
be the output division properties of the first S-box in the
first round when two different matrices M and M’ instantiate
Lgl. If Succ(Ky) € Succ(K}), we can exclude M’ from the
search for extended integral distinguishers. We only have four
candidates for Ll.?l after applying this observation.

Finally, we propose a search algorithm for integral distin-
guishers considering L;, and L,,;. Algorithm 2 takes an MILP
model M for (r — 2)-round division trail and a linear trans-
formation Lgl as inputs to provide r-round extended integral
distinguishers.
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TABLE 4. Search results for 6-round integral distinguishers of PIPO.

Model for Sg | # of Distinguishers | Running Time
MM 136 7.25h
Mstruet 64 16.5h

In Lines 2 - 4, Algorithm 2 first computes the division prop-
erty for the first round by considering D% o for Sg o qu and
D?S for Sy o L! , 1 < i < 7. Then, through the loop covering
Lines 5 - 31, it searches for balanced bits in the r-th round out-
put on the division property after the first round. U is the set of
all v, such that the parity of x” is unknown for the output x of
the (r — 1)-th round. In Lines 7 - 24, we use the MILP model
M for r — 2 rounds of PIPO to collect all possible entries
of U. In Lines 25 - 30, it computes ANF, .s. for the j-th
S-box in the r-th round, and checks whether ANF, s, con-
tains monomials whose parities are unknown. If ANF,_, os;
contains no such monomials, v,,; o Sg is a balanced bit of
an r-round extended integral distinguisher. Consequently, all
balanced bits after r rounds are stored in S in the form

of (7, Vour)

V. INTEGRAL DISTINGUISHERS AND ATTACKS

A. SEARCHING FOR DISTINGUISHERS

We attempted two ways to search for distinguishers by con-
structing two MILP models for PIPO combining the S-box
models, namely M5 and MM obtained in Section ITI-A.
We used Gurobi MILP Solver and performed every exper-
iment on the platform of AMD Ryzen Threadipper 3970X
CPU 3.7GHz, 256GB RAM and Ubuntu 20.04.1 LTS x86_64.

As a result, we found seventeen 6-round integral distin-
guishers for PIPO by searching with M@ of which we can
also find eight through a search with M3, This implies
136 6-round distinguishers due to the rotational symmetry in
the PIPO structure. Both search approaches did not find any
integral distinguishers for more than 6 rounds of PIPO.

The 6-round integral distinguishers are split into two
classes depending on the form of constant bit information in
the input. Considering rotational symmetry with 0 < i <
8, the distinguishers in the first class have the constant bit
information:

0 0
X6 D X3 ;
in the input. The corresponding balanced bit information in
the output is one of seven:
140 6 6
Bo = {x0,14: ®x7,; © X6 2445
x8 ) x0 (&) x8
0,24i P, 14i ©X6,3+i>
x0 ® xb @ x8
0,3+i 1,2+4i 6,4+4i°
6 6 6
X0,4+i D X134 D X6 544
6 6 6
X0,5+i D X1 41 B X6 6440
6 6 6
X0,6+i D X154 D X6,7.4i-
6 6 6
X0,7+i DX 641 D X6}
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Algorithm 2 Extended Integral Distinguisher Search

Input: MILP model M for r — 2 rounds of PIPO, linear transformation Ll%
Output: A setS of r-round extended integral distinguishers

1:
: Kin < DP(Sgo L), 170)
c Ky« ((Tk 17k - . . 117ko) € FS* | k = (k7. ke, - - -, ko) € Kin)

—_
—_

12:

31:
32:

A e A A T

—
e

S« @

> Consider only Li(:; due to the rotational symmetry

> R is the R-layer function

> U implies the division property on the position of j-th S-box

- Ky < R(Ky)
forj=0,1,...,7do
U<« o
for k € K| do
for v € FS \ {0} do
ifv £ U then
M «— M
M .con=a® =k
fori=0,1,...,7do
if i = j then
M'.con =a;
else
M .con < afﬁ;z =0
end if
end for
if M’ has any feasible solution then
U< |v =}
end if
end if
end for
end for
for v, € FS \ {0} do
Compute ANF, s,
if ANF, ,,.ss N U = @ then
S ~ (js vout)
end if
end for
end for
return S

> Locate v at the position of j-th S-box

Algorithm 3 Key-Recovery Attack on 8-Round PIPO-64/128

« Data Collection Phase - Choose 2% plaintexts, p’s in which ps is fixed as constant, and obtain the corresponding

ciphertexts, c’s.

« Key Filtering Phase - Guess a 64-bit value of the last subkey sk® and do the followings:

1) Perform one-round decryption for all ciphertexts with the guessed value of sk®,

x' =S 'R (e ®skd).

2) Consider x® = S~'(R™'(x7) & rk’) instead of x® = S™'(R™'(x” @ sk”)), and lety = R~'(x"). For all 203
values of x’, count each number tily, ;] of times y, ; appear for i € {0, 1, 6, 7}.
3) Guess 4-byte values of (rk7, rkg, rk?, rk(7)) and do the followings:

a) For all 2% values of y, compute each parity of aj for 0 < j < 3 in Table 5 considering 1]y, ;] fori €

{0, 1,6, 7} (See Fig. 3).

b) If one of the «;’s parities is odd, exclude the guessed values of sk® and (rk7, rk;, rkz, rkg) from the space

of key candidates.

« Exhaustive Searching Phase - Perform an exhaustive search for the 128-bit key k over the key space.

110202
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Check each of «; in Table 5
is balanced

ap ap

4

Generate counters ¢;[y, ;]

6
o0

T6,0

26

Yy

x’

FIGURE 3. 7-th round partial decryption of Key Filtering Phase in Algorithm 3: Colored bits in y and x7 are related to the bits of
the same color in x6. Only four inverse S-box operations of S~1 are required with a 4-byte partial guessed key (1, rkZ, ric] , rk]).

Similarly, with 0 < i < 8, the distinguishers in the second
class have the constant bit information:

0
X7,

in the input. The corresponding balanced bit information in
the output is one of ten:

6
By = {&»

6
X574

6 6 6
X0,i © X1 74 D X6 11>

X014 @ X7 DX 2y

X024i ® X 11 DX 3
X034 © X7 21 DX 41
X0 asi @ X731 DX 5
X541 B X7 44i B X g4
X064i © X7 510 DX 740

6 6 6
X0.74i D X] 64 @ Xg,i}-

Except for xg’ ;and xg‘ 7.4+ distinguishers with the balanced bit
information in B can be found by searching with both MM
and MBtUet,

B. KEY-RECOVERY ATTACK ON 8-ROUND PIP0O-64/128

We can use four 6-round integral distinguishers, under-
lined in B, to mount a key-recovery attack on 8 rounds of
PIPO-64/128. The distinguishers are applied from the first
round to the sixth round, with the same active bits in
the input and various balanced bits in the output. The
plaintext is denoted as p 63, - --»P1,p0).- We use
263 plaintexts in which pse is fixed as a constant. In the
attack, the attacker should try all possible 264 candi-
dates of the last subkey sk® and guess four bytes of rk’,
where rk’ = R~ '(sk’). Table 5 lists the balanced bits
in the output and the key bytes of rk’ related to the
distinguishers. The attack process is presented in Algo-
rithm 3. During the attack, the 7-th round partial decryp-
tion of Key Filtering Phase requires only the 32-bit
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TABLE 5. Balanced bits and key bytes related to distinguishers.

No. Balanced bit Key bytes
0 ag = acg 0 rk',g
1 o] = a:g - 'rkz
2 ag = xg 0@ x? ) Ig 1 rk:g, rkz, rk?
3 a3 = xg 7@ x? 6 D xg 0 rkg, 'r'k:g, rk;

intermediate values y, ; for i € {0,1,6,7} and a 4-byte
guessed key (rk’, rkg, rkZ, rk(7)) as Fig. 3 describes.

We expect that the key space can be reduced by the ratio
of 274 after Key Filtering Phase because the «; for 1 <i <
3 are even with the probability of 27 if the guessed keys
are not correct. Thus, Exhaustive Search Phase requires a
time complexity of 2!?* 8-round PIPO-64/128 encryptions.
The time complexity of Key Filtering Phase is estimated as
263 5 264 » 273 = 2124 8-round PIPO-64/128 encryptions,
because it is dominated by step 1) of Key Filtering Phase.
Therefore, the total time complexity of the attack is 2!,

C. KEY-RECOVERY ATTACK ON 10-ROUND PIPO-64/256
PIPO-64-128 and PIPO-64/256 has the same structure except
the key schedule. The difference between the key sched-
ules allows a 10-round attack on PIPO-64/256. In the attack,
we use the same distinguishers, guess the same bits of rk’ and
sk3 as in the attack on 8-round PIPO-64/128, and additionally
guess the whole bits of sk? and sk'°. Therefore, the time
complexity of Key Filtering Phase is estimated as 22233 ~
263 % 2643 % 3/10 10-round PIPO-64/256 encryptions, while
the time complexity of the final exhaustive search phase is
2252 Therefore, the total time complexity of the attack is
approximately 22338 ~ 22533 4 9252,

VI. CONCLUSION

In this paper, we analyzed the division property of the
lightweight block cipher PIPO proposed at ICISC 2020 based
on three MILP models with different modeling time and
accuracy. As a result, we could find 136 6-round integral
distinguishers. Among them, 120 distingusihers were derived
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by adding linear transformations into the S-box. We per-
formed key-recovery attacks on 8 rounds of PIPO-64/128
and 10 rounds of PIPO-64/256 based on four of the obtained
distingushers with 223 and 22538 time complexities, respec-
tively. Although our results do not weaken the security claim
of full-round PIPO, these complement the security analysis.
Moreover, we expect that our search approach® can be used to
find the best choice of R-layer in terms of resistance against
integral attack.
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