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ABSTRACT Cross-project defect prediction technique is a hot topic in the field of software defect research
because of the huge difference in data distribution between source project and target project. Software
defect prediction technique usually first extracts software project features and then trains prediction models
based on various classifiers. However, traditional features lack sufficient semantic information of source
code resulting in poor performance of the prediction models. To construct more accurate prediction models
based on the semantic information, we propose a cross-project defect prediction framework named BSLDP,
which extracts semantic information of source code files through a bidirectional long and short-term memory
network with self-attention mechanism. In particular, we provide semantic extractor named ALC to extract
source code semantics based on source code files, and propose classification algorithm based on the semantic
information of source project and target project, namely BSL, to build a prediction model. Furthermore,
we propose an equal meshing mechanism that ALC generates semantic information on small fragments by
dividing the numerical token vector to further improve the performance of the proposed model. We evaluated
the performance of the proposed model on a publicly available PROMISE dataset. Compared with the four
state-of-the-art methods, the experimental results indicate that on average BSLDP improves the performance
of cross-project defect prediction in terms of F1 by 14.2%, 34.6%, 32.2% and 23.6%, respectively.

INDEX TERMS Defect prediction, deep learning, long and short-term memory, self-attention mechanism.

I. INTRODUCTION

Under the background of exponential development of Internet
scale, software brings great convenience to the life of people.
With the development of society, the needs of people in all
aspects make software design more and more complicated.
Therefore, software developers use software defect prediction
techniques to minimize software defects [3], [4], [5]. Soft-
ware defect prediction technology extracts information from
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software and trains models used to predict whether new code
instances are defective.

In software defect prediction [21], [25], [26], researchers
usually extract characterization information from a source
project release, and the model is trained to predict code
defects in another target project version. The researchers
divided the software defect prediction research into two direc-
tions based on whether the two project versions came from the
same project: they are within-project defect prediction and
cross-project defect prediction [50], [51].

Various previous studies had focused on feature represen-
tation of code and built more accurate classification models.
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Researchers have manually defined a variety of features rep-
resenting source code to distinguish different code snippets.
For instance, six metrics of Mood [1] were proposed based
on encapsulation factor and inheritance factor, etc., features
based on the change of elements including commit frequen-
cies, experience levels [2], and characteristics based on other
coding characteristic of the developers. Predicting software
module defects are a classification problem, many classifi-
cation algorithms are adopted in software defect prediction,
such as Naive Bayes [3], Random Forest [4], and Dictionary
Learning [5].

However, because artificial static values can only reflect a
rough aspect of a code segment, so we used these static fea-
tures and processing features [6] to train the network model.
This method will affect the classification effect to a certain
extent. Some static values need to be calculated with special
tools, which is very time-consuming. Static values include
code modification, the log of deletion, complexity calculation
after code change and the degree of code structured change.
Relevant studies show that a lot of information cannot be
reflected by these metrics, semantic information is the most
important among them. Some researchers have noticed that
the syntax structure can be represented by using abstract
syntax trees [7], [48]. It provides a new direction for their
study of defect prediction techniques. Their experiments [8],
[9] provided strong evidence that syntactic constructs can
provide better code representations than traditional features.
However, there are some limitations of the AST-based experi-
ments, where AST is an acronym for abstract syntax tree. For
example, their method [8] converts the syntax structure into
a complete binary tree or directly as a complete binary tree.
This method will change the original syntax structure of the
code and even lead to the construction of a larger syntax tree.
Then the changed syntax information will affect the precise
model created [10]. In addition, the semantic information
in the abstract syntax tree cannot be effectively represented
by the existing traditional features. However, the abstract
syntax tree is an indirect representation of the code, which
may lose the semantic information on the source code. Until
now, the syntax structure still cannot fully represent the code
information.

Compared with syntactic information, semantic informa-
tion can better distinguish different code fragments [11]. The
semantic information of code plays an important role in the
research related to code completion and code defect location
[71, [12], [13], [14], [15]. Two snippets of code with the
same metric may contain different code semantic informa-
tion. For example, Figure 1 shows a motivating example,
there are two Java files, Filel.java and File2.java, both of
them contain a while statement, a speak function and an
eat function. The main difference between the two files are
the order where the two method calls are made, using the
traditional metrics, the feature vectors of the two files are
identical in terms of code lines and method calls, etc. How-
ever, the semantic information on the two code files is quite
different.
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01. | int a = 10; 01.
82, | Student stul = new Student();@2.
03. | Student stu2 = new Student();@3.

int a = 10;
Student stul = new Student();
Student stu2 = new Student();

84. | while (a ¢ 20) { 84. | while (a < 20) {
05. stul.speak(); 05. stu2.speak();
06. stu2.eat(); 06. stul.eat();
07. a+t; e7. att;
es. | } es. | }

Filel.java File2.java

FIGURE 1. Motivating example.

In this paper, we are inspired by the possibility of improv-
ing defect prediction and look for ways to avoid intermediate
representations of source code that can overcome the limita-
tions of the above AST-based methods. Therefore we propose
using leverage a powerful semantic representation algorithm,
namely ALC, to represent the semantic information of pro-
grams effectively. The above algorithm is used to train soft-
ware defect prediction model. Specifically, we propose a new
classifier for the features extracted by ALC, namely BSL,
to improve the results of classification.

More specifically, firstly, we split the source code into
token vectors, these vectors retain its own structure and con-
text information, we conduct mapping to convert token vec-
tors into numerical vectors. Secondly, based on the sequence
of numerical vectors, we use bidirectional Long Short Term
Memory (Bi-LSTM) [16] combined with a self-attention
mechanism. It is a type of recurrent neural network, which
is used to obtain the semantic vector representation of an
instance. Thirdly, we input all semantic vectors from source
project into the proposed classifier, in this step can construct
a defect prediction model. Finally, we propose an end-to-
end framework for cross-project defect prediction (BSLDP),
to predict whether a source code file contains defects or not.

In summary, our proposed source code semantic represen-
tation algorithm aims to learn the semantic information on the
code, which is more effectively than other semantic extraction
models. We do experiment on well-known open datasets from
the PROMISE repository, and there are ten projects with
known defects. For example, the proposed model outper-
forms four baseline methods by 14.2%, 34.6%, 32.2% and
23.6% in terms of F1 in defect prediction, respectively.

Our main contributions are highlighted as follows:

1) We propose to leverage a powerful semantic represen-
tation algorithm, namely ALC, composed of a type of
recurrent neural network (Bi-LSTM) combined with
a self-attention mechanism, to represent the semantic
information of programs effectively and use the repre-
sentation to train software defect prediction model.

2) We propose a new classifier for the semantic vectors
extracted by ALC to improve the results of classifica-
tion, namely BSL, composed of a type of recurrent neu-
ral network (Bi-LSTM) combined with a self-attention
mechanism.

3) We propose an end-to-end framework for cross-project
defect prediction (BSLDP), to predict whether a source
code file contains defects or not. The experimental
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results show that our approach can improve the perfor-
mance of cross-project defect prediction.

The rest of the article is organized as follows: Section II
provides the introduce backgrounds on defect prediction,
long and short-term memory, and self-attention mechanism.
Section IIT describes the details of our approach. We detail
the experimental setup and the results in Section IV and
Section V. Section VI and Section VII present the possible
threats to validity and related work respectively. Finally,
Section VIII concludes our work.

IIl. PRELIMINARY

In this chapter, we briefly introduce file level defect pre-
diction techniques, long short term memory neural network
and self-attention mechanism. The so-called file level defect
prediction technique means that the basic unit of semantic
extraction and model prediction is a source code file.

A. DEFECT PREDICTION
Figure 2 shows the implementation process of software
defect prediction technology based on file level, it has been

implemented in numerous existing studies [20], [29], [30],
[31], [47].

Source Project

Target Project

Instance;

Labeling data Training Prediction

Instancey,

—

FIGURE 2. Defect prediction process.

New Instance

The first step is to mark the files in the project based on
the defects of the previous release of the project. If the file
contains defects in the previous project, it will be marked
as defective, otherwise it will be marked as non-defect. The
second step is to extract features of files, and these features
are mainly divided into traditional features and semantic
features. Traditional characteristics such as Halstead features
[32] based on operator and operand counts, McCabe fea-
tures [33] based on dependencies, and CK features [34] based
on function and inheritance counts, etc., semantic features
are extracted from source code by deep learning correlation
algorithm [11], [35]. Thirdly, we used the extracted feature
instances and corresponding labels to build prediction models
with various machine learning algorithms [49] such as Logis-
tic Regression, Naive Bayes, and Random Forest. Finally,
the researchers used trained models to predict whether new
instances were defective.

The researchers referred to the dataset that builds the model
as the training set, and the data predicted by the model as the
test set. When researchers predict software defects within a
project, training set and test set come from the same project.
When researchers predict software defects across projects,
training set and test set come from different projects.
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In this study, we focus on cross-project defect prediction
due to the large data difference between the two sets in
cross-project.

B. LONG SHORT TERM MEMORY

Long and short-term memory neural network is a neural
network of the ability to memorize long and short-term infor-
mation, it can solve long-term problems. The architecture of
LSTM is shown in Figure 3. The core element of LSTM is
the cell state, which is transmitted along the time line like
a conveyor belt of information. As it passes through each
cell unit, the information is slightly changed. LSTM also
realizes the addition and deletion of information. In other
words, LSTM can solve the long-term dependence problem
of RNN in that LSTM introduces the gate mechanism to
control the flow and loss of features. LSTM is composed of
a series of LSTM units, and each of them contains an input
gate, a forgetting gate and an output gate.

Y. ®
[maos Tt s | |
OO IN®

FIGURE 3. Architecture of LSTM. The architecture consists of three LSTM
units. The input to each cell contains the current input data, the hidden
layer output of the previous cell, and the cell state of the previous cell.
The output of each cell contains the hidden layer output as well as the
cell state.

The cell state C; acts as follows:
Ct= ftXCt_l +itX6t (1)

where f; refers to the forgetting gate, C;_ refers to the cell
states of the upper unit, i; refers to the data of the input gate
of the current unit, C’t refers to the updated values of the cell
states at the time of t.

Forget gate f; acts as follows:

fi= o0 (W - [he1, x¢] + bp) )

where wg represents the weight of the forgetting gate, by

represents the bias of the forgetting gate, [-] represents the

concatenation of vectors by row, o represents sigmoid acti-

vation function, h,_; represents the state of hidden layer at

the time of t-1, x¢ refers to the input vector at the time of t.
Input gate i; acts as follows:

it= 0 (Wj - [he—1, X¢] +by) 3)

where w; represents the weight of the input gate, b; represents
the bias of the input gate, [-] represents the concatenation of
vectors by row, o represents sigmoid activation function, h¢_
represents the state of hidden layer at the time of t-1, x, refers
to the input vector at the time of t.

The updated value of the cell state C; acts as follows:

Cy= tanh (we-[h_1, X{]+bc) “)
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where w. represents the weight of updated cell status, b;

represents the bias of updated cell status, [-] represents the

concatenation of vectors by row, tanh represents tanh activa-

tion function, h;_; represents the state of hidden layer at the

time of t-1, x, refers to the input vector at the time of t.
Hidden layer output acts h; as follows:

o = 0 (Wo-[hi—1, x¢]+bo) ()
hy = o¢x tanh (cy) (6)

where o; represents the output of the output gate, w, repre-
sents the weight of the output gate, b, represents the bias of
the output gate, tanh represents tanh activation function, h;_
represents the state of hidden layer at the time of t-1, x; refers
to the input vector at the time of t.

LSTM has demonstrated its success in numerous research
areas. For example, Zhang and Lu [36] used LSTM com-
bined with other algorithm to build acoustic models, and
they reduced the loss of the entire sequence and predicted
the sequence label correctly in the prediction probability of
the LSTM output. In the field of image description, Li and
Shen [37] used bidirectional LSTM to generate sentences in
both forward and backward direction with richer informa-
tion. In text classification research, Zhang [38] constructed
a LSTM neural network classification model to classify text
information, and the model had obvious improvement in
performance and classification accuracy compared with tra-
ditional methods.

In this paper, we use LSTM to construct semantic extractor
and classifier. Semantic extractor captures semantic informa-
tion from source code files, and classifier trains models based
on instance semantic information and corresponding labels to
predict defects of new instances.

C. SELF-ATTENTION MECHANISM

Attention mechanism in nature is consistent with the human
eye, human vision is a focus and scope, and vision subject to
change with the change of the focal point. When people find
themselves interested in things in a vision, people will learn
the characteristics of the scene at this point, and will focus
on the things they are interested in when they meet in similar
scenes.

The calculation process of attention mechanism is divided
into three steps. The first step is to calculate the similarity
between query and each key to get the weight of each key; the
second step is to normalize all the weights; the third step is
to sum the weight and corresponding value, and finally to get
the attention value of the query. In the general attention mech-
anism, key and value are equal. Self-attention mechanism is a
special case of general attention where query, key, and value
are equal, i.e. query = key = value. In other words, each unit
is evaluated for attention with all units in the sequence.

The basic calculation process of self-attention mechanism
is shown in Figure 4. Input tokens are al, a2, a3, a4, respec-
tively. We take al as an example to calculate attention, let
al times the query weight to get q1, al times the key weight
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FIGURE 4. Architecture of self-attention mechanism.

to get k1, and al times the value weight to get v1, the corre-
sponding other tokens through the same calculation process to
get the corresponding query, key, value, the query vector of al
dot with the key vector of all tokens to get the similarity value.
Then normalize all the similarity obtained in the sequence,
and perform weighted average operation between the normal-
ized similarity and the corresponding value vector to obtain
the attention value of al. Likewise, other tokens obtain the
corresponding attention value according to the above steps.

For example, Zhang et al. [39] proposed a model based
on ensemble learning techniques and attention mechanisms
to offer more comprehensive prediction information. This
method helped developers by locating suspect lines of code
when making method-level defect predictions. Yu et al. [40]
constructed a deep learning model called Defect Prediction
via Self-Attention mechanism to extract semantic features
and predict defects automatically.

In this paper, we use the self-attention mechanism to learn
word dependencies within source code files and capture the
internal structure of source code, and it can fully capture
and enhance the correlation between the LSTM outputs and
compensate for the loss of information over long distances.

lll. APPROACH

In this section, we elaborate on our proposed BSLDP
approach, which can generate features from source code files
to further improve the performance of cross-project defect
prediction. The overall architecture of BSLDP is shown in
Figure 5. Our approach takes tokens from source project
and target project. Then we use ALC to generate semantic
features from the tokens. Lastly, we leverage BSL, and it is
constructed to build a defect prediction model based on the
semantic features. Specifically, we obtain tokens from the
source code of the project, and each code file is mapped to
a token vector. Since the semantic extractor requires digital
data, we build a mapping rule to convert each token into a
digital representation, and eventually each token vector into
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FIGURE 5. The framework of our proposed BSLDP.

a digital vector. Then we use a semantic extractor to extract
the semantics of the number vectors generated by code files in
the source project and the target project respectively. Finally,
we use classifiers to build cross-project defect prediction
models based on semantic information of source projects and
use semantic information of target projects to evaluate model
performance.

To sum up, our approach consists of four major steps:
1) converting the source code to a numerical representa-
tion vector, it is the expected inputs of ALC, 2) carrying
out semantic extraction from digital representation vector,
3) building defect prediction model based on the semantic
vector of the source project, 4) using models to predict defects
based on the semantics of the target project.

A. ENCODING TOKEN VECTORS

To generate semantic features by using ALC, we first build a
token extraction algorithm, which converts each source code
file into a token vector. We convert the source code file into
TXT file, and divide the source code according to the defined
basic partition identifier to get token vectors.

According to Algorithm 1, we convert all code files in the
source and target projects into token vectors, but each element
in the token vectors is a string, and it cannot be computed
mathematically, so we need to encode token vectors to integer
vectors. Each token has a unique integer identifier while
different variable names and class names will be treated as
different tokens, and we specifically add newline identifiers.

Second, we build a mapping algorithm between integers
and tokens. Taking the string “‘student” as an example, the
string “‘student” is split into seven separate character list,
itis [‘s’, ‘", ‘w’, ‘d’, ‘e’, ‘n’, ‘t’]. Then we get the ASCII
value of the single character, the converted list is [115, 116,
117, 100, 101, 110, 116], we sum the list up to get the
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Algorithm 1 Token Extraction Algorithm

Input: Source code file F, it is constructed by the Java
source code of the instance.

Output: Token vector for instance 7', where the length of
vector is the number of tokens obtained by the
instance after splitting rules.

l.vartxt_F, T:=[];

2. begin;

3. txt_F :=read(F) // Java files -> TXT files

4. T:=partition(txt_F) //*\n’, C, ‘[’, =", <., ", °C, ), ",

| T

return T

d;

LI
bl

5.
6. en

digital representation, it is 775. Through this mapping pro-
cess, we converted all the tokens to digital representation.

The specific steps of token mapping algorithm are shown
in Algorithm 2.

However, we find in the experiment that each source code
file is converted into a token vector of different lengths, so,
we need to align the token vector lengths and get the vector
of the same length. So, we build a semantic vector align-
ment algorithm, the source and target projects are calculated
respectively in the median length of the file. In order to make
full use of the data information on the source project, the
median of the combined file length of the two projects is
simultaneously calculated. If the median of the target project
is greater than the median of the source project, the median
of the two project sets is used, otherwise, the median of
the source project is used. We use O to expand all vector
lengths of the two projects to the maximum length, after that,
we intercept the expanded vector using the median obtained
above.
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Algorithm 2 Token Mapping Algorithm

Algorithm 3 Semantic Vector Alignment Algorithm

Input: Token vector for instance 7', where the length of
vector is the number of tokens obtained by the
instance after splitting rules.

Output: Numerical vector for instance N7, where the length
of vector is the number of tokens obtained by the
instance after splitting rules.

1. var NT := [], v:integer;

2. begin

3. fortin T do //traverse the token

4. begin

5 v := 0 //the ASCII value of token

6. for ec in t do // traverse single character
7 ec_ascii := ASClII(ec)

8 Vv ;= ec_ascii+v

9. end;

10. end;

The specific steps of semantic vector alignment algorithm
are shown in Algorithm 3.

B. SEMANTIC EXTRACTION

The code files of source project and target project are dig-
itized and encoded to get digitized vectors, they are fed
into the proposed semantic extractor for semantic extrac-
tion. The semantic extractor is composed of Bi-LSTM and
self-attention mechanism. Bi-LSTM adopts bidirectional data
training mode, the number of basic LSTM units is determined
by the length of semantic vector. After a model training,
we add the output of forward hiding layer and reverse hiding
layer of the same basic LSTM unit to obtain the final output
of the unit. Then we use the self-attention mechanism for
the outputs of LSTM to improve the internal correlation
between outputs. The implementation of the model is based
on PyTorch, by PyTorch we can build the neural network
model easily and quickly. The specific steps of semantic
extractor algorithm are shown in Algorithm 4.

C. BUILDING MODEL

In order to achieve a better classification effect and fit the
obtained semantic vector, we propose a classification algo-
rithm. The classification algorithm is composed of Bi-LSTM
and self-attention mechanism, it is the same as semantic
extractor. We take the final value processed by the self-
attention mechanism as the probability output of the code file.
We obtain the corresponding probability output of the source
project, and the target project under the same processing
steps. Then we use the two groups of probability to draw PR
curves, and obtain the F1 corresponding to different points
through PR curves. We determine the index corresponding
to the maximum F1. P in PR curve stands for precision,
R stands for recall, and it represents the relationship between
precision and recall. In general, recall is set as the abscissa
and precision as the ordinate. The index is used to select
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Input: Collection of all numeric vectors for the source
project Dg, where the length of collection is the
number of instances, each vector represents a code
file in the source project, and each vector length
varies by code files.

Collection of all numeric vectors for the target
project T, where the length of collection is the
number of instances, each vector represents a code
file in the target project, and each vector length
varies by code files.

Output: Semantic Vector Alignment vectors of the source
project DAg. Semantic Vector Alignment vectors of

the target project DAt
1. var LS :=[], LT := [],Sp:integer, Ty, :integer
2. begin
3. foriin Dg do
4. begin
5 inst_len := len(i) //length of each instance
6. LS.append(inst_len)
7. end;
8. S := int(median(LS));
9. begin
10. for jin Dt do
11. begin
12. inst_len := len(j) //length of each instance
13. LT.append(inst_len)
14. end;
15. Ty, :=int(median(DT_LEN))
16. end;

17. E := Sp//eftective length

18. CST := LS.append(LT)

19. C, := int(median(DT_LEN))

20.if S,, < T),, then E := C),

21. I, := max(CST) //the maximum length of instance
22.1len(Dg)— > I, len(Dr)-> [,,// expand the length of each
vector in Dg and Dr to [, using 0

23.len(Ds)— > E, len(D7)-> E // cut each of the vectors
Dg and Dr to E lengths

24. return DAg, DAT;

25. end;

the corresponding value of threshold vector of PR curve
and take it as the threshold value of classification. Finally,
we get the predicted classification label through calculation.
The specific steps of classification algorithm are shown in
Algorithm 5.

We observe that the token vector length of the code file
is too long in the experiment, it may affect the performance
of the model. Under the incentive of further improving the
cross-project defect prediction performance, we propose an
equal-spacing token partition method called equal meshing
mechanism. Specifically, the method obtains the token vector
length of the code file firstly, sets the starting value of the pane
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Algorithm 4 Semantic Extractor Algorithm

Algorithm 5 Classification Algorithm

Input: Numerical vectors NT for project after the alignment
and its labels NT7j .
Output: Semantic vectors SV for project.

Input: Semantic vectors Dg for source project and its labels
S1.. Semantic vectors Dr for target project.
Output: Prediction label Py, for the target project.

1. begin

2. foriin epoch do

3. begin

4. use Adam //optimizer

5. set and initialize /40, ¢ 0// hidden layer parameters
6. NT, h 0, c0 > Bi-LSTM // model training

7. add the hidden layer bidirectional values

8. outigyy, = output of Bi-LSTM // (b, [, h_ dim)

9. outjggm— > 2D matrix // (b, [{h_ dim)

10. PC := nn.Sequential 0// process containers

11. Linear(h_dim, 24), ReLU(True), Linear( 24,1) —> PC
12. PC (matrix) — > matrix. view (b, —1); // (batch, )

13. Wnor = normalize(2D matrix) // unsqueeze (2), (b, [, 1)
14. Attn := (wnor* outgy ) - sum(dim = 1); //(b, I, h) —

15. FCL, = Linear(h_dim, c_num);
16. outprob = FCLy(Attn)//(b, 1)

17. FCL3 := Linear (c_num, featurey)
18. Outfeqture *= FCL3 ( outprob )

19. loss := Loss (outprob , N T1)

20. Loss.backward(), optimizer.step0
21. SV.append(outfearure)

22.  end;

23.  return SV

24. end;

size as 100, step size as 50, and gradually accumulates until it
is greater than the vector length, records all values obtained in
the process of accumulation in the list, and removes the values
exceeding the vector length. Finally, we get the equal-spacing
partition list and label the equal-spacing value as y.

To sum up, we use algorithm one and algorithm two to
convert the code files in the source and target projects into
digital vectors, algorithm three is used to make them same
dimension. Then, the equal-spacing token partition method is
used to segment the digital vector, in this step the equal space
segmentation listed is obtained, we use semantic extractor to
semantic extraction of digital vector of the project under every
spacing. Finally, the semantic vectors obtained at all spacing
are superimposed as the final semantic information on the
file. Under each partition step, the proposed classification
algorithm is used to build a prediction model for the final
semantic information on the source project and to predict
the final semantic information on the target project. The
maximum F1 obtained at all spacing is taken as our final
prediction index.

D. PREDICTING DEFECTS

We use BSL as our classifier, it is more suitable for the
semantic features we obtain, and we use the above semantic
extraction steps to process all the code files in the source and
target projects. Then we get the semantic information for each
code file. Finally, we use the semantic vectors of the source
project and the corresponding label to train model, input all
the code files in the target project into the model to obtain the

VOLUME 10, 2022

1. begin
2. use Adam//optimizer

3. set model mode // training

4. initialize 40, c0 of Bi-LSTM

5. Dg > Bi-LSTM // model training

6. add the hidden layer bidirectional values;

7. outigyy = output of Bi-LSTM //(b, 1, h_dim )

8. outigyy— > 2D matrix // (b, [, h_ dim)

9. PC :=nn. Sequential (// process containers

10.  Linear(h_dim, 24), ReLU(True), Linear (24, 1) — PPC

11.  PC (matrix) > matrix view (b, —1); // (batch, I)

12. wpor = normalize(2D matrix) // unsqueeze (2), (b, [, 1)

13.  Attn:= (wnOr * outigym ) - sum(dim = 1); //(b, [, h) — (b, h)
14. FCLj := Linear(h_dim, c_num);

15.  outyrp = FCLy(Attn)//(b, 1)

16.  loss := Loss ( outpsp, SL)

17.  Loss.backward(), optimizer.step();

18.  set model mode // test

19. Do from Step3 to Step15, change Dg to D7 in Step5;

20.  Get outypep from Stepl5;

21.  Draw the PR curve using outs,p and outyprop;

22.  Computer F'1 using the point of PR curve and find the index
of maximum F1;

23.  thre := thresholds[index], P, := [x > thre for x in outprop |
24.  return Py,

25. end;

prediction label, and evaluate the performance of the model
by FI1.

IV. EXPERIMENT SETUP

In this section, we compare our proposed method with four
baseline methods. And our experiments are based on the
following questions:

® RQI: Is the ALC-based semantic information more
effective than traditional metrics?

® RQ2: Does the proposed classifier outperform other
classification algorithms?

® RQ3: Does the equal meshing mechanism improve the
performance of our proposed model?

® RQ4: Does the proposed model outperform the four
baseline methods in CPDP?

We conduct several experiments to study the performance
of the proposed model, BSLDP, and run experiments on a
2.9GHz i7-10700F machine with 8GB GPU.

A. DATASET DESCRIPTION

To directly compare our model with other approaches,
we obtain available data from PROMISE [41], and it is widely
used in other defect prediction studies [44]. These projects
cover a wide range of applications such as enterprise inte-
gration framework, XML parser and data transport adapters,
etc. Table 1 lists project name, the description of project, the
versions, the average number of files, and the average buggy
rate of instances.
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TABLE 1. Dataset description.

Project Description Releases Avg Files %Avg Defective
ant Java based build tool 1.6 351 26.0%
camel Enterprise integration framework 1.4 848 17.0%
jEdit Text editor designed for programmers 4.0,4.1 296 26.0%
log4j Logging library for Java 1.1 104 36.0%
lucene Text search engine library 2.2 247 58.0%
xalan A library for transforming XML files 2.5 772 50.0%
xerces XML parser 1.3 452 15.0%
ivy Dependency management library 2.0 352 11.0%
synapse Data transport adapters 1.1,1.2 239 30.5%
poi Java library to access Microsoft format files 3.0 442 64.0%
B. BASELINE METHODS Fl— 2 x Préc'lsmn X Recall ©)
To evaluate the performance of our proposed framework Precision + Recall
BSLDP for cross-project defect prediction, we compare it V. RESULTS

with the following baseline methods:

® DBN-CP [26], [42]: the state-of-the-art method, it uses
Deep Belief Network to learn semantic features from
token vectors extracted from ASTs of programs, and
leverages the learned semantic features to build machine
learning models for predicting defects.
® TCA+ [18]: the state-of-the-art technique for CPDP
that improve the performance of cross-project defect
prediction by regularized transfer learning method.
® AST-LSTM [43]: A model based on the tree-structured
Long Short Term Memory network, and it directly
matches with the Abstract Syntax Tree representation of
source code.
® DP-CNN [44]: A Convolutional Neural Network based
model, and it leverages deep learning for effective fea-
ture generation. They train the classifier by combining
semantic features with traditional features.
We choose the same 20 test pairs as in paper [26]. When
using the four baseline approaches, we use the same network
architecture and model parameters as described in the paper.

C. EVALUATION

It is necessary to use metrics that are used widely when we
evaluate the performance of the model. The basic indicators
predicted by the model are TP, FN, FP and TN, respectively.
TP means that a file that is actually defective is predicted to
be defective. FN means that a file that is actually defective
is predicted to be non-defective. FP means that a file that is
actually non-defective is predicted to be defective. TN means
that a file that is actually non-defective is predicted to be non-
defective. In previous studies [26], [42], [43], a variety of
performance evaluation indicators have been proposed, such
as F1, Recall, Precision.

The metrics of model evaluation are defined as follows:

TP
Recall = ——— @)
TP + FN
. TP
Precision = —— (8)
TP + FP
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To evaluate the effectiveness of BSLDP, we focus on the per-
formance of our proposed semantic information and answer
the following research questions:

RQI: Is the ALC-based semantic information more effec-
tive than traditional metrics?

To answer this question, we conducted twelve cross-project
defect prediction experiments to evaluate the performance of
the trained model, in the model the source project is used
to train the network model, and the target project is used as
the test set. We illustrate the validity of semantic information
compared to traditional metrics from two aspects.

On one hand, we will use only Bi-LSTM to obtain semantic
information compared to F1 obtained by traditional met-
rics. Table 2 shows the F1 of cross-project defect predic-
tion experiments that use the same classification algorithm,
namely Logistic Regression [45]. We used the same number
of training epoches and parameters. This method usually
has good performance. For example, in the first pair of
project comparisons, the training set is camel-1.4 and the
test set is xerces-1.3, the F1 of using NALC is 0.262, while
the F1 is only 0.210 with Tra-metrics (traditional features
from PROMISE), thus the semantic information extracted
by NALC outperforms Tra-metrics by 24.7%. Among the
12 project pairs, the lowest improvement on F1 is 0.1% where
the training set is synapse-1.2 and the test set is poi-3.0 in all
positive improvement project pairs, the highest improvement
of Fl is 168.9% where the training set is ant-1.6 and the
test set is poi-3.0 in all positive improvement project pairs.
On average, Tra-metrics achieve a F1 of 0.356, while NALC
achieved a F1 of 0.409. The experimental results show NALC
improved F1 of defect prediction by 23.7% compared with
Tra-metrics on average on 12 project pairs. On the other hand,
we compare the semantic information obtained by combining
Bi-LSTM and self-attention with F1 obtained by traditional
metric elements. For example, in the eleventh pair of project
comparisons, the training set is ant-1.6 and the test set is
poi-3.0, the F1 of using ALC is 0.777, while the F1 is only
0.290 with Tra-metrics (traditional features from PROMISE),
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TABLE 2. Comparison between deep learning-based semantic information (NALC and ALC) and traditional metrics (Tra-Metrics). NALC denotes the
semantic information, and it is extracted by Bi-LSTM. ALC denotes the semantic information, and it is extracted by Bi-LSTM and Self-Attention. Source
denotes the training version and Target denotes the test set version. F1 denotes F1 score. Improved-1 denotes the improvement of NALC with respect to
Tra-Metrics and is measured in percentage. Improved-2 denotes the improvement of ALC with respect to Tra-Metrics and is measured in percentage.

Positive improvements are highlighted in bold.

Source Target Tra-metrics | I;IfLC | ALC Improved-1 | Improved-2

camel-1.4 xerces-1.3 0.210 0.262 0.308 24.7% 47.0%
xalan-2.5 xerces-1.3 0.274 0.266 0.292 -2.6% 6.8%
xalan-2.5 ivy-2.0 0.341 0.204 0.346 -40.1% 1.5%
lucene-2.2 ivy-2.0 0.266 0.277 0.286 4.4% 7.6%
lucene-2.2 xerces-1.3 0.371 0.309 0.318 -16.9% -14.3%
jedit-4.0 xerces-1.3 0.198 0.286 0.332 44.4% 68.1%
jedit-4.0 ant-1.6 0.457 0.482 0.517 5.4% 13.1%
ivy-2.0 ant-1.6 0.204 0.417 0.416 104.9% 104.4%

poi-2.5 synapse-1.1 0.450 0.426 0.526 -5.5% 16.8%

synapse-1.2 poi-3.0 0.780 0.781 0.777 0.1% -0.3%
ant-1.6 poi-3.0 0.290 0.780 0.777 168.9% 168.1%

camel-1.4 jedit-4.1 0.435 0.422 0.417 -3.0% -4.3%
Avg 0.356 0.409 0.443 23.7% 34.5%

thus the semantic information extracted by ALC outperforms
Tra-metrics by 168.1%. Among the 12 project pairs, the low-
estimprovement on F1 is 1.5% where the training set is xalan-
2.5 and the test set is ivy-2.0 in all positive improvement
project pairs. On average, Tra-metrics achieve a F1 of 0.356,
while ALC achieved a F1 of 0.443. The experimental results
demonstrate ALC improved F1 of defect prediction by 34.5%
compared with Tra-metrics on average on 12 project pairs.

Having said all of these above, semantic information is
more effective than traditional metrics. Both NALC and ALC
outperform Tra-metrics in terms of F1 on average, in detail,
NALC gets the maximum improvement of 23.7%, ALC gets
the maximum improvement of 34.5%. In these two semantic
extraction methods, ALC is 45.6% better than NALC in the
aspect of F1 on average improvement, so ALC is superior
to NALC, thus we use ALC as the semantic extractor in the
subsequent experiments.

RQ2: Does the proposed classifier outperform other clas-
sification algorithms?

In this section, we explore whether the classification algo-
rithm proposed is superior to other classification algorithms.
We use logistic regression and naive Bayes as compara-
tive classification models because previous studies [46] had
shown that they are superior to other classification algo-
rithms. We conduct a total of 20 groups of experiments in
cross-project defect prediction, where the source project and
the target project are exactly different.

The semantic extractor extracts a total of 100 features of
each source code file, and a total of 100 project features of the
same feature combination of all source code files for a project.
Under the same project features, the classification algorithm
is used to build a classification model for the project features
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of the source project. At last, the model is used to predict the
defects of the project features of the target project.

Figure 6 illustrates the distribution of F1 scores of using
three different classification algorithms on semantic features.
From the figure, we can compare the performance of the three
classification algorithms in the same group of experiments.
For the median indicator values, BSL achieves favorable F1
scores in 20 groups of experiments. In addition, BSL gets
better median F1 in terms of LR where the index of the
experiment is 8, 11, 12, 19 and 20, respectively, compared
with other project pairs. BSL gets better median F1 in terms
of NB where the index of the experimentis 7, 8,9, 11, 12 and
20, respectively, compared with other project pairs. Besides,
we observe that BSL has improved more with respect to LR
than with respect to NB where the index of the experiment
is 3, 5, 10, 19 and 20, respectively.

Due to the different projects of the 100 kinds of charac-
teristics of three kinds of classifiers prediction performance
difference is bigger, in order to further reduce three classifier
classification results and better predictive results of the said
project for us to do the following definition, under a classifier,
the project of the 100 species of the predicted value of the
project to get maximum as the project of F1.

Because the prediction performance of the three classifiers
varies greatly from the 100 features of different project pairs,
so in order to further narrow the differences between the clas-
sification results of the three classifiers and better represent
the predicted results of item pairs. We make the following
definition that the maximum predicted value of 100 project
feature pairs of project pair is regarded as F1 of the project
pair under a classifier. Table 3 shows the F1 scores of run-
ning three different classification algorithms on semantic
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FIGURE 6. Violin plots of defect prediction performance of one hundred different features with three classification algorithm.
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TABLE 3. Comparison of prediction results of three classification algorithms. LR denotes Logistic Regression classification algorithm. NB denotes Naive
Bayes classification algorithm. BSL denotes the proposed classification algorithm. F1 denotes F1 score. Improved-1 and Improved-2 denote the
improvement of BSL with respect to LR and NB respectively, it is measured in percentage. The larger ones are highlighted in bold.

Index Source Target LR | 1;113 | BSL Improved-1 | Improved-2
1 ant-1.6 camel-1.4 0.293 | 0.375 | 0.378 29.1% 0.8%
2 jedit-4.1 camel-1.4 0.332 | 0.331 | 0.382 15.0% 15.4%
3 camel-1.4 ant-1.6 0.415 | 0.487 | 0.629 51.5% 29.3%
4 poi-3.0 ant-1.6 0.415 | 0.000 | 0.596 43.5% -

5 camel-1.4 jedit-4.1 0.417 | 0.497 | 0.612 46.9% 23.3%
6 log4j-1.1 jedit-4.1 0.431 | 0.490 | 0.607 41.1% 23.9%
7 jedit-4.1 log4j-1.1 0.525 | 0.722 | 0.806 53.6% 11.6%
8 lucene-2.2 log4j-1.1 0.525 | 0.233 | 0.781 48.9% 235.9%
9 lucene-2.2 xalan-2.5 0.668 | 0.661 | 0.681 1.9% 3.0%

10 xerces-1.3 xalan-2.5 0.668 | 0.668 | 0.680 1.9% 1.8%

11 xalan-2.5 lucene-2.2 0.737 | 0.752 | 0.761 3.3% 1.2%

12 log4j-1.1 lucene-2.2 0.737 | 0.737 | 0.761 3.3% 3.3%

13 xalan-2.5 xerces-1.3 0.292 | 0.265 | 0.418 43.2% 58.0%
14 ivy-2.0 xerces-1.3 0.265 | 0.273 | 0.440 65.9% 60.9%
15 xerces-1.3 ivy-2.0 0.204 | 0.208 | 0.500 145.0% 140.6%
16 synapse-1.2 ivy-2.0 0.272 | 0.324 | 0.566 108.3% 74.5%
17 ivy-2.0 synapse-1.2 | 0.503 | 0.503 | 0.607 20.7% 20.7%
18 poi-3.0 synapse-1.2 | 0.503 | 0.000 | 0.596 18.6% -

19 synapse-1.2 poi-3.0 0.777 | 0.780 | 0.840 8.1% 7.7%

20 ant-1.6 poi-3.0 0.777 | 0.820 | 0.847 8.9% 3.3%

features extracted by ALC. We compare the performance of
semantic features of three classification algorithms. In the
improvement on BSL relative to the other two classification
algorithms, better improvements are highlighted in bold. Take
the first project pair as an example, the source project is ant-
1.6 and the target project is camel-1.4, the feature produces a
F1 of 0.293 when the model is built on LR, while BSL gets a
F10f0.378 and itis 29.1% higher than using LR. For the same
project pair, the feature using NB produces a F1 of 0.375, it is
0.8% lower than using BSL only. Among the twenty groups
of experiments, the maximum improvement of BSL relative
to LR is 145.0% where the source project is xerces-1.3 and
the target project is ivy-2.0. Also, the maximum improvement
of BSL relative to NB is 235.9% where the source project
is lucene-2.2 and the target project is log4j-1.1. Similarly,
the improvement on BSL relative to LA outperforms that of
BSL relative to NB in 14 out of the 20 times. In conclusion,
we use BSL as the classification algorithm in the subsequent
experiments. We present the data onto Table 3 in the form
of the line chart to make the presentation of the data more
intuitive, as is shown in Figure 7.

RQ3: Does the equal meshing mechanism improve the
performance of our proposed model?

Parameter y is used to segment the numerical token vec-
tors. It can avoid that numerical token vectors are too long
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FIGURE 7. Defect prediction performance of twenty project pairs with
three classification algorithms.

to better capture semantics between codes. In each group of
experiments, the parameter y is initially set as 100, increased
by 50 as a step until y exceeds the length of the instance token
vector and stop. The previous y is taken as the last experimen-
tal parameter of this group of experiments. Based on RQ2,
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FIGURE 8. Line charts of the F1 score of BSLDP with different y values on all cross-project pairs.

because of the better prediction performance of BSL, we use
BSL as the classifier of our experiment. Here we investigate
whether different y values impact the performances of the
proposed model in a project pair. Guided by prior work,
we conducted twenty groups of CPDP experiments.

Figure 8 depicts the line charts of F1 score BSLDP with
different y values on all cross-project pairs. From the figure,
we observe that BSLDP with different y values achieves
higher F1 score compared with using all numerical token
vectors of the instance in 19 out of the 20 times. In the exper-
iment of the first project pair, the maximum value is achieved
where the y is 200, while the maximum value is achieved
where the y is 150 in the experiment of the sixth project pair.
In addition, BSLDP improves the F1 slightly where the index
of experiments are 9, 10, 11 and 12. However, BSLDP with
different y values do not improve the F1 compared with using
all numerical token vectors of the instance where the index of
experiment is 16.

In order to better analyze the dispersion degree and data
distribution of F1 obtained by different y, we present the data
onto the form of violin diagram. As shown in Figure 9, we can
find that the influence of BSLDP with different y values
varies in different project pair. The range of F1 obtained by
BSLDP is large in the experimental index which is 3, 5, 6, 15,
and 16 respectively. However, the F1 obtained by BSLDP has
only minor changes in the experimental index which is 9, 10,
11, 12 and 19, respectively.

Since different y has different effects on the performance
of model in different projects. In order to objectively express
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FIGURE 9. Violin plots of the F1 score of BSLDP with different y values on
all cross-project pairs.

the predicted performance results of project pairs, we take
the maximum predicted results of different y as the F1 of this
project pair under the same project pair. Table 4 presents the
F1 results of BSLDP and ATV. From the table, we observe
that nine pairs of experiments improved by more than 10%,
in the nine pairs, the biggest improvement was 16.8% where
the source project is log4j-1.1 and the target project is
jedit-4.1, the minimum improvement was 10.1% where the
source project is xerces-1.3 and the target project is ivy-2.0.
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TABLE 4. Comparison of F1 between ATV and BSLDP. ATV denotes the experiment uses all numerical token vectors of the instance. BSLDP denotes the
proposed model. F1 denotes F1 score. Improved denotes the improvement of BSLDP with respect to ATV and is measured in percentage. Over 10% of

improvements are highlighted in bold.

ATV BSLDP
Index Source Target Fl Improved
1 ant-1.6 camel-1.4 0.308 0.437 15.6%
2 jedit-4.1 camel-1.4 0.292 0.444 16.4%
3 camel-1.4 ant-1.6 0.346 0.702 11.5%
4 poi-3.0 ant-1.6 0.286 0.658 10.4%
5 camel-1.4 jedit-4.1 0.318 0.691 12.9%
6 log4j-1.1 jedit-4.1 0.332 0.709 16.8%
7 jedit-4.1 log4j-1.1 0.517 0.829 2.8%
8 lucene-2.2 log4j-1.1 0.416 0.812 3.9%
9 lucene-2.2 xalan-2.5 0.526 0.682 0.2%
10 xerces-1.3 xalan-2.5 0.777 0.688 1.1%
11 xalan-2.5 lucene-2.2 0.777 0.765 0.5%
12 logdj-1.1 lucene-2.2 0.417 0.763 0.3%
13 xalan-2.5 xerces-1.3 0.308 0.473 13.0%
14 ivy-2.0 xerces-1.3 0.292 0.485 10.4%
15 xerces-1.3 ivy-2.0 0.346 0.550 10.1%
16 synapse-1.2 ivy-2.0 0.286 0.556 -1.9%
17 ivy-2.0 synapse-1.2 0.318 0.656 8.1%
18 poi-3.0 synapse-1.2 0.332 0.625 4.8%
19 synapse-1.2 poi-3.0 0.517 0.852 1.4%
20 ant-1.6 poi-3.0 0.416 0.851 0.5%

However, in the experiments that improved by less than 10%,
there are four pairs where the improvement is positive and
less than 1%, we also observe that there is one pairs where
the improvement is negative.

In conclusion, the equal meshing mechanism can improve
the performance of the proposed model, which also improves
the model differently depending on target project and source
project.

RQ4: Does the proposed model outperform the four base-
line methods in CPDP?

In order to answer this question, we compare the proposed
model with four baseline methods. DBN-CP runs on the
semantic features generated by DBN automatically. TCA+
is a state-of-the-art method of CPCP based on the original
twenty features of the PROMISE dataset. AST-LSTM is a
deep learning method that the tree-structured LSTM network
naturally matches the AST representation to capture the syn-
tax and different levels of semantics in source code. DP-CNN
is also a deep learning method, and it uses convolutional Neu-
ral Network to automatically learn semantic and structural
features of programs.

Guided by prior work, we conduct twenty groups of CPDP
experiments. Each experiment selects two versions separately
from different projects, where we use one project as the train-
ing set and the other project as the test set. Table 5 presents
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the F1 results of BSLDP and the four baseline approaches.
The highest F1 values are in bold. Take an example of the
experiments where the source project is xerces-1.3 and the
target project is xalan-2.5, we train model with the source
project to predict defects in the target project. Our pro-
posed model achieves a F1 of 0.688, while running DBN-
CP, TCA+, AST-LSTM and DP-CNN achieve 0.572, 0.581,
0.676 and 0.562, respectively, so we find that BSLDP out-
performs four baseline methods by 20.3%, 18.4%, 1.8% and
22.4%, respectively. On average, the F1 of BSLDP is 0.661,
and DBN-CP, TCA+, AST-LSTM and DP-CNN achieve
0.579, 0.491, 0.500 and 0.535, respectively, thus, the pro-
posed model outperforms them by 14.2%, 34.6%, 32.2% and
23.6%, respectively. By comparison, BSLDP achieves the
biggest improvement on F1 that is 34.6% where the method
of comparison is TCA+, while BSLDP achieves the small-
est improvement on F1 that is 14.2% where the method of
comparison is DBN-CP.

In conclusion, our proposed BSLDP improves the per-
formance of cross-project defect prediction. The semantic
features learned by ALC are effective and able to capture the
common characteristics of defects across projects.

VI. THREATS TO VALIDITY
We identify the following threats to validity.
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TABLE 5. Comparison of F1 among five methods including the proposed method. BSLDP denotes the proposed model. F1 denotes F1 score. The best F1

scores among five methods are highlighted in bold.

DBN-CP ‘ TCA+ ‘ AST-LSTM | DP-CNN | BSLDP
Index Source Target
F1

1 ant-1.6 camel-1.4 0.316 0.292 0.321 0.323 0.437
2 jedit-4.1 camel-1.4 0.693 0.330 0.318 0.651 0.444
3 camel-1.4 ant-1.6 0.979 0.616 0.448 0.607 0.702
4 poi-3.0 ant-1.6 0.478 0.598 0.386 0.532 0.658
5 camel-1.4 jedit-4.1 0.615 0.537 0.394 0.547 0.691
6 log4j-1.1 jedit-4.1 0.503 0419 0.389 0.423 0.709
7 jedit-4.1 logdj-1.1 0.645 0.574 0.574 0.656 0.829
8 lucene-2.2 log4j-1.1 0.618 0.571 0.578 0.632 0.812
9 lucene-2.2 xalan-2.5 0.550 0.530 0.680 0.540 0.682
10 xerces-1.3 xalan-2.5 0.572 0.581 0.676 0.562 0.688
11 xalan-2.5 lucene-2.2 0.594 0.561 0.750 0.621 0.765
12 log4j-1.1 lucene-2.2 0.692 0.524 0.750 0.663 0.763
13 xalan-2.5 xerces-1.3 0.386 0.394 0.340 0.391 0.473
14 ivy-2.0 xerces-1.3 0.426 0.398 0.261 0.421 0.485
15 xerces-1.3 ivy-2.0 0.453 0.409 0.264 0.467 0.550
16 | synapse-1.2 ivy-2.0 0.824 0.383 0.261 0.371 0.556
17 ivy-2.0 synapse-1.2 0.433 0.570 0.530 0.456 0.656
18 poi-3.0 synapse-1.2 0.514 0.542 0.503 0.532 0.625
19 | synapse-1.2 poi-3.0 0.661 0.651 0.785 0.671 0.852
20 ant-1.6 poi-3.0 0.619 0.343 0.785 0.627 0.851
Avg 0.579 0.491 0.500 0.535 0.661

A. THREATS TO EXTERNAL VALIDITY

In terms of external validity, the most important potential
threat is that we simply test the performance of the pro-
posed model on projects written in Java. Our model may
not perform well on projects written in other languages or
other projects written in Java languages. To improve the
adaptability of our model to other projects, we will test our
model on projects written in the Java language and in other
programming languages in future.

B. THREATS TO INTERNAL VALIDITY

In this section, classification algorithms may be the threat to
the internal validity. The used classifier may influence the
experiment results, so we will use more classification algo-
rithms in future. Another internal threat is the performance of
semantic extractor, so we will use other semantic extractors
to extract semantic information on the code in order to obtain
semantic information closer to the source codes in future
research.

C. CONSTRUCT VALIDITY

In this section, we only use F1 as the evaluation indicators
of our model, which enables us to have a comprehensive
evaluation of the proposed model. In future, we will use other
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evaluation indicators for a more comprehensive evaluation of
the proposed model.

VII. RELATED WORK

A. CROSS-PROJECT DEFECT PREDICTION

When there is not enough labeled data to build defect predic-
tion models, we often build models using labeled data from
other projects. Therefore, cross-project defect prediction
technology has aroused the discussion of many researchers
where the training data and test data come from different
projects.

To solve the problems described above, the researchers
used other projects to build cross-project defect prediction
models [50], [51], [52], [53], [54], [55]. Briand et al. [17]
assessed whether fault-proneness models are applicable and
can be viable decision making tools when applied from one
object-oriented system to the other in a given environment.
Nam et al. [18] proposed TCA+ to improve CPDP, it com-
bined Transfer Component Analysis (TCA) with optimized
TCA’s normalization process, TCA+ maps source and target
domain data into a feature space where data distributions
between them are similar. Watanabe et al. [19] proposed
an approach for CPDP that researchers changed the dis-
tribution of data for the target project by multiplying the
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metric of each instance on the target project by a weight.
The weight is the ratio of the mean of the corresponding
metric in the target project to the mean of the correspond-
ing metric in the source data project. Nam et al. [20] and
Jing et al. [21] addressed the heterogeneous data problem of
cross-project defect prediction from different data processing
perspectives.

The main differences between our proposed BSLDP
and above approaches for cross-project prediction are as
follows. First, we use the proposed semantic extractor,
namely ALC, to generate semantic features from source
code files, while models on the above existing approaches
are based on manually designing features. Second, we use
the proposed semantic extractor, namely BSL, to improve
the results of classification for the features extracted
by ALC.

B. DEEP LEARNING AND SEMANTIC FEATURE
GENERATION IN SOFTWARE ENGINEERING

In recent years, deep learning algorithm is widely used in
the field of software engineering because of its outstanding
performance in feature extraction and significant achieve-
ments, such as speech recognition [22], image classifica-
tion [23] and text classification [24], etc. Specifically, Lam
et al. [28] proposed to combine deep learning with infor-
mation retrieval technique to improve the performance in
localizing buggy files for bug reports. White et al. [8] intro-
duced learning-based detection techniques where everything
for representing terms and fragments in source code is mined
from the repository, and they proposed a framework, it relies
on deep learning, for automatically linking patterns mined at
the lexical level with patterns mined at the syntactic level.
Mou et al. [27] trained a model based on syntax tree with
tree-based CNN, and it preserved the structural informa-
tion. Yang et al. [25] proposed an approach Deeper, and it
leveraged deep learning techniques to predict defect-prone
changes. They used the features to train model, and features
were generated from existing features by using DBN. Wang
et al. [26] further applied DBN on token vectors. These
vectors are extracted from ASTSs of programs for file level
defect prediction, and then leveraged the learned semantic
features to build machine learning models for predicting
defects.

Our work differs from the above study mainly in three
aspects. First, we use ALC to learn semantic information on
source code, while features generated from their approach are
relations between existing features. Since traditional metrics
that are set manually are not effective against distinguishing
snippets of code, features are combined or extracted from
them and these are still ineffective in distinguishing snippets
of code. Second, we use different classification algorithms
to evaluate the validity of our semantic features of cross-
project defect prediction. Third, our semantic extractor works
directly on the source code without using an abstract syntax
tree. This method is an intermediate representation of the
source code.
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VIil. CONCLUSION AND FUTURE WORK

Cross-project defect prediction is one of the hot topics in the
field of software defect research due to the difference and
insufficiency of data. To improve the performance of cross-
project defect prediction, we propose a defect prediction
framework called BSLDP. Specifically, we deploy ALC. This
method is built by LSTM with a self-attention mechanism to
learn semantic features of token vectors extracted from source
code files. With the semantic and structural information pre-
served, this method leverages the learned semantic features
to build models for predicting defects. Besides, we propose a
new classifier for the semantic vectors extracted by ALC to
further improve the results of classification, namely BSL.

Our experiments show that the learned semantic features
could improve cross-project defect prediction compared to
traditional features by logistic regression on average by
34.5% in Fl. The learned semantic features by the pro-
posed classifier improve F1 in twenty pairs of experiments
compared with other two classification algorithms. On aver-
age, BSLDP outperforms four baseline methods by 14.2%,
34.6%, 32.2% and 23.6% in terms of F1 in defect prediction,
respectively.

In the future, we will apply the proposed method to projects
written in other programming languages. Meanwhile, this
paper shows the effectiveness of applying deep learning in
the field of software defect prediction, and we will try to use
other deep learning-based models in the area of cross-project
defect prediction. In addition, since this model only extracts
semantic information on the level of source code files, we will
explore the possibility of extracting semantics on the other
levels, such as change level, method level, and class level.
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