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ABSTRACT Glioma is the most common type of brain tumor, and it has a high mortality rate. Accurate
tumor segmentation based on magnetic resonance imaging (MRI) is of great significance for the diagnosis
and treatment of brain tumors. Recently, the automatic segmentation of brain tumors based on U-Net has
gained considerable attention. However, brain tumor segmentation is a challenging task due to the structural
variations and inhomogeneous intensity of tumors. Existing brain tumor segmentation studies have shown
that the problems of insufficient down-sampling feature extraction and loss of up-sampling information
arise when using U-Net to segment brain tumors. In this study, we proposed an improved U-Net model,
SEResU-Net, which combines the deep residual network and the Squeeze-and-Excitation Network. The deep
residual network solves the problem of network degradation so that SEResU-Net can extract more feature
information. The Squeeze-and-Excitation Network avoids information loss and enables the network to focus
on the useful feature map, which solves the problem of insufficient segmentation accuracy of small-scale
brain tumors. Furthermore, a fusion loss function combining Dice loss and cross-entropy loss was proposed
to solve the problems of network convergence and data imbalance. The performance of SEResU-Net was
evaluated on the dataset of BraTS2018 and BraTS2019. Experimental results revealed that the mean Dice
similarity coefficients of SEResU-Net were 0.9373, 0.9108, and 0.8758 for the whole tumor, the tumor core,
and the enhanced tumor, which were 7.10%, 11.88%, and 15.33% greater than those of the U-Net benchmark
network, respectively. Our findings demonstrate that the proposed SEResU-Net has a competitive effect in
segmenting multimodal brain tumors.

INDEX TERMS MRI, brain tumor segmentation, deep learning, U-Net, residual network, squeeze-and-
excitation network.

I. INTRODUCTION
Brain tumors, caused by the abnormal growth of brain tissue
cells, seriously affect human health [1], [2]. Gliomas are the
most common brain tumors and can be classified as low-
grade gliomas (LGG) or high-grade gliomas (HGG). Mag-
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netic resonance imaging (MRI), a typical non-invasive imag-
ing technology, offers high resolution, does not generate skull
artifacts, and provides valuable information about anatomical
structure. It has become the primary screening method for
the diagnosis of brain tumors [3]. Accurately identifying
and segmenting brain tumors using multimodal MRI can
provide quantitative information, such as tumor volume and
maximum diameter, which helps surgeons establish optimal
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treatment plans for individual patients. Therefore, accurate
segmentation of brain tumors is a key step in the diagnosis
and treatment of brain tumors [4].

Traditionally, the brain tumor contour is manually delin-
eated by an experienced radiologist, but this process is time-
consuming, involves strong subjectivity, and is likely to result
in segmentation errors [5]. Therefore, research on semiauto-
matic or automatic brain tumor segmentation is valuable for
the quantitative analysis and evaluation of brain tumors and
normal tissues [6].

With the rapid development of deep learning, from CNN
[7] to FCN [8], and then to U-Net [9], ResNet [10], Seg-
Net [11], and DenseNet [12], convolutional neural networks
(CNNs) have been successfully utilized in a variety of com-
puter vision tasks and have received extensive attention from
academia and industry. Due to the strong feature extrac-
tion ability of deep neural networks, they have been rapidly
applied to the field of complex medical image process-
ing and analysis [13], [14]. Brain tumor segmentation by
multi-modalityMRI based on deep learning has also attracted
extensive attention. Among them, U-Net, which has a sym-
metric structure and integrates high-level feature information
and low-level feature information through a jump connection,
offers outstanding segmentation performance and has quickly
become a commonly used benchmark in medical image seg-
mentation [15], [16]. However, during the process of down-
sampling, U-Net constantly reduces the dimension of the
image, which will result in inadequate segmentation accuracy
for small-scale tumors. Meanwhile, when up-sampling and a
simple jump connection are used for feature fusion, spatial
information and location details of the high-level output maps
tend to get lost in the procedures of continuously cascaded
convolutions and non-linearities transformations, which seri-
ously reduces the resolution of the feature map. The resid-
ual network can prevent network degradation, effectively
increase the depth of the network and improve the ability
to extract fine feature. Attention mechanism can highlight
useful feature information, enhance local feature expression,
and suppress redundant information, which can solve the
problem of insufficient segmentation accuracy of small-scale
brain tumors. Adding these two modules on U-Net may solve
the problems during the down-sampling and up-sampling
processes.

Therefore, in this study we proposed the SEResU-Net
model, which combines ResNet50 in the down-sampling pro-
cess and the attention module of the Squeeze-and-Excitation
Network (SENet) [17] in the up-sampling process of U-Net.
Theoretically, SEResU-Net should be superior to U-Net in
segmenting different brain tumor subregions (i.e., edema,
necrosis, and enhancing and non-enhancing tumor cores)
in multimodal MRI. We evaluated the effectiveness of the
model on the BraTS2019 dataset. This study’s contribution
is threefold: (1) an end-to-end SEResU-Net model for mul-
timodal MRI brain tumor segmentation is proposed, which
can not only extract more abundant semantic information
but also pay attention to small-scale brain tumor information

and improve the segmentation accuracy; (2) down-sampling
combined with a ResNet50 depth residual network is used
to extract deeper fine information and eliminate the problem
of vanishing and exploding gradient; up-sampling combined
with SENet channel attention module is used to enhance local
feature information expression, strengthen the segmentation
of fine information, and improve the accuracy; and (3) the
mixed loss function of Dice loss and cross-entropy loss is
used to fully suppress the impact of class imbalance on brain
tumor segmentation.

The rest of this paper is organized as follows: Section II
briefly introduces the related work of brain tumor segmenta-
tion. In section III, the principle of the method proposed in
this paper is introduced in detail. In section IV, the specific
experiments and analyze the results are reported. Finally, the
conclusions are presented in section V.

II. RELATED WORK
In previous studies, to future improve the performance of
U-Net, researchers have conducted the following research on
U-Net, such as by adding dense connection [18], residual
network [19], generative adversarial network (GAN) [20],
variational automatic encoder (VAE) [21], or attention mech-
anism [22], [23], [24], to solve the problems of insufficient
feature extraction in the down-sampling process or neglect of
small-scale tumors and information loss in the up-sampling
process. Increasing the number of network layers is a popular
method for enhancing the performance of the network, but the
deeper the network layer, the more serious the disappearance
gradient. To solve the problem of vanishing gradient, the
residual model was proposed [10]. Yang et al. [19] combined
U-Net and residual network and proposed Deeper ResU-Net
to enhance the feature extraction ability. Furthermore, many
attempts have been made to embed the attention module into
the deep neural network architecture to enhance the local
response and improve the effectiveness of feature extraction
and restoration. Zhang et al. proposed AResUNet [25] by
adding a series of attention units among corresponding down-
sampling and up-sampling processes. Their model adap-
tively rescales features to effectively enhance local responses
of down-sampling residual features, which are utilized for
the feature recovery of the following up-sampling process.
However, the problems with the down-sampling and up-
sampling processes cannot be well solved simultaneously in
these models.

Among the state-of-the-art methods, researchers have pro-
posed different methods to effectively improve the segmenta-
tion performance of brain tumors. SinceU-Net cannot capture
long-distance dependence, Gan et al. [26] proposed a global
attention mechanism to capture long-distance dependencies
and solve the problem that convolution operations can only
extract local information. Aboelenein et al [27] proposed
a hybrid two-track U-Net (HTTU-Net), in which the first
track focuses on the shape and size of the tumor, and the
second track captures contextual information. HTTU-Net
can extract more semantic information and consider more
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information of small-scale brain tumors. Zhou et al. [28]
proposed an efficient encoder-decoder architecture for brain
tumor segmentation, which uses a lightweight neural net-
work ShuffleNetV2 as the encoder to reduce the number of
parameters and obtain a large receptive field. The decoder
introduces residual blocks to avoid degradation problems.
To improve the ability of the neural network to extract and
utilize multiscale image features, Wang et al. [29] proposed
a spatial dilated feature pyramid (DFP) module. Most mod-
els cannot make full use of the global context information,
so Chen et al. [30] presented a two-stage automated brain
lesion segmentation framework by integrating cascaded RF
and dense CRF, which can effectively integrate the local
appearance and global contextual information of multimodal
MRI and iteratively improve the segmentation results. To fur-
ther recover the details of brain tumors and improve the
brain tumor segmentation performance, Huang et al. [31]
proposed a group cross-channel attention residual U-Net that
can make full use of the low-level fine details of tumor
regions.

III. METHOD PRINCIPLE
A. RESIDUAL NETWORK
Through entries including AlexNet’s 8-layer neural network.
[32], VGG’s 19-layer neural network [33], and Googlenet’s
22-layer neural network [34], the ImageNet LSVR competi-
tion showed that the greater the network depth, the stronger
the ability to extract image features. However, if the net-
work depth is continuously increased, once the network depth
reaches a certain degree, the network will exhibit gradient
dispersion and other problems, and the continuous increase
will lead to network degradation and decrease the accuracy
of the model. To solve the problem of network degradation
and speed up training, He et al. proposed the residual net-
work. When the network has reached the saturated accuracy,
an identity shortcut connection, i.e., y = x, is added behind
it so that the error will not increase even if the depth of the
network is increased. As shown in Fig. 1(a), assuming that the
input is x and the expected output is H (x), then an identity
mapping is added through the jump connection to directly
transfer x to the output as the initial result H (x) = F(x)+ x.
Now, what needs to be learned is no longer H (x) but the
difference between H (x) and x, namely, the residual: F(x) =
H (x) − x. Therefore, the subsequent training is focused on
getting the residual result to approach zero and deepening the
network without reducing the accuracy.

To build a deeper network structure, He et al. [10] also
proposed a ‘‘bottleneck’’ structure. They reported that the
‘‘bottleneck’’ building block of ResNet50/101/152 reduced
the amount of calculation by 16.94 times compared with the
building block for ResNet34 (on 56 × 56 feature maps).
The bottleneck structure is shown in Fig. 1(b). When input
channels = 256, the first conv 1 × 1 can reduce the input
dimension to 64, conv 3 × 3 maintains the current channels,
and finally, conv 1 × 1 reverts to the original channels.

FIGURE 1. Diagrams of the residual network (a), and the bottleneck
structure (b).

Thus, using the ‘‘bottleneck’’ structure can greatly reduce the
amount of parameter calculation and raise the training speed.

B. SQUEEZE-AND-EXCITATION NETWORK (SENet)
Learning from the selective cognitive mechanism of human
beings, attention mechanisms can effectively identify and
highlight useful information and suppress redundant infor-
mation. In recent years, they have been extensively applied
in the fields of image classification [35], image detec-
tion and recognition [36], and image segmentation [37].
To enhance the feature extraction and expression of the
network, our experimental method combines the SENet
proposed by Hu et al. [17]. Unlike the spatial attention mech-
anism, to improve spatial coding ability, SENet focuses on
exploring the attention on the channel. SENet can learn the
feature weight through the network loss and obtain the impor-
tant degree of each feature map. According to the importance
degree, a weight value is assigned to each feature channel
so that the neural network can focus on the useful feature
map. SENet effectively deals with the information loss caused
by the different importance of different channels of feature
maps in the process of convolution and pooling. Fig. 2 shows
the principal structure of SENet: input X to obtain a feature
map U after convolution, and squeeze U . The formula is as
follows:

Zc = Fsq(Uc) =
1

W × H

W∑
i=1

H∑
j=1

Uc(i, j). (1)

Next, compress the spatial information of each channel
to a single value of 1 × 1 × C2 and perform exception to
obtain a channel attention vector S of 1×1×C2 after weight
adjustment. The formula is as follows:

S = Fex(Z ,W ) = σ (W2δ(W1Z )), (2)

where δ represents the ReLu activation function, σ represents
a sigmoid function, and W1 and W2 represent two fully con-
nected layers. Finally, S is used to recalibrate U , and feature
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FIGURE 2. Schematic diagram of Squeeze-and-Exception network.

maps with different channel importance are obtained. The
formula is as follows:

X ′ = Fscale(Uc, Sc) = Sc · Uc. (3)

C. BATCH NORMALIZATION
Internal covariate shift often appears during network train-
ing. When the parameters in the underlying network have a
slight change, due to the linear transformation and nonlinear
activation mapping of each layer, these small changes will
be amplified with the increase of the number of layers in the
network. The changed parameters will change the distribution
of input data, and further lead to the need for the upper
network to constantly adapt to these changes, which will
increase the difficulty of model training. Therefore, batch
normalization is added after the convolution layer, which
makes the input data distribution relatively stable and acceler-
ates the model training speed. The sensitivity of the model to
network parameters is simplified and the network learning is
more stable. Batch normalization has a regularization effect
and relieves the problem of gradient disappearance.

D. PIXELSHUFFLE
PixelShuffle [38] is an up-samplingmethod proposed to solve
the super-resolution of the image, which fills pixels with the
information of channel dimension and can effectively enlarge
the reduced feature image. PixelShuffle can solve the problem
of checkerboard artifacts and better segment the boundary of
brain tumors. As shown in Fig. 3, the main function is to
change a low-resolution feature map of H × W into a high-
resolution feature map of rH × rW through the sub-pixel
convolution operation. The principle is as follows:

N × (C × r × r)×W × H→N × C×(r × H )× (r ×W ).

E. SEResU-Net
Considering the advantages of deep residual network and
SENet channel attention module, as well as the complexity
ofmultimodalMRI brain tumor images, the network structure
of our proposed method is shown in Fig. 4. First, the coding
part performs down-sampling combined with the ResNet50
model. Testing reveals a three-layer encoder has a better
effect than a four-layer encoder. Therefore, both up-sampling

and down-sampling are applied four times. Encoder 1 con-
tains 3 bottlenecks, encoder 2 contains 4 bottlenecks, and
encoder 3 contains 6 bottlenecks. SEResU-Net further deep-
ens the network and adds more jump connections than the
original U-Net. Therefore, SEResU-Net has better initial fea-
ture extraction and expression ability, and it can also better
combine the background semantic information of the image
for multi-scale segmentation, which will effectively reduce
the segmentation error during down-sampling of small-scale
brain tumors.

The decoder part adds the attention mechanism of the
SENet channel. Each decoder module consists of a conv
3 × 3 with strides of 1 and an up-sampling layer with
PixelShuffle. The feature map after skip connection feature
fusion is input into the SENet module through the ReLu acti-
vation function to obtain the weighted feature map and finally
achieve the purpose of improving the segmentation accu-
racy. Compared with the U-Net decoding part, the addition
of SENet can enhance the meaningful feature information,
suppress the feature response of irrelevant regions, and reduce
the number of redundant features.

F. COMBINED LOSS FUNCTION
The MRI brain tumor segmentation task exhibits severe class
imbalance. To provide better supervision for model training,
we utilized the mixed loss function combining Dice loss [39]
and cross-entropy loss. The Dice coefficient is a set similarity
measurement function, which is typically used to calculate
the similarity between two samples, and the value range is [0,
1]. The expression is as follows:

S =
2 |X ∩ Y |
|X | + |Y |

. (4)

The Dice loss expression is as follows:

d = 1−
2 |X ∩ Y |
|X | + |Y |

. (5)

Cross-entropy loss [40] is mainly used to determine how
close the actual output is to the expected output, and the dif-
ference is used to update network parameters through reverse

117036 VOLUME 10, 2022



C. Yan et al.: SEResU-Net for Multimodal Brain Tumor Segmentation

FIGURE 3. Implementation flow of PixelShuffle algorithm.

FIGURE 4. Structure diagram of SEResU-Net. SEResU-Net integrates residual modules and Squeeze-and-Excitation Network
(SENet) with a primeval and single U-Net architecture, in which ResNet50 is combined with the down-sampling process to focus
on small-scale tumors and strengthen the segmentation of small information. SENet is added into the up-sampling process to
highlight salient feature information and disambiguate irrelevant and noisy feature responses.

propagation. The expression is as follows:

H (p, q) = −
n∑
i=1

p(xi) log(q(xi)), (6)

where p presents the expected value, and q presents the
predicted value.

The combined loss function takes into account the advan-
tages of bothDice loss and cross-entropy loss, and it canmake
a consideration globally and microscopically. When the fore-
ground and background are unbalanced and the segmentation
content is unbalanced, the network can still learn well.

IV. EXPERIMENT AND RESULT ANALYSIS
A. DATASET AND DATA PREPROCESSING
1) DATASET
The International Association for Medical Image Computing
and Computer Assisted Intervention (MICCAI) has held the

Multimodal Brain Tumor Segmentation Challenge (BraTS)
since 2012, which has greatly promoted the development of
brain tumor segmentation methods based on deep learning.
Since then, the BraTS dataset has become an authoritative
dataset for evaluating MRI brain tumor segmentation meth-
ods. We obtained the data for this study from the BraTS2018
and BraTS2019 public datasets provided by BraTS [4], [41],
[42]. The BraTS2018 dataset contains a training dataset
of 210 HGG cases and 75 LGG cases. The BraTS2019
database adds 49 HGG cases and 1 LGG case to BraTS2018.
Each patient has four MRI modalities (FLAIR, T1, T1ce, and
T2), and the size of each MRI image in the dataset is 240 ×
240 × 155. Brain tumor labels are divided into three classes:
necrotic and non-enhancing tumor core (NET, label1), peritu-
moral edema (ED, label2), and enhanced tumor (ET, label4).
Ground truth (GT) is manual segmentation of brain tumors
by experienced experts. To better evaluate the segmentation
effect, it is necessary to segment whole tumor (WT, NET +
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FIGURE 5. Example of the brain MRI data from a patient in the BraTS2019 dataset. From left to right: FLAIR modality, T1 modality, T1ce modality, T2
modality and the ground truth.

TABLE 1. Tumor segmentation sub-region and label description.

ED+ ET), tumor core (TC, NET+ ET), and enhanced tumor
(ET) (see Table 1). Fig. 5 illuminates a typical case of MRI
brain image and GT.

2) DATA PREPROCESSING
Due to contrast variations, uneven intensity, and noise
effects, MRI brain tumor segmentation is a challenging task.
Although deep learning-based methods are robust to noise,
data processing is still a critical and essential step. First,
data standardization was performed, that is, the image was
normalized by using the average and standard values of the
non-zero region. Then the image size was cropped to 160 ×
160 and enhanced the image contrast and brightness. Finally,
the sections without lesions were removed. We processed the
BraTS2018 dataset (210 HGG cases and 75 LGG cases) to
generate a training set, and we processed the newly added
BraTS2019 dataset (49 HGG cases and 1 LGG case) to
generate a test set.

B. EVALUATION METRICS
To evaluate the experimental results, this study used the same
evaluation metrics as the official BraTS website: Dice sim-
ilarity coefficient (DSC), sensitivity, specificity, and Haus-
dorff distance (HD), which are the four most authoritative
evaluation metrics for brain tumor segmentation. The calcu-
lation formulas of the evaluation metrics are as follows (note:
TP represents the area correctly detected as a positive sam-
ple, FP represents the area incorrectly detected as a positive
sample, and FN represents the area incorrectly detected as a
negative sample):

DSC =
2TP

FP+ 2TP+ FN
. (7)

DSC is used to evaluate the similarity between segmenta-
tion prediction and ground truth.

Sensitivity =
TP

TP+ FN
. (8)

Sensitivity is also called the true positive rate and the
recall rate. It measures the positive voxel part in the real
background, that is, it measures the ability to segment the
region of interest in the segmentation experiment.

Specificity =
TP

TP+ FP
. (9)

Specificity is also called the true negative rate, and it mea-
sures the negative voxel part in the ground truth segmentation,
that is, it measures the ability to correctly judge whether the
pixels in the region of interest are not pixels in the segmenta-
tion experiment.

HD = max[dXY , dYX ] = max{max
x∈X

min
y∈Y

d[x, y],

× max
y∈Y

min
x∈X

d[x, y]}. (10)

HD is a measure to describe the degree of similarity
between two sets of points, and it represents the maximum
mismatch degree between the predicted result and the real
result. The smaller the HD, the higher the segmentation
accuracy.

C. IMPLEMENTATION DETAILS
Experiments were conducted on the PyTorch deep learn-
ing framework. Software environment: Win10 and Python
3.6 and CUDA10.0, CUDNN7.6.5. Hardware environment:
CPU I5-7 generation (4 cores), 16G memory, GPU 12GB
NVIDIA GTX1080Ti. In the training stage, the training set
was randomly divided, with 75% as the training set and 25%
as the verification set. Learn rate was 0.03, momentum was
0.9, batch_ size was 13, epoch was 10000, weight_ decay was
0.0001, early stopping was 10, and training was performed
using the Adam optimizer [43].

To verify the effectiveness of the proposed model,
we trained the original U-Net model, SEU-Net model
(SE module added only in the up-sampling part of
U-Net), ResNet50U-Net model (ResNet50 added only in the
down-sampling part of U-Net), and SEResU-Net model. All
of the models were trained by using the same datasets, the
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FIGURE 6. Loss curves of training set and validation set for U-Net. The red curve represents the loss change of
the training set during model training, and the green curve represents the loss change of the validation set
during the training.

FIGURE 7. Loss curves of training set and validation set for SEU-Net. The red curve represents the loss change
of the training set during model training, and the green curve represents the loss change of the validation set
during the training.

TABLE 2. Evaluation results of four models on the BraTS2019 dataset.

same hardware environment, and their optimal parameter
settings.

The change curves of the loss functions during the
model training process for the training set and the ver-
ification set versus the number of iterations are shown

in Fig. 6 through Fig. 9. As the number of iterations
increases, the loss value of the network gradually decreases.
When the number of training iterations of SEResU-Net
reaches about 220, the loss starts to converge and
stabilize.
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FIGURE 8. Loss curves of training set and validation set for ResNet50U-Net. The red curve represents the loss
change of the training set during model training, and the green curve represents the loss change of the
validation set during the training.

FIGURE 9. Loss curves of training set and validation set for SEResU-Net. The red curve represents the loss
change of the training set during model training, and the green curve represents the loss change of the
validation set during training.

D. EXPERIMENT RESULTS
To systematically and scientifically verify the effectiveness of
the proposed method, the four network models were tested in
this study, including U-Net, SEU-Net, ResNet50U-Net, and
SEResU-Net.

The test set were composed of the newly added 49 HGG
cases and 1 LGG case in BraTS2019. Table 2 displays the seg-
mentation results of the four models. ThemeanDSC scores in
the WT, TC, and ET subregions of brain tumors were 0.8752,
0.8205, and 0.7594 for U-Net, 0.9012, 0.8780, and 0.8172 for

SEU-Net, 0.9249, 0.9122, and 0.8594 for ResNet50U-Net,
and 0.9373, 0.9180, and 0.8758 for SEResU-Net. Compared
with U-Net, the mean DSC scores of the proposed SEResU-
Net increased by 7.10%, 11.88%, and 15.33% for the WT,
TC, and ET segmentation (Fig. 10). Furthermore, the pro-
posed model also exhibited higher sensitivity and specificity,
and lower HD.

Next, we visualized the brain tumor segmentation results
of the four models in a typical case (Fig. 11). To better
observe the spatial location of brain tumors, the segmentation
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FIGURE 10. The percentages of performance improvement of SEResU-Net, ResNet50U-Net, and SEU-Net in
DSC, sensitivity, Specificity, and HD evaluation criteria compared to the U-Net baseline network.

FIGURE 11. Example of segmentation results of four models in the BraTS2019 dataset. From left to right: ground truth, SEResU-Net, ResU-Net, SEU-Net,
and U-Net segmentation results. Each row represents a different MRI slice. Each color represents a tumor class: red—necrosis and non-enhancing,
green—edema, and yellow—enhancing tumor.

results were overlaid on a T2 image of this case (Fig. 12).
As seen in Fig. 11 and Fig. 12, our proposed model achieved
better segmentation performance than the other three
models.

E. COMPARISON WITH OTHER STATE-OF-THE-ART
METHODS
To better validate the effectiveness and robustness of the
proposed method, we compared the segmentation results
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FIGURE 12. Example of segmentation results of four models overlaid on T2 image in the BraTS2019 dataset. From left to right: ground truth, SEResU-Net,
ResU-Net, SEU-Net, and U-Net segmentation results. Each row represents a different MRI slice. Each color represents a tumor class: red—necrosis and
non-enhancing, green—edema, and yellow—enhancing tumor.

TABLE 3. Comparison of our proposed model with the state-of-the-art model on the BraTS2018 dataset.

achieved by the proposed model with the state-of-the-art
methods as mentioned in the related work section on the
benchmark BraTS2018 dataset (Table 3). As shown in
Table 3, the proposed method offers better performance
(higher DSC scores and sensitivity, and lower HD) than other
methods and a relatively high specificity.

V. CONCLUSION AND FUTURE WORK
This study proposed a new neural network model, SEResU-
Net, which integrates residual modules and SENet with
U-Net architecture to realize the automatic segmentation
of ET, WT, and TC subregions of brain tumors. The deep
residual network is beneficial for extracting deep-seated
information in the down-sampling process. The addition of
SENet channel attention mechanism highlights significant
feature information and eliminates the ambiguity of irrele-
vant and noisy feature responses. The proposed model was
extensively evaluated using the benchmark BraTS2018 and

BraTS2019 dataset. The experimental results demonstrated
that SEResU-Net outperformed the state-of-the-art models,
and can improve segmentation accuracy.

In the present study, SEResU-Net is a 2D network. When
processing 3D information from MRI data, slicing process-
ing will inevitably lose some context information and local
details. Therefore, in the future, a 3D network architecture
for SEResU-Net can be considered to better utilize 3D infor-
mation of MRI data to improve the segmentation accuracy.
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