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ABSTRACT With on-chip copper interconnects reaching their performance limits at 22 nanometer tech-
nology nodes, multi-walled carbon nanotube (MWCNT) interconnects are projected to replace them below
this point. A major aspect of MWCNT interconnect design is to perform uncertainty quantification (UQ)
in an efficient yet accurate manner. In this paper, a polynomial chaos (PC) based approach is developed
for the UQ of MWCNT interconnect networks under the condition that some shells of each conductor of
the network are perfectly contacted while others are imperfectly contacted. The key feature of the proposed
approach is the development of a bilevel multi-fidelity algorithm where two different low-fidelity models are
combined together. The main outcome of using this bilevel approach is to further reduce the computational
time cost of state-of-the-art single level multi-fidelity algorithms, especially in the presence of variable
imperfect contact resistances where single level multi-fidelity algorithms fail to provide much speedup
over conventional PC approaches. The proposed approach adopts a SPICE hybrid model that combines
the features of the equivalent single conductor (ESC) model and the rigorous multiconductor circuit (MCC)
model of theMWCNT conductors. Then the low-fidelity ESCmodel, the intermediate-fidelity hybrid model,
and the high-fidelity MCC model are exploited in a bilevel multi-fidelity algorithm for the recovery of the
PC metamodel of the interconnect network. This proposed bilevel multi-fidelity algorithm is demonstrably
3-5x more numerically efficient than state-of-the-art single level multi-fidelity algorithms while being even
more accurate. Once recovered, the PC metamodel is used to derive all statistical information of the network
transient responses.

INDEX TERMS Imperfect contact resistance, interconnect networks, multi-fidelity algorithms, multi-walled
carbon nanotubes (MWCNTs), polynomial chaos, signal integrity, uncertainty quantification.

I. INTRODUCTION
A. INTRODUCTION
The effective per-unit-length (p. u. l.) resistance of con-
ventional copper on-chip interconnects far exceed their
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bulk value at sub-22 nm technology nodes [1], [2], [3].
This is because of various scattering mechanisms such as
sidewall and top/bottom surface scattering, surface rough-
ness scattering, and grain boundary scattering. On the
other hand, multi-walled carbon nanotubes (MWCNTs)
offer near-ballistic transport, greater thermal conductivity,
greater current carrying capacity, and greater mechanical
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FIGURE 1. Layout and circuit schematic of a general MWCNT interconnect network. (a) Cross-sectional view of the MWCNT conductors. (b) Circuit
schematic of the MWCNT interconnect network showing the driver/load circuits.

and electrical reliability than pure copper [4], [5], [6].
Thus, MWCNT interconnects are currently being investi-
gated as promising alternatives to pure copper interconnects
for advanced technology nodes. Unfortunately, the perfor-
mance of MWCNT interconnect networks is highly sensitive
to fabrication process variations and manufacturing toler-
ances [7]. Therefore, there is a strong need to develop reliable
uncertainty quantification (UQ) modeling tools for emerging
MWCNT interconnect networks.

Currently, surrogatemodeling ormetamodeling techniques
such as the generalized polynomial chaos (PC) approach have
become the method of choice for the UQ of MWCNT inter-
connect networks [8], [9], [10], [11], [12]. The PC approach
expresses the network transient responses as linear combina-
tions of orthonormal polynomial basis functions of random
variables. These random variables model the fabrication pro-
cess variations and manufacturing tolerances of the network
[13]. The coefficients of the basis functions are the unknowns
of the network. These coefficients are evaluated using various
non-intrusive techniques, all of which require multiple deter-
ministic SPICE simulations of the network [14]. Once these
coefficients are determined, the linear combination of basis
functions (i.e., the PC metamodels) of the network responses
are said to be trained. The trained PC metamodels now serve
as closed-form surrogates of the network responses and can
be used in a Monte Carlo framework to efficiently extract the
response statistics. Unfortunately, the major drawback of the
PC approach is that it suffers from the curse of dimensionality
[9]. This means that the number of deterministic SPICE
simulations required to evaluate the coefficients, and conse-
quently, the time cost for training a PC metamodel scales
in a near-exponential manner with respect to the number
of random variables (or dimensions) used to represent the
fabrication process variations of the MWCNT network [9],
[10], [11]. Hence, the UQ of realistically high-dimensional
MWCNT interconnect networks can often be computation-
ally intractable.

Several numerical strategies such as compressed sensing
[15], [16], dimension and/or basis reduction [17], [18], [19],
[20], [21], [22], and multi-fidelity algorithms [10], [11],
[12], [23], [24], [25], [26], [27], [28] have been reported to
address the curse of dimensionality. Of these, multi-fidelity

algorithms are particularly well-suited for MWCNT inter-
connect networks [10], [11], [12]. Previous works have
demonstrated that multi-fidelity algorithms can crosscut the
numerical efficiency of a low-fidelity equivalent single con-
ductor (ESC) model of MWCNTs [29] with the accuracy of a
high-fidelity multiconductor circuit (MCC) model to achieve
a far better accuracy versus time cost tradeoff when training
PC metamodels than what is possible using MCC model
simulations alone [10], [11].

It has been shown in the work of [10] that the numerical
efficiency of multi-fidelity algorithms is predicated on the
correlation between the ESC and the MCC model results of
the MWCNT interconnect network under test. Greater the
correlation between the ESC and the MCC model results,
smaller are the number of SPICE MCC model simulations
required to train the PC metamodel, and hence, smaller is
the training time cost. Now, for most cases, the ESC model
results are well-correlated with theMCCmodel results. How-
ever, one exception to this rule is when there is variation
in the imperfect contact resistance of the different shells
in a MWCNT conductor [12]. To better understand why
this is so, recall that the ESC model collapses the multiple
shells of an MWCNT conductor into a single shell where the
equivalent imperfect contact resistance of this single shell is
the parallel combination of the imperfect contact resistances
of all the individual shells. Now, assume that some of the
shells of a MWCNT conductor have perfect contacts (i.e.,
the imperfect contact resistance of these shells is zero) while
the remaining shells have imperfect contacts (i.e., the imper-
fect contact resistance of these shells is non-zero). In this
case, the equivalent imperfect contact resistance of the ESC
model will be equal to zero. As a result, the ESC model
will implicitly ignore the signal losses across all the non-zero
imperfect contact resistances of the conductor. This incor-
rect treatment of the imperfect contact resistances weakens
the otherwise strong correlation existing between the ESC
and MCC model results of the network. In such scenarios,
conventional multi-fidelity algorithms usually fail to provide
any numerical efficiency [12].

In this paper, the above loss in numerical efficiency of
conventionalmulti-fidelity algorithms caused by the variation
in the imperfect contact resistances of different shells of a
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FIGURE 2. Treatment of variable imperfect contact resistances in an MWCNT conductor by the ESC model. (a) Arrangement of shells in the MWCNT
conductor where the inner K shells are perfectly contacted and the outer Ns − K shells are poorly contacted. (b) ESC model representation of the
MWCNT conductor where the imperfect contact resistances are treated incorrectly.

MWCNT conductor is addressed. This work is based on
the authors preliminary work of [12] where a new hybrid
model of MWCNT conductors was introduced. The hybrid
model, as the name suggests, combined features of the
known ESC and MCC models. In so doing, the hybrid model
enabled a more correct treatment of the contact resistances
in MWCNT conductors than the original ESC model, and
hence, enjoyed a better correlation with respect to the MCC
model results. This improved correlation was used to ensure
that themulti-fidelity algorithm of [12] was able to offer some
numerical efficiency when training the PC metamodel. ext.

B. CONTRIBUTIONS AND RELATED WORKS
In this paper, additional new contributions above and beyond
the works of [10], [11], [12] are presented as follows:

(i) In this paper, a fundamental limitation of the multi-
fidelity algorithm of [12] arising from the relatively large
SPICE simulation cost of the hybrid model compared to the
ESCmodel is highlighted. In fact, throughmultiple numerical
examples in Section IV of this paper, it is demonstrated that
because of the relatively large SPICE simulation cost of the
hybrid model, the approach of [12] is able to achieve only
marginal numerical efficiency when training PCmetamodels.
Importantly, this limitation has not been examined in [12].

(ii) In this paper, a novel bilevel multi-fidelity algorithm
is developed to address the poor numerical efficiency of the
approach of [12]. At the first level of the bilevel approach,
a multi-fidelity algorithm will crosscut the numerical effi-
ciency of the ESC model of MWCNT interconnects with the
relative greater accuracy of the hybrid model to expedite the
training of a predictor PC metamodel. In the second level,
another multi-fidelity algorithm will crosscut the relative
numerical efficiency of the hybrid model with the greater
accuracy of the rigorous MCC model to expedite the training
of a corrector PC metamodel. The sum of the predictor and
corrector metamodels will recover the original PCmetamodel
of the network responses. The key advantage of the proposed
bilevel multi-fidelity algorithm will be to ensure that signif-
icantly high amounts of numerical efficiency is achieved in
training not only the corrector metamodel (as in [12]) but the

predictor metamodel as well (not possible in [12]). Thus, this
bilevel approach will provide an additional level of numerical
efficiency not seen in existing single level multi-fidelity algo-
rithms of [10], [11], [12]. Remarkably, in Section IV of this
paper, the bilevel approach is also found to be much more
accurate than existing single level multi-fidelity algorithms
[10], [11], [12] – a bonus benefit of this work.

(iii) At this point, it is emphasized that the proposed
bilevel multi-fidelity algorithm differs from the two-level
multi-fidelity algorithm of [11] in the sense that the work
of [11] uses a multi-fidelity algorithm at only the first level.
The second level of [11] uses a dimension reduction tech-
nique. Therefore, [11] is simply a single level multi-fidelity
formulation. In contrast, the proposed approach uses multi-
fidelity at two distinct levels – something only possible using
the new hybrid SPICE model of the conductors of [12] not
seen in [11]. Another point of contrast is that this work
is specifically for the case where there is variation in the
imperfect contact resistance of different shells in anMWCNT
conductor whereas in [11] no variability in the imperfect
contact resistance is considered.

(iv) In this work, a mathematically rigorous estimate of
the maximum numerical efficiency achieved by the pro-
posed bilevel multi-fidelity algorithm over existing single
level multi-fidelity algorithms is presented. These efficiency
bounds are validated via multiple numerical examples.

The paper is organized as follows. Section II explains the
problem statement. Section III provides the description of
the proposed bilevel multi-fidelity algorithm and also com-
pares its computational complexity with that of conventional
single level multi-fidelity algorithms. Finally, Section IV
presents two numerical examples for validation of the pro-
posed approach followed by conclusions in Section V.

II. PROBLEM STATEMENT
A. CONVENTIONAL MULTI-FIDELITY ALGORITHMS FOR
MWCNT INTERCONNECT NETWORKS
Let the parametric uncertainty in the MWCNT interconnect
network of Fig. 1 be modeled by N mutually uncorrelated
random variables λ = [λ1, λ2, . . . , λN ] located within the
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FIGURE 3. Treatment of variable imperfect contact resistances in an MWCNT conductor by the hybrid model. (a) The hybrid model
decomposing an MWCNT conductor into two ESC models. (b) The circuit schematic of the two ESC models making up the hybrid model.

multidimensional support �. Now, due to the uncertainty in
the network parameters, the transient response of the net-
work, say x(t, λ), will be uncertain as well where t is the
temporal variable. In order to extract the statistics of the
uncertain response, a PC metamodel of the response need
to be constructed. One highly efficient approach to train the
PC metamodel is to employ the conventional multi-fidelity
algorithm. As per this algorithm, initially a predictor PC
metamodel of the response is constructed as [12]

xp(t, λ) ≈
N0∑
k=0

x(p)k (t)φk (λ);N0 + 1 =
(N + m)!
N !m!

(1)

where x(p)k (t) is the k-th predictor coefficient, φk (λ) is the k-th
N -dimensional multivariate orthonormal basis function, and
the total number of terms in the PC expansion of (1) is N0
with the maximum order of expansion being equal to m. The
predictor metamodel of (1) is trained by harnessing the data
elicited from the SPICE simulations of the approximate but
compact ESC model of the network of Fig. 1 and then using
this data in a non-intrusive approach [10]. Recall that the
ESC model is based on an equipotential approximation of a
MWCNT conductor whereby all the shells of each conductor
of Fig. 1(a) collapses into a single shell [29]. Thus, the
equipotential approximation of the ESC model ensures that
it is significantly cheaper to simulate than the rigorous and
cumbersome MCC model. In return, the errors arising from
the equipotential approximation reduces the accuracy of the
ESC model. This loss of accuracy translates to the predictor
metamodel of (1) being able to only capture the coarse statis-
tical features of the network response. Now, the errors in the
predictor metamodel of (1) stemming from the equipotential
approximation of the ESC model can be compensated by a
corrector function described as [10]

fc(t, λ) = x(t, λ)− xp(t, λ) (2)

Equation (2) shows that the corrector function captures the
finer statistical features of the response x(t , λ) that the pre-
dictor metamodel has missed. This corrector function is also

represented as a PC metamodel as

fc(t, λ) =
Q∑
k=0

x(q)k (t)φk (λ) (3)

where x(q)k (t) is the k-th corrector coefficient. Because the cor-
rector has to capture only the finer statistical features of the
response x(t, λ) instead of the whole response, a very sparse
set of PC terms in (3) is sufficient. In other words, the number
of terms (or coefficients) Q + 1 � N0 + 1 of the predictor
metamodel of (1). To evaluate these few coefficients, very few
SPICE simulations of the rigorous MCC model are required.
This is exactly why multi-fidelity algorithms can train PC
metamodels much more efficiently than standard techniques.
Finally, adding the predictor and corrector metamodels of (1)
and (3) together recovers the original PC metamodel of the
network response.

From the formulation of the corrector in (2), it is noted that
the variance of the corrector is given as

Var (fc) = Var (x)+ Var (xp)− 2Cov
(
xp, x

)
(4)

Equation (4) indicates that greater the correlation between
the predictor metamodel result xp(t, λ) and the true network
response x(t, λ), smaller will be the variance of the corrector,
and hence, smaller will be the number of terms required
(i.e., Q + 1) to model the corrector in (3). This, in turn, will
suppress the number of SPICE simulations of theMCCmodel
required to train the corrector metamodel. Thus, the correla-
tion between the ESC and the MCC model results controls
the numerical efficiency of the multi-fidelity algorithm [10].
When there is no variability present in the imperfect contact
resistances, the correlation between the ESC and the MCC
model results is reasonably strong leading to very fast training
of the corrector metamodel [10]. However, when variability
is present in the imperfect contact resistances, the correlation
between the ESC and MCC model results weakens, thereby
requiring an inordinately large number of MCC model simu-
lations to train the corrector metamodel of (3), as explained
next.
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B. EFFECT OF IMPERFECT CONTACT RESISTANCES ON
MULTI-FIDELITY ALGORITHMS
Consider the MWCNT interconnect network of Fig. 1 where
now for each conductor, the inner K shells are perfectly con-
tacted to the metal electrode while the outer Ns-K shells are
poorly contacted. This means that the values of the imperfect
contact resistance of the shells are given as

Rc,i = 0; 1 ≤ i ≤ K � 0;K + 1 ≤ i ≤ Ns (5)

where Rc,i is the imperfect contact resistance of the i-th shell
andNs is the total number of shells in theMWCNT conductor.
In addition to the imperfect contact resistance, each i-th shell
also has a quantum contact resistance given as [7], [8]

Rq,i =
h

2e2Nch,i
; 1 ≤ i ≤ Ns (6)

where h is the Planck’s constant, e is the charge of an electron,
and Nch,i is the number of conducting channels in the i-th
shell. The total contact resistances of the different shells are
shown in detail in Fig. 2(a). In such a scenario, the ESC
model dictates that the Ns shells of the conductor collapse
into a single shell as shown in Fig. 2(b). Importantly, for the
single shell, the equivalent imperfect contact resistance is the
parallel combination of all the imperfect contact resistances
of the individual shells in Fig. 2(a) and is expressed as [8]

Rc =

( Ns∑
i=1

(
Rc,i

)−1)−1 (7)

Note that because the imperfect contact resistance of the inner
K shells is equal to zero (i.e., Rc,i = 0 for i ≤ K ), this makes
the equivalent imperfect contact resistance of the single shell
in (7) equal to zero as well (see Fig. 2(b)). Similarly, the
equivalent quantum contact resistance of the single ESC shell
in Fig. 2(b) is the parallel combination of all the quantum
contact resistances of the individual shells in Fig. 2(a) and is
expressed as [8]

Rq =

( Ns∑
i=1

(
Rq,i

)−1)−1 (8)

Physically, what this means is that in the ESC model, the
signal losses across the imperfect contact resistance of the
outer Ns-K poorly contacted shells are neglected. In other
words, the ESC model overestimates the total signal strength
entering theMWCNT conductors. The modeling errors stem-
ming from the overestimation of the signal strength enter-
ing the conductors is in addition to the errors already due
to the equipotential approximation. As a result, the ESC
model suffers from additional loss of accuracy when dealing
with MWCNT conductors with variable imperfect contact
resistance. This additional model inaccuracy significantly
weakens the correlation between the ESC and MCC model
results as shown in [12]. Consequently, the variance of the
corrector in (4) is much higher than expected leading to a
greater number of terms required in the metamodel of (3)

FIGURE 4. The relative accuracy of the ESC, hybrid, and MCC models and
the strength of the correlations between them.

and more SPICE simulations of the MCC model for training.
This, in turn, reduces the numerical efficiency possible from
the multi-fidelity algorithm [12].

III. PROPOSED BILEVEL MULTI-FIDELITY ALGORITHM
A. REVIEW OF HYBRID MODEL
In the work of [12], a new SPICE hybrid model for MWCNT
interconnect networks is developed by combining the fea-
tures of the ESC and MCC models. To better explain this
hybrid model, the MWCNT interconnect network of Fig. 1 is
considered where the imperfect contact resistance of each
conductor is as described in Section II-B and Fig. 2. Now,
the inner K shells of each conductor are collectively modeled
using an ESCmodel while the remaining outerNs-K shells are
collectively modeled using another ESC model. In effect, the
conductor is now decomposed into two ESC models. These
two ESC models are coupled together via the tunneling con-
ductance and the electrostatic intershell capacitance between
the K and K+1-th inner shells as shown in Fig. 3. These
coupling circuit elements are exactly the same as those used
in the MCC model representation of the conductor. Hence,
the proposed model includes attributes of both the ESC and
MCC models and is referred to as the hybrid model.

A characteristic feature of the hybrid model is that the
imperfect contact resistance of the ESC model representing
the inner K shells does not in any way affect the imperfect
contact resistance of the ESC model representing the outer
Ns-K shells. Hence, in this model, the signal losses across the
imperfect contact resistances of the outer Ns-K shells are not
ignored unlike the conventional ESC model. In this way, the
hybrid model of Fig. 3(a) is able to avoid the incorrect treat-
ment of the imperfect contact resistances observed in the ESC
model of Fig. 2(b). Consequently, the hybrid model offers
much higher accuracy than the ESC model when dealing
with MWCNT conductors suffering from variability in the
imperfect contact resistances. This improved accuracy trans-
lates to stronger correlation between the hybrid and MCC
model results. Therefore, when the hybrid model replaces the
ESC model while training the predictor metamodel of the
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network response in (1), the loss of numerical efficiency of
conventional multi-fidelity algorithms is remedied [12].

However, it is worthwhile to understand that the higher
accuracy of the hybrid model relative to the ESC model
comes at the price of greater SPICE simulation time costs.
This is because the hybrid model treats each MWCNT con-
ductor as two coupled ESC models instead of a single ESC
model. Thus, training the predictor metamodel of (1) using
repeated solutions of the hybrid model in SPICEwill be much
more time intensive than using repeated solutions of the ESC
model. Consequently, the advantage of greater correlation
between the hybrid and MCC model results will be undercut
by the greater training time costs of the predictor metamodel,
thereby leading to poor numerical efficiency for the approach
of [12].

As a concluding remark, it is noted that the hybrid model
will collapse the Ns shells of the MCC model into two shells
only. Hence, the time cost of simulating the hybrid model will
still be significantly lower than that of simulating the rigorous
MCCmodel. Overall, the accuracy and the concomitant CPU
time cost of SPICE simulation for the ESC, hybrid, and MCC
models can be ranked as in Fig. 4.

B. PROPOSED BILEVEL MULTI-FIDELITY ALGORITHM
In order to reduce the relatively high training time cost of
the predictor metamodel of (1) caused by the higher simu-
lation time cost of the hybrid model, in this paper a bilevel
multi-fidelity algorithm is developed. The basic idea behind
the proposed bilevel algorithm is that instead of directly
training the predictor metamodel of (1) using repeated SPICE
simulations of the relatively costly hybrid model as in [12],
it would be more numerically efficient to employ a second
multi-fidelity algorithm based on the ESCmodel to accelerate
this training. For this purpose, at the first level of the bilevel
multi-fidelity algorithm, a predictor PC metamodel of the
network response will be constructed as [10]

x1(t, λ) ≈
N0∑
k=0

x(1)k (t)φk (λ) (9)

where x(1)k (t, λ) is the k-th coefficient of the metamodel.
The job of the predictor metamodel of (9) is to capture the
coarse statistical features of the network response at the least
possible computational time cost. To that end, results of the
compact ESC model simulations will be utilized to train the
predictormetamodel of (9). Unfortunately, the numerical effi-
ciency provided by the ESC model is counterbalanced by the
relatively low accuracy of the model (see Fig. 4). Therefore,
to compensate for the errors in the ESC model simulations,
a first level corrector function will be defined as the error
between the response obtained from the more accurate hybrid
model and the predictor metamodel.Mathematically, this cor-
rector function will be represented as a sparse PC metamodel
as [10]

fc1 (t, λ) = xhybrid (t, λ)− x1(t, λ);

TABLE 1. Uncertain parameters (normal distribution) for example 1.

=

Q̄∑
k=0

x(c1)k (t)φk (λ) (10)

where xhybrid (t , λ) is the response of the hybrid model and
x(c1)k (t, λ) is the k-th coefficient of the corrector metamodel.
From (10), the following points are noted. First, the coeffi-
cients of the corrector metamodel can be inferred using any
non-intrusive approach via repeated SPICE simulations of
the hybrid model. Second, the results of the hybrid model
will be well correlated with the results of the ESC model as
shown in Fig. 4. Hence, according to (4), the variance of the
corrector function will be much smaller than the variance of
the response of the hybrid model xhybrid (t , λ). This means
that the number of terms in the corrector metamodel, and
consequently, the number of SPICE hybridmodel simulations
required for training the coefficients of (10) will be much less
than the full number of terms required (i.e., Q̄+1� N0+1).
The optimal value of Q̄ + 1 can be obtained using the itera-
tive adaptation of the hyperbolic PC expansion described in
[12]. Finally, once the corrector metamodel of (10) has been
trained, the response of the hybrid model will be recovered as
the sum of metamodels [10]

xhybrid (t, λ) = x1(t, λ)+ fc1 (t, λ);

=

N0∑
k=0

x(1)k (t)φk (λ)+
Q̄∑
k=0

x(c1)k (t)φk (λ);

=

Q̄∑
k=0

(
x(c1)k + x(1)k

)
φk (λ)+

N0∑
k=Q̄+1

x(1)k (t)φk (λ)

(11)

In this way, via the first level of the multi-fidelity algorithm,
the time cost to train the corrector of (10), and consequently to
recover the metamodel of (11), will be substantially reduced
from the original time cost reported in [12] where the full set
of N0 + 1 simulations of the hybrid model are needed.
Once the PC metamodel of the response of the hybrid

model is obtained from (11), the next step is to use the
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FIGURE 5. Statistics of the transient responses at node N2 of Example 1. (a) Mean, mean plus three times the SD, and mean minus three
times the SD at node N2 computed using the PC metamodel trained by the single level multi-fidelity algorithm of [10], the single level
multi-fidelity algorithm of [12], the hyperbolic PC expansion of [22], and the conventional PC metamodel. (b) PDF of the peak crosstalk at
node N2 computed using the PC metamodel trained by the single level multi-fidelity algorithm of [10], the single level multi-fidelity
algorithm of [12], the hyperbolic PC expansion of [22], and the conventional PC metamodel.

FIGURE 6. Statistics of the transient responses at node N2 of Example 1. (a) Mean, mean plus three times the SD, and mean minus three
times the SD at node N2 computed using the PC metamodel trained by the proposed bilevel multi-fidelity algorithm and the conventional
PC metamodel. (b) PDF of the peak crosstalk at node N2 computed using the PC metamodel trained by the proposed bilevel multi-fidelity
algorithm and the conventional PC metamodel.

metamodel of (11) as a starting point to obtain a PC meta-
model of the true response of the MWCNT interconnect
network. This refers to the second level of our multi-fidelity
algorithm. In the second level, the metamodel of (11) will
serve as the predictor and a corrector function will be
described to be the difference between the true response of
the network and the response obtained from the hybridmodel.
This corrector function will take the form

fc2 (t, λ) = x(t, λ)− xhybrid (t, λ) (12)

where the last term xhybrid (t, λ) will already be known
from (11). This second-level corrector function will be mod-
eled using a PC metamodel

fc2 (t, λ) ≈
R∑
k=0

x(c2)k (t)φk (λ) (13)

where x(c2)k (t, λ) is the k-th coefficient of the metamodel.
Now, by equating (13) with (12), the coefficients of (13)
can be trained non-intrusively. At each regression point, the

true response x(t , λ) will be obtained from a SPICE MCC
simulation while the response xhybrid (t, λ) will be known
from (11). Moreover, the optimal number of terms required
in the second level corrector (i.e., R + 1) will be obtained
using the iterative adaptation of the hyperbolic PC expansion
described in [10]. Again, because of the strong correlation
between the results of the hybrid model and the MCC model
(see Fig. 4), the number of SPICE MCC model simulations
required for training the corrector metamodel of (13) will be
very small (i.e., R + 1 � N0 + 1). Finally, once the second
level corrector metamodel has been trained, the overall PC
metamodel of the transient response will be recovered as
the sum

x(t, λ) = xhybrid (t, λ)+ fc2 (t, λ) ;

=

Q̄∑
k=0

(
x(c1)k + x(1)k

)
φk (λ)+

N0∑
k=Q̄+1

x(1)k (t)φk (λ)

+

R∑
k=0

x(c2)k (t)φk (λ) ;
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TABLE 2. Computational time cost for numerical example 1.

=

R∑
k=0

(
x(c1)k + x(c2)k (t)+ x(1)k

)
φk (λ)

+

Q̄∑
k=R+1

(
x(c1)k + x(1)k

)
φk (λ)

+

N0∑
k=Q̄+1

x(1)k (t)φk (λ) (14)

At this juncture, it is pointed out that the proposed bilevel
multi-fidelity algorithm will accelerate the recovery of both
the predictor metamodel of (11) and the PC metamodel
of (14). This is in contrast to the single level multi-fidelity
algorithm of [12] which only accelerates the training of the
corrector metamodel of (13), and consequently the recov-
ery of the metamodel of (14). Thus, the proposed bilevel
multi-fidelity algorithm achieves one additional level of
numerical efficiency not possible in the work of [14].

C. COMPUTATIONAL COMPLEXITY ANALYSIS
Let the average SPICE simulation cost of the ESC,
hybrid, and MCC models be C1, C2, and C3, respectively
where C1 < C2 < C3. Based on this knowledge and the
equations (9)-(14), the total training time cost of the proposed
bilevel multi-fidelity algorithm is quantified as

Cprop = (N0 + 1)C1 +
(
Q̄+ 1

)
C2 + (R+ 1)C3 (15)

provided the stochastic testing algorithm or the SPLINER
approach is used [30], [31]. Similarly, for the single level
multi-fidelity algorithm using the hybrid model in [12], the
total training cost is quantified as

Chybrid = (N0 + 1)C2 + (R+ 1)C3 (16)

Finally, the training cost for a conventional PC metamodel
trained only using MCC simulations is

CPC = (N0 + 1)C3 (17)

TABLE 3. Uncertain parameters (normal distribution) for example 2.

Note that in (15)-(17), the implicit assumption is that the
simulation costs of the ESC, hybrid, and MCC models in
SPICE dominates over the cost of solving the linear system of
equations required in the stochastic testing algorithm or the
SPLINER approach to evaluate the PC coefficients [30], [31].
Under these circumstances, the speedup in the training costs
provided by the proposed bilevel multi-fidelity algorithm
over the conventional PC metamodel is given as

ηprop−PC =
CPC
Cprop

=
(N0 + 1)C3

(N0 + 1)C1 +
(
Q̄+ 1

)
C2 + (R+ 1)C3

(18)

Now, under the assumptions that the time cost for training the
second level corrector of (13) using MCC model simulations
far outweighs the time cost for training the first level predictor
of (9) using ESC model simulations (i.e., (N0 + 1)C1 �

(R + 1)C3), the maximum bound of the speedup of (18) can
be quantified as

max
(
ηprop−PC

)
=

(N0 + 1)C3(
Q̄+ 1

)
C2 + (R+ 1)C3

(19)

A similar analysis leads to the following quantification of
the maximum bound of the speedup achieved by the pro-
posed bilevel multi-fidelity algorithm over the single level

109932 VOLUME 10, 2022



S. Guglani et al.: Bilevel Multi-Fidelity PC Approach for the UQ of MWCNT Interconnect Networks

multi-fidelity algorithm of [12]

max
(
ηprop−hybrid

)
≈
(N0 + 1)C2 + (R+ 1)C3(
Q̄+ 1

)
C2 + (R+ 1)C3

(20)

It is important to note that the speedup of (20) is always more
than 1 given that Q̄ + 1 � N0 + 1 due to the utilization
of the first-level of the proposed multi-fidelity algorithm.
This proves that the proposed bilevel multi-fidelity algorithm
will outperform the single level multi-fidelity algorithm of
[12] although both use the same hybrid model – the central
contribution of this paper. Next, the results of (19) and (20)
are validated using various numerical examples.

IV. NUMERICAL EXAMPLES
In this section, two numerical examples are presented to
demonstrate the benefits of the proposed bilevel multi-fidelity
algorithm over existing single level multi-fidelity algorithms
of [10], [12] and other fast non-multi-fidelity approaches
when dealing withMWCNT interconnect networks with vari-
able imperfect contact resistances. The MWCNT networks
are represented using lumped RLGC MCC, hybrid, and ESC
models in SPICE [32] while all other PC related computations
are performed in MATLAB 2019a. In all the examples, the
number of terms in the first-level and second-level corrector
functions (i.e., Q̄ + 1 and R+ 1, respectively) are controlled
by the hyperbolic factors (u1, u2) [10]. These hyperbolic fac-
tors are tuned such that the recovered PC metamodel of (14)
exhibits an L2 error norm of 10−3 or less (point of diminishing
returns) with respect to the recovered PC metamodel trained
by using previous value of the hyperbolic factor.
Example 1 - In this example, a three (Nc = 3) conductor

MWCNT interconnect network as shown in Fig. 1 is consid-
ered. Each conductor has NS = 30 shells. The inner twenty
shells of each conductor are perfectly contacted while the
outer ten shells have imperfect contact resistances of 500 k�.
Conductor 1 is excited using a voltage source with a saturated
ramp waveform of rise time Tr = 0.1 ps and amplitude 1 V.
Conductors 2 and 3 are quiet. The response of interest for
this example is the far-end transient response at node N2 of
Fig. 1. There is a total of N = 15 uncertain parameters in this
example as listed in Table 1.

In order to perform UQ for this example, four PC
metamodels are adopted – one trained using the single
level multi-fidelity algorithm of [10] where the low-fidelity
model is the ESC model, one trained using the single
level multi-fidelity algorithm of [12] where the low-fidelity
model is the hybrid model, the hyperbolic PC expansion
approach of [22], and finally, the conventional PC meta-
model trained using MCC model simulations. From [8],
[9], [10], [11], it is clear that conventional PC captures the
transient responses of MWCNT interconnect network accu-
rately with much less computational burden as compared
to Monte Carlo method which usually requires anywhere
between 20,000 and 40,000 SPICE simulations to capture
the responses accurately. Therefore, it is more convenient to
compare the proposed approach against the conventional PC.

All PC metamodels require a maximum order of expansion
m = 4. The number of terms used in the corrector for both
multi-fidelity algorithms is set via the iterative hyperbolic PC
expansion (HPCE) approach of [10] where the hyperbolic
factor u = 0.8. The reason this specific value of the hyper-
bolic factor is chosen is because it is the highest possible
value smaller than the limit u = 1. In effect, for u =
0.8, the recovered multi-fidelity PC metamodels will have
the maximum possible accuracy without becoming identical
to the conventional PC metamodel. Next, the statistics of
the transient responses at node N2 is quantified using the
aforementioned metamodels and their results are compared
in Fig. 5(a). From Fig. 5(a), it is clearly observed that even
for the maximum number of terms in the corrector function,
the PC metamodel trained via the single level multi-fidelity
algorithm of [10] displays significant errors in the standard
deviation (SD) results. At this point, it is worth mentioning
that the methodology of [10] and first level of [11] are the
same. This implies that the work of [11] will have worse
errors than [10] because it prunes unimportant dimensions
from the PC expansion. On the other hand, the PCmetamodel
trained using the single level multi-fidelity algorithm of [12]
leads to very accurate results. This difference in accuracy
arises because of the more correct treatment of the imperfect
contact resistances of theMWCNT shells in the hybrid model
as opposed to the ESC model and is clearly quantified in
Table 2. Moreover, this difference in the accuracy is even
more distinct in the PDF estimate of the maximum crosstalk
voltage at node N2 shown in Fig. 5(b). In all these com-
parisons, the hyperbolic PC metamodel of [22] is the most
inaccurate.

At this juncture, it is pointed out that although the PC
metamodel trained by the single level multi-fidelity algo-
rithm of [12] is more accurate, this higher accuracy comes
at the expense of the higher time cost to train the predictor.
Indeed, the time cost to train the predictor using 2(P + 1) =
6120 SPICE hybrid model simulations is 1.03 hours com-
pared to the 9.18 minutes required if the ESC model is used.
In order to mitigate this higher training cost of the predictor,
a PC metamodel of the network trained using the proposed
bilevel multi-fidelity algorithm of Section III is also devel-
oped. In the proposed algorithm, the optimal number of terms
in the first-level and second-level corrector metamodels of
(10) and (13) respectively are determined using the iterative
HPCE approach of [10] and these values correspond to the
hyperbolic factors of (u1, u2) = (0.8, 0.5). The response
statistics and PDF of the maximum crosstalk at node N2
obtained using this method is shown in Fig. 6. It is observed
from Fig. 6 that the results obtained from the proposed
bilevel multi-fidelity algorithm shows good agreement with
that from the conventional PC metamodel.

Table 2 compares the computational expense incurred in
training the aforementioned PC metamodels where the time
cost of a single ESC simulation (C1) = 0.09 seconds, that
of a single hybrid simulation (C2) = 0.61 seconds, and that
of a single MCC simulation (C3) = 8.29 seconds. Moreover,

VOLUME 10, 2022 109933



S. Guglani et al.: Bilevel Multi-Fidelity PC Approach for the UQ of MWCNT Interconnect Networks

FIGURE 7. Statistics of the transient responses of Example 2 computed using the PC metamodel trained by the single level multi-fidelity
algorithm of [10], the proposed bilevel multi-fidelity algorithm, and the conventional PC metamodel. (a) Mean, mean plus three times the SD, and
mean minus three times the SD of the transient response at node N2. (b) Mean, mean plus three times the SD, and mean minus three times the
SD of the transient response at node N5.

FIGURE 8. PDF of the transient responses of Example 2 computed using the PC metamodel trained by the single level multi-fidelity algorithm of [10],
the proposed bilevel multi-fidelity algorithm, and the conventional PC metamodel. (a) PDF of the peak crosstalk at node N2. (b) PDF of the peak
crosstalk at node N5.

TABLE 4. Computational time cost for numerical example 2.

the number of ESC, hybrid, and MCC model simulations
required to train each PC metamodel is also listed in Table 2.

In addition, in Table 2, the computational expense incurred by
the non-multi-fidelity dimension reduction strategy of [18]
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is also included for thoroughness of comparison. From the
results of Table 2, it is observed that the proposed bilevel
multi-fidelity algorithm is able to offer almost 5 times higher
speedup than the single level multi-fidelity algorithm of [12].
Moreover, the proposed bilevel multi-fidelity algorithm also
provides the best possible accuracy among all candidate
methods including [12]. The speedup values of Table 2 are
within the bounds specified in (19) and (20). Remarkably, the
proposed bilevel multi-fidelity algorithm outperforms all the
metamodels listed in Table 2, whether of the multi-fidelity
variety or otherwise.
Example 2 - In this example, a five (Nc = 5) conductor

MWCNT interconnect network as shown in Fig. 1 is consid-
ered. Each conductor has NS = 50 shells. The inner twenty
shells of each conductor are perfectly contacted, the next
ten shells have imperfect contact resistance of 100 k�, the
next ten shells after that have imperfect contact resistance
of 200 k�, and the outer ten shells have imperfect contact
resistance of 500 k�. Conductor 1 and 3 are excited using a
voltage source with a saturated ramp waveform of rise time
Tr = 0.1 ps and amplitude 1 V. Conductors 2, 4, and 5 are
quiet. The responses of interest for this example are the far-
end transient response for node N1-N5 of Fig. 1. There is a
total of N = 20 uncertain parameters in this example as listed
in Table 3.

In order to performUQ for this example, five PCmetamod-
els are adopted – one trained using the proposed bilevel multi-
fidelity algorithm described in Section III, one trained using
the single levelmulti-fidelity algorithm of [10]where the low-
fidelity model is the ESC model, one trained using the single
level multi-fidelity algorithm of [12] where the low-fidelity
model is the hybrid model, the hyperbolic PC metamodel of
[22], and finally, the conventional PCmetamodel trained only
using MCC model simulations. All PC metamodels require
a maximum order of expansion m = 4. The PC metamodels
trained using the single level multi-fidelity algorithms of [10]
and [12] uses optimal hyperbolic factors of u = 0.8 and
u = 0.7 respectively. The PC metamodel trained using the
proposed bilevel multi-fidelity algorithm uses the optimal
hyperbolic factors of (u1, u2) = (0.7, 0.7).
In the first part of this example, the statistics of the tran-

sient responses at nodes N2 and N5 are quantified using the
aforementioned metamodels and their results are compared
in Fig. 7. From Fig. 7, it is observed that the PC metamodel
trained using the single level multi-fidelity algorithm of [10]
is clearly unable to offer good accuracy despite using the
maximum possible value of the hyperbolic factor u = 0.8.
In contrast, the results obtained from the proposed bilevel
multi-fidelity algorithm show good agreement with those
obtained from the conventional PC metamodel despite using
a lower u = 0.7 (i.e., using a smaller number of terms). This
difference in the accuracy of the two metamodels is also
visible in the PDF estimate of the maximum crosstalk voltage
at nodes N2 and N5 as shown in Fig. 8.
In the next stage of this example, the computational time

costs incurred in training the aforementioned PCmetamodels

are listed in Table 4. The time cost of a single ESC simulation
(C1) = 0.27 seconds, that of a single hybrid ESC-MCC
simulation (C2) = 2.61 seconds, and that of a single MCC
simulation (C3) = 25.96 seconds. In Table 4, the computa-
tional expense incurred by the non-multi-fidelity dimension
reduction strategy of [18] is also included for completeness
of comparison. It is observed from Table 4 that the proposed
bilevel multi-fidelity algorithm is able to more than dou-
ble the speedup achieved by the single level multi-fidelity
algorithm of [12]. In fact, not only is the proposed bilevel
algorithm far more numerically efficient but also much more
accurate than all candidate methods of Table 4. The speedup
values of Table 4 are also within the bounds specified in (19)
and (20).

V. CONCLUSION
In this paper, a new bilevelmulti-fidelity algorithm to perform
uncertainty quantification of multi-walled carbon nanotube
interconnect networks subject to variable imperfect contact
resistances is presented. This algorithm leverages a hybrid
model of the MWCNT conductors that is more accurate
than the ESC model and more efficient to simulate than the
rigorous MCC model. Therefore, the results obtained from
the proposed hybrid model is guaranteed to exhibit better
correlation with the true statistical results (i.e., the results
from the MCC model) than what is possible using the ESC
model. In this paper, this improved correlation is intelligently
exploited using a bilevel multi-fidelity algorithm to yield
faster convergence, and consequently, even higher speed up in
training PC metamodels than what is possible using all exist-
ing single level multi-fidelity algorithms. This work focuses
on developing PC metamodels which are linear combina-
tions of smooth polynomials. These metamodels therefore
cannot capture highly nonlinear and discontinuous paramet-
ric uncertainties (e.g., those existing in the geometry of the
nonlinear CMOS driver/loads) and signal integrity quantities
that exhibit a non-smooth functionality with respect to inter-
connect and CMOS driver/load parameters. However, this
opens up the possibility of applying machine learning based
techniques to perform signal integrity analysis of MWCNT
interconnect networks.
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