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ABSTRACT Predicting significant wave height (SWH) is significant for coastal energy evaluation and
utilization, port construction, and shipping planning. It has been reported that SWH is difficult to forecast for
the complex marine conditions and chaos in nature. Current methods either require reliable prior information
or reach the upper limit of prediction accuracy. To this end, this paper proposes a wavelet-based residual
network to predict SWH with high accuracy. First, the time-series data of wave-related factors collected by
the ocean buoy station is decomposed using the wavelet transformation. Then, the transformation results
are used as the inputs to train the residual neural network. Finally, the data obtained from the NOAA’s
National Data Buoy Center is used to prove the outperformed prediction accuracy of the proposed method.
The analysis results suggested that wavelet transformation can improve the prediction performance of the
neural network, and the proposed model achieves better performance compared with several other deep
neural network schemes.

INDEX TERMS Convolution network, datamining, oceanwave time series, ResNet, wavelet decomposition.

I. INTRODUCTION
Marine meteorological forecasting, especially wave elements
forecasting, significantly impacts human marine activity.
Accurate estimation of wave parameters not only serves
as a major reference for coastal energy evaluation and uti-
lization [1], [2] but also provides essential guidelines for
port construction and shipping planning [3]. The significant
parameters for wave characterization include significant
wave height (SWH), wave period, and wave speed. Among
them, SWH is one of the most relevant and necessary param-
eters to evaluate the wave energy source and ocean meteoro-
logical condition, and thus, the estimation of SWH is a core
question of wave characterization [4].

Themeasurements of SWHusually consist of using remote
sensing methods [5], [6] or using wave-buoy-type in-situ
sensors [7]. The remote sensing methods often require addi-
tional data reprocessing and have a significant deviation,
which still needs to be corrected using the buoy station data.
Currently, the prediction of SWH mainly relies on the wave
buoy observations data, which provide time series of wave
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state information in fixed points [8]. Thus, it is necessary to
use large and reliable buoy datasets to estimate SWH accu-
rately. Currently, the largest marine meteorological database
is the National Oceanic and Atmospheric Administration
(NOAA), which consists of a great deal of real-time and long-
term marine buoys observation data, and are the significant
sets used for the estimation and evaluation of ocean wave
SWH [9].

The SWH estimation problem has been considered by
using various methods, including numerical wave models
[10], [11], time series models [12], and artificial neu-
ral network (ANN) [13]. The numerical models, like
WAVEWATCH III of wide ocean, Simulating Waves
Nearshore (SWAN) of offshore, are based on the approxi-
mation and simulation of wave-spectrum. Through numerical
calculation, SWH and other parameters can be derived from
the wave action equation to describe future wave states [14].
This approach can achieve comparatively ideal results given
sufficient external prior knowledge and has been the main
approach for wave forecasting over a long period in the
past. Rogers [15] used SWAN to predict the wave SWH
trend near the Southern California Bridge and compared the
results with measured data to investigate the effect of island
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topographical resolution on prediction. Zheng [16] applied
WAVE-WATCH III framework to simulate the seasonal and
long-term trends of SWH in the South China Sea and further
analyzed the statistical data distribution of SWH in different
time and areas. The shortcoming of numerical models is that
they require reliable prior information such as geography and
meteorology of the predicted location. Thus, slight deviations
of prior information will be gradually amplified and greatly
impact the accuracy of the final prediction. Therefore, data-
driven methods like time series models and machine learning
algorithms have recently acquired great attention for SWH
estimation to improve prediction performance by digging into
the inherent characteristics of historical data and reducing
the reliance on prior knowledge. Experimental results have
revealed a better performance of machine learning methods
over the statistical predictive model in SWH prediction [17].

In the classical time series and machine learning
approaches for SWH, empirical mode decomposition (EMD)
and wavelet transform (WT) have been used to extract
features from wave time-series data [18], [19], [20] and
the prediction is consequently conducted through models
like autoregressive (AR) moving average, support vector
regression (SVR), and symbiotic organism search (SOS) [21].
For example, Salcedo-Sanz [4] applied SVR to SWH pre-
diction using the shadowing effect of radar images and
achieved excellent performance. Meanwhile, Duan [22] per-
formed EMD ahead of SVR prediction for feature extraction
and reached a higher accuracy on NOAA buoys datasets.
However, with the rapidly increase of marine data dimen-
sions, the complex relationships between unstructured or
semistructured data limits the upper bound of the prediction
accuracy of traditional machine learning analysis approaches.
These shortcomings have been gradually addressed by devel-
oping neural network based models. With the increasing
computing speed of graphics computing devices, ANN has
been widely applied for wave forecasting.

EMD and wavelet have also been combined with
ANNs [23]. Shahabi [24] proposed a GMDH network to
predict the SWH of north Atlantic coast based on the buoys
data and achieved better results at the 6-step to 12-step period
prediction than time-series and machine learning models.
Pushpam [25] used the long-short-term memory (LSTM)
network to reconstruct and predict the wave height of Bay
of Bengal, which achieved better performance than the tradi-
tional forward ANNs and recursive neural networks (RNN).
Kaloop [26] proposed a wavelet-particle-swarm optimiza-
tion extreme learning machine (ELM) to estimate the ocean
wave height, and the experiment results on buoys data of the
US south-east coast outperformed SOS, LSTM, and SVR.
Wang [27] applied deep neural network for the calibration
of HY2B SWH by using input from parameters provided
by the altimeter and greatly improved the performance of
HY2B. The limitations of the existing ANN based models
are that RNN and its variants are of high computation cost
for its sequential calculation, and are thus lower in efficiency.
On the other hand, ELM is limited by the single hidden

layer structure and thus runs into the problem of insuffi-
cient nonlinear fitting ability. Residual network (ResNet) is a
powerful framework that can learn a wide range of complex
relationships from data, its efficiency and robustness has been
convinced in a variety of applications [28]. The effectiveness
of this model suggests a potential application in marine ele-
ment forecast.

In this research, a wavelet-based residual network is
proposed to construct an effective deep-learning method for
prediction SWH. First, the time-series data of ocean wave
data is wavelet-transformed for feature extraction and noise
elimination after min-max normalization. Then, the pro-
cessed data is used as the input of ResNet for prediction.
The output of ResNet is transformed into one-dimensional
sequence and then flattened into a one-dimensional vector
through a two-layer linear block as the final prediction of
ocean SWH.

The rest of the paper is organized as follows: In the sec-
ond part, the overall framework and detailed settings of the
proposed model are illustrated. Performance validation and
results analysis are given in the third part. The conclusions
are given in the last part.

II. METHODOLOGY
Figure 1 illustrates the overall framework, in which the pro-
posed model takes the buoys data as input and predicts the
SWH of a certain time step period.

A. PREPORCESSING
The features of buoy data include SWH, gust wind speed
(GS), average wind speed (WS), dominant wave period
(DPD), average wave period (APD), and air temperature
(AT). The features are preprocessed to keep the network
weights and biases staying to avoid extremely large param-
eters of the trained networks. First, all the features are nor-
malized into the interval [0, 1] by

x ′ =
x − xmin

xmax − xmin
, (1)

where x denotes the feature measurement and x ′ is the corre-
sponding normalized feature value. It is worth noting that the
minimum and maximum values used for normalization are
selected from the training set.

WT transformation is conducted to the normalized data to
further denoise and identify the short-term change and long-
term trend. Using the time and frequency characteristics of
wavelet functions, WT can adaptively sense the frequency
changes of signal in the time metrics. For this reason, WT is
suitable for the frequency contents analysis of signals with
no redundant components in the time domain [29]. By using
WT, the data are decomposed as the following

x(t) =
∑
k

c0[k]φ0,k (t)+
∑
j=0

∑
k

dj[k]ψj,k (t), (2)

where ψj,k (t) are the wavelet signals, φ0,k (t) are the scale
signals of wavelet basis function. Figure 2 shows the prepro-
cessing results.
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FIGURE 1. Framework of proposed method.

FIGURE 2. Origin and three-level wavelet decomposition of SWH
sequence in June 2019.

B. ARCHITECTURE OF NETWORK
Themajor characteristics of a convolution network (CNN) are
weight sharing, local connection, and down sampling. Com-
paredwith RNN and its variant LSTM, CNN can better utilize
the multi-core parallel computing performance of computing
devices and hereby has a faster computation speed [30]. Let
ω be the convolution kernel, x be the input, b be the bias, then
the convolution operation of CNN can be expressed as

h = f (w ∗ x + b) (3)

where ∗ denotes the convolution operator and f (·) denotes the
activation function.

The utilization of CNN in time series sequence prediction
usually takes two ways: one-dimensional convolution and
two-dimensional convolution [31], [32]. In this article, the
wavelet decomposition results of different features with the
same order are subjected to different channels of the same
input group. The one-dimensional sub-sequences of WT are
split equally and reshaped into two-dimensional matrix as the
input of certain dimension of input channels.

As depicted in Figure 3, the overall framework of the
proposed model contains eight forward layers and one resid-
ual shortcut connection between the output of layer 1 and
layer 5 to avoid accuracy degradation. The first six layers are
convolutional and the remaining two are linear. The convolu-
tional layers have 3× 3 filters and follow two rules: (1) each
layer is followed by a zero entries padding of size 1 to keep
feature map size unchanged; and (ii) the stride of all filters
is set as 1. For residual connection, a 1× 1 convolution with
80 channels is used for dimension matching. Specifically, the
first convolutional layer filters the 8 × 9 × 24 input with
80 kernels, and the output is taken as input of the second layer
which is further filtered by 160 kernels. The third convolu-
tional layer has 320 kernels, the fourth has 160, and the fifth
has 80. The output of the fifth convolutional layer is filtered
with 24 kernels of size 3×3, which keep the sizes of input and
output layers. The output of convolutional block is flattened
into a one-dimensional vector and is fed to a linear network
with two layers (Figure 4), which produces a distribution of
the SWH.

C. TRAINING STRATEGY
In the training stage, dropout is used in the last two linear
layers to zero the outputs of hidden neurons with a probability
of 0.3. The dropped neurons do not participate in forward

110028 VOLUME 10, 2022



X. Yu et al.: Wavelet-Based ResNet: A Deep-Learning Model for Prediction of Significant Wave Height

FIGURE 3. Structure of convolutional ResNet.

FIGURE 4. Structure of linear network.

pass and back-propagation in the training process, but in
test time, all neurons are used but multiply weights by 0.3.
The stochastic gradient descent (SGD) method was used to
optimize the parameters. The descent of learning rate adopted
the following strategy: (i) for each 5 rounds of unreduced
training loss, reduce the learning rate by 50%, and (ii) if the
loss value of the model on the validation set does not decrease
after 17 training consecutive rounds, then stop the training
process. The mean squared error (MSE) and the correlation
coefficient R are used to evaluate the performance of the deep
learning model.

III. EXPERIMENTAL RESULTS
A. DATASET
The proposed model is validated by using a buoy dataset
from the NOAA database (https://www.ndbc.noaa.gov) [3].
The buoy station 46087 is located at 48.49◦ north latitude
and 124.73◦ west longitude and the sea depth of this area
is 260 meters. The raw buoy data obtain the features SWH,
gust wind speed, average wind speed, dominant wave period,
averagewave period, and air temperature. The buoy data from
January 2016 to December 2018 are used for training the

TABLE 1. Statistical properties of buoy data.

network and the data from January 2019 to August 2019 are
used for testing. The statistical properties of all features are
presented in Table 1.

The buoy data of 72 last hours from time t are used as
inputs. SWH values of 0.5 hours, 1.5 hours, 3 hours, 6 hours,
and 12 hours ahead are used as the outputs.

B. PREDICTION PERFORMANCE
To evaluate the performance of proposed method on SWH
prediction, the model is compared with several standalone
models including CNN [3] and LSTM [33] with the same set-
tings for learning rate, optimization algorithm, and batch size.
Moreover, two hybrid models Wavelet-CNN and Wavelet-
LSTM that combine the series decomposition technique were
compared. Among them, CNN adopts the same convolutional
and linear block with the proposed model. LSTM with and
without wavelet impact are both set as the same two-layer
bidirectional RNN, only differing in the parameter tuning
process owing to different hidden and cell layers dimensions.

Experimental results of the proposed model and other
methods on SWH prediction are given in Table 2. Com-
parison results suggest that wavelet decomposition of the
origin time series sequence can better extract the inherent
features of the ocean wave height variation and consequently
improve the prediction performance of model in the training
stage. The CNN and LSTM models with wavelet gener-
ally achieve better performance than those without wavelet
impact.
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FIGURE 5. 6-step ahead prediction results of significant wave height of each model wave in June 2019.

TABLE 2. Prediction results of significant wave height of each model.

TABLE 3. Time consumption of CNN, LSTM, Wavelet-LSTM and Wave-CNN under different hours ahead SWH forecast.

The results of multi-step-head predictions suggest that all
four models can achieve good performance on short-term
prediction, especially for 6 or fewer steps. As shown in
Table 2, the values of MSE and R of the four models are all
around 0.07 and 0.94. Meanwhile, Figure 5 also shows the
good performance at 6-step-ahead prediction. Furthermore,
Figure 5 also indicates that LSTM model with or without
wavelet-based preprocess achieved better performance at
early stage of prediction, while, the performance of both
the CNN models are improved at later stage. However,
for 12-step-ahead prediction, the wavelet decomposition
improves the accuracy of CNN and LSTM, the values ofMSE
and R reach 0.12, 0.89 and 0.13, 0.88, respectively. Figure 6
shows that the performance of the CNN model without the
wavelet-based preprocessing becomes worse at the late stage.

Figure 7 shows that the performance significantly degener-
ates for the 24-step-ahead prediction.

C. COMPUTING TIME
In this part, the training and prediction time of CNN, LSTM,
Wavelet-LSTM and Wavelet-CNN are compared to evaluate
the computational efforts of each model. In order to compare
fairly, all experiments are conducted on a computer with
10GB RTX-3080 graphics card and 16GB memory.

The time consumption of Wavelet-LSTM and
Wavelet-CNN consists of decomposing time of the original
time series and training/prediction time of the models, while
only training/prediction time for the single model CNN and
LSTM. As shown in Table 3, the decomposing time of
Wavelet-CNN and Wavelet-LSTM is both around 0.8 s, and
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FIGURE 6. 12-step ahead prediction results of significant wave height of each model wave in June 2019.

FIGURE 7. 24-step ahead prediction results of significant wave height of each model wave in June 2019.

the overall training time of hybrid models is generally longer
than that of the single models. Specifically, Wavelet-LSTM
has the longest training time, followed by Wavelet-CNN and
LSTM, and the shortest of CNN. Moreover, the training time
of four models all decreases with the increase of forecasting
time. However, it can be seen that the prediction time of four
models is basically the same, all about 0.4 s, which suggests
that the efficiency of the four models is roughly the same in
the actual prediction scenario.

IV. CONCLUSION
In this paper, a wavelet-based ResNet model is proposed
for the prediction of SWH. This proposed model consists of

two parts, in which the wavelet decomposition extracts the
learnable features from buoy data, and the ResNet provides
SWH prediction in terms of the features decomposed by WT.

Overfitting is often an inevitable problem when training
model for complex tasks like time series prediction due to the
overly complicated model structure, especially when there is
limited amout of training data. Several common techniques
like data augmentation, regularization, dropout and early
stopping can be adopted in order to avoid this situation [34],
[35]. In this study, a combination of these training tech-
niques is adopted to avoid model overfitting. Specifically,
the datasets used for model training and testing are large
enough, thereby ensuring a better coverage of the real data
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distribution. In the training stage, dropout and adaptive learn-
ing rate techniques are adopted to reducing the complexity of
model parameters. As a result, the proposed model achieves
better performance than other approaches in the testing stage
and has similar prediction accuracy as that in the training
stages, indicating the model is not overfitting.

To validate the performance of the proposed model, com-
parative investigations among the LSTM, Wavelet-LSTM,
Convolutional ResNet and Wavelet-ResNet models have
been conducted. The experimental results indicate that the
wavelet transformation can improve the prediction perfor-
mance of the neural network. Through the wavelet basis
function’s time and frequency domain characteristics, the
wavelet transformation can adaptively decompose the sig-
nals into trends with different scales and achieve effective
features for the further deep-learning issue. Meanwhile, the
wavelet-base ResNet can achieve better performance on long-
term prediction. In the experiments of 24-step ahead esti-
mation, the proposed model showed relatively slighter time
delay and higher accuracy on the prediction of high wave
heights, indicating that better performance was achieved.
Nevertheless, the model still shows some limitations in long-
term prediction, especially in the prediction of extreme SWH
values, there is still a certain error gap between the prediction
results of model and the measured data. Further work is
needed in order to address this problem.

In summary, this paper verifies the practicability of wavelet
transform and residual convolution neural network in SWH
prediction. This not only provide a reference for the selection
of signal decomposition methods in time series prediction
like SWH forecasting, but also contribute a new method to
SWH prediction. For the follow-up study, other similar time
series decomposition or transformation methods and other
neural network structures can be considered on the basis of
this study, and their optimal combination can be explored to
further improve the accuracy of model prediction results.
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