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ABSTRACT In this paper we propose an accurate and privacy-preserving scheme that enables a law
enforcement agency to locate persons of interest using the camera surveillance systems of public places.
Comparing to the existing schemes that measure the Euclidean distance to locate persons using their
embedding vectors storing facial features, we use a more accurate approach by training a machine learning
model. Moreover, to avoid leaking sensitive information by sharing the images of the public places’ visitors
to train the model, we use a federated learning technique to compute the model in a privacy-preserving way.
The model is designed in such a way that makes executing it over encrypted data efficient. Specifically, the
model is executed by three parties as follows. Each public place computes an embedding vector for each
visitor’s image and inputs it to a neural network and encrypts the output using a modified inner product
encryption scheme and sends the ciphertext to a cloud server. The law enforcement agency does the same
steps on the images of persons of interest. Finally, the server uses these ciphertexts to evaluate the last layer
of the model by computing the inner product of the two vectors over encrypted data. The cryptosystem
enables the server to compute the inner product of two vectors using their ciphertexts without being able to
learn the vectors. We have modified an encryption cryptosystem that is designed for a single public place and
a single law enforcement agency to make it more efficient in our application that has multiple public places.
To evaluate our scheme, we have conducted extensive experiments and the results confirm that our model is
accurate in locating persons of interest with low communication and computation overhead. A formal proof
and analysis are used to demonstrate the ability of our scheme to preserve privacy.

INDEX TERMS Privacy-preservation, security, person localization, inner product over encrypted data,
surveillance systems.

I. INTRODUCTION
Person localization is important for several applications, such
as locating persons of interest by a law enforcement agency.
Face recognition is the most popular technology for per-
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son identification because it is non-invasive and does not
need the cooperation of the persons comparing to other
identification technology such as iris and fingerprint [1].
Recently, deep-learning-based face recognition approaches,
such as [2], [3], [4], [5], [6], [7], [8], [9], [10], have been used.
In these approaches, machine learning models are trained on
a massive amount of data, which allows them to learn the
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characteristics of expression, illumination, and angle. These
approaches first localize the area of the face in the input image
and then determine the locations of the landmarks in the face
to produce an embedding vector which represents the face’s
landmark points of the brows, mouth, eyes, jawline, and nose.
Finally, for person identification, the distances between an
embedding vector and a database with embedding vectors
of known persons are measured (e.g., using the Euclidean
distance) and two vectors are deemed for the same person
if the distance is below a pre-defined threshold [11], [12],
[13]. However, this simple approach does not give accurate
results especially when the images are taken by different
cameras. In this paper, we conduct experiments to evaluate
the accuracy of using the Euclidean distance to match the
embedding vectors of images taken by different cameras. Our
results indicate that this approach is not accurate and it is hard
to find one threshold that can give good results for the images
of all sources.

Moreover, the closed-circuit television (CCTV) surveil-
lance systems are currently used in almost all public places.
Using face recognition technology with the CCTV systems
of public places to localize persons of interest is a low-cost
and effective approach to fight crime by locating wanted or
suspected individuals. However, the use of face recognition
technology with the CCTV systems raises serious privacy
concerns [14], [15] because the system can be misused to
monitor people’s daily activities by collecting information on
the locations visited by them. The recent privacy breaches in
several systems made the public worried about their privacy.
Examples of these breaches include exposing the personal
information (such as face photos, addresses, age, etc.) of
millions of people collected by major Chinese surveillance
service providers [16], [17], and charging Facebook $550
million for collecting facial data without authorization [18].
Due to privacy concerns, some legislators proposed bills to
ensure that the existing systems preserve the privacy of the
people [19], [20], [21].

In this paper, we investigate an efficient and accurate
person localization scheme with privacy preservation using
federated learning and the camera surveillance systems of
public places. With the proposed scheme, a law enforcement
entity can locate persons of interest using the surveillance
cameras of the public places without revealing the images
of the visitors or the persons of interest to preserve privacy.
Unlike most of the existing techniques that measure the dis-
tance between two embedding vectors and compare the result
to a predefined threshold to determine whether the vectors
are for the same person, we use a more accurate technique by
training a machine learning model using federated learning
where the inputs of the model include two embedding vectors
and output is either zero or one to indicate whether the two
vectors are for the same person or not. The idea is that, instead
of using a simple threshold to determine whether two vectors
are for the same person, a machine learning model can make
accurate decisions because it can learn the characteristics of
the embedding vectors of the same persons.

To train the model, we have created a dataset where each
sample has two embedding vectors and a label which is one
in case that the two vectors are for the same person and
zero otherwise. Then, to preserve privacy, we investigate an
efficient cryptosystem to enable a cloud server to evaluate the
model over encrypted data and report the visited locations
to the law enforcement agency without being able to access
the images or the embedding vectors of the visitors and the
persons of interest. The architecture of the machine learning
model is determined in such a way that makes executing it
over encrypted data efficient. Specifically, the model is exe-
cuted by three parties as follows. Each public place computes
an embedding vector for each visitor’s image and inputs it to
a neural network (a part of the model) and encrypts the output
using a modified inner product encryption scheme and sends
the ciphertext to a cloud server. The law enforcement agency
does the same steps on the images of persons of interest.
Finally, the server computes the inner product of the two
vectors over encrypted data and executes the last layer in the
model to determine whether the two vectors are for the same
person without learning the images or the embedding vectors
of the persons of interest or the visitors of the public places.

We have modified the cryptosystem in [22] that computes
the inner product of two vectors using their ciphertexts. This
cryptosystem is designed to run by two parties (a single public
place and a single law enforcement agency in our application)
using a pairwise key, so we have modified it to be more
efficient in our application that has multiple public places,
where each public place and the law enforcement agency
uses only one key for encryption. Six datasets are used to
evaluate our proposal. The results demonstrate that our model
exhibits more localization accuracy comparing to the use of
the Euclidean distance in case of several camera surveillance
systems with different image quality. Our evaluations also
demonstrate that the overhead of our scheme in terms of
computation/communication overhead is acceptable. A for-
mal proof and analysis are used to demonstrate the ability of
our scheme to preserve privacy.

To the best of our knowledge, this is the first work that
uses a combination of a deep learning model, federated learn-
ing, and efficient cryptosystem to evaluate the model using
encrypted data to create an accurate and privacy-preserving
person localization for multiple camera surveillance systems.
Specifically, this paper makes the following contributions:

• Most of the existing techniques depend on a sim-
ple approach that measures the distance between two
embedding vectors and compares the result to a thresh-
old value to determine whether the vectors are for the
same person. In this paper, we use a more accurate
approach that is suitable for several camera surveillance
systems using a pre-trained machine learning model.

• We evaluate our model over encrypted data to preserve
the privacy of the visitors of the public places and the
persons of interest. To do that efficiently, the model is
executed by there parties where layers of the model are
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executed using plaintext data at the public places and law
enforcement agency and only the last layer is executed
over encrypted data by the server.We have alsomodified
the inner product cryptosystem in [22] to make it more
efficient in our application.

• We use federated learning to train our model on the data
of different camera surveillance systems with varying
image quality without revealing the data to preserve
privacy.

• To evaluate the privacy preservation capability of our
scheme, we use a formal proof and analysis, and to eval-
uate the accuracy and the communication/computation
overhead of our scheme, we have conducted extensive
experiments.

We organize the rest of this paper as follows. The related
works are discussed in Section II. The system models includ-
ing the network and threat models and the important require-
ments that should be achieved by our scheme are discussed in
Section III. Section IV explains our scheme. The results of the
evaluations are discussed in Section VI. Finally, Section VII
draws the conclusions.

II. RELATED WORK
Content-based image retrieval and face-recognition based
authentication schemes are the closest research works to this
paper. In this section, we first explain these schemes, and then
discuss the research gap and our motivations.

A. CONTENT-BASED IMAGE RETRIEVAL
In image retrieval application, large image datasets are out-
sourced to a cloud server, and an image is sent to the server
to search for similar images and return them. To ensure
efficiency, especially, in case of large image datasets, instead
of sending an image, the features of the query image is
sent to the server which matches them to the features of the
stored images, and then the server returns the images with
close features. Image retrieval approaches are needed inmany
applications. Examples to these applications include medical
diagnosis [23] and searching for similar clothes online [24].

Since revealing the images or their features to the cloud
server may raise privacy concerns in some applications, var-
ious privacy-preserving image retrieval schemes have been
proposed [11], [12], [25], [26]. In these schemes, the cloud
server stores encrypted images’ features, and it receives a
query containing the features of an image of interest. Then,
it searches the stored images to find the closest image to the
query, i.e., the image that has close features to the queried
image, without being able to learn neither the stored images
nor the queried one or even their features.

In [11], a privacy-preserving hierarchical image retrieval
system, called CASHEIRS, is proposed. CASHEIRS aims
to address two main issues. The first issue is the low image
retrieval accuracy and long time needed to search all stored
images. The second issue is the privacy concerns raised
when the images have sensitive information. For efficient

search, CASHEIRS develops a hierarchical index tree which
allows search over subsets of categories rather than whole
set by clustering the images stored by the server. To improve
the image retrieval accuracy, CASHEIRS uses Convolutional
Neural Network (CNN) to extract the features of the images.
To preserve privacy, the features of the images are encrypted
while the server can measure the similarity score of the
features, without decrypting the ciphertexts or learning the
features.

The proposed scheme in [25] considers two privacy threats,
including a cloud server that aims to infer sensitive infor-
mation about the images, and a dishonest query user who
illegally distributes the images he retrieved from the server.
To protect against the first threat, the feature vectors are
encrypted by the kNN searchable encryption algorithm. For
the second threat, a watermark-based protocol is develop to
deter distributing images. The cloud server uses this protocol
to embed a unique watermark into each encrypted image
retrieved by the user. The watermark can be extracted and the
user is traced when an illegal copy of the image is found.

In [12], a large-scale content-based image retrieval scheme
is proposed. Two different layers are used to preserve privacy.
The first layer uses hash values for queries to hide the features
because hash functions are one way. The server returns the
hash values of all possible candidates and the user selects
the best match for his query. In the second layer, the user
deletes some bits in a hash value to make it computationally
difficult for the server to learn the interest of the user. The
paper also introduces the concept of tunable privacy, where
the privacy protection level can be adjusted by dividing a
feature vector into subsets and indexing every subset with a
hash value which is associated with an inverted index list.

The existing content-base image retrieval schemes retrieve
images based on the similarity of their visual features, but
to improve the retrieval accuracy, interactive mechanism,
namely relevance feedback, is integrated with these schemes
to retrieve images based on both visual features and semantic
concepts. The research work in [26] proposes a privacy-
preserving relevance-feedback image retrieval scheme. The
scheme has three main stages including private query, private
feedback and local retrieval. The initial query with a privacy
controllable feature vector is conducted in the private query
stage, and the private feedback introduces confusing classes
that adhere to the K-anonymity in the creation of the feedback
image set to preserve privacy. Finally, in the local retrieval,
images are ranked at the user side.

B. FACE RECOGNITION-BASED AUTHENTICATION
The use of face recognition in biometrics-based authenti-
cation is an interesting approach because it is non-invasive
and does not need the cooperation of users for tak-
ing their face images compared to other biometrics-based
approaches that use iris and fingerprint. In the literature, sev-
eral privacy-preserving face recognition-based authentication
schemes have been proposed [13], [27], [28], [29].
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In [27], an efficient and privacy-preserving face representa-
tion scheme that can be used for authentication by IoT devices
is proposed. The scheme can satisfy the resource limits of the
IoT devices. Bloom filter is used to ensure the privacy of the
scheme. The idea is that the face data is stored in a Bloom
filter which can be analyzed to do classification operations.
To presreve privacy, no raw face data are stored by distrusted
servers which store only Bloom filter representations.

In [28], a privacy-preserving identity authentication
scheme based on the face recognition technology is proposed.
CNN model is used to extract the facial features from face
images. To preserve privacy, the feature vectors are encrypted
using a nearest neighbor approach and to match images and
identify persons, the cosine similarity is computed over the
encrypted vectors. Moreover, for high authentication effi-
ciency, the paper adopts edge computing where some oper-
ations are transferred from the cloud to the edge nodes.

In [29], an efficient privacy-preserving face identification
system is proposed. For indexing and retrieval of faces, a hash
generation scheme based on a Product Quantisation is devel-
oped for computing hash codes from faces and creating hash
look-up table. Fully homomorphic encryption (FHE) is used
to encrypt the face templates to preserve privacy. For authen-
tication, face hashes are used for fast retrieval, i.e., returning
a short list of candidates. Two main approaches are used to
ensure efficiency. First, the use of look-up table does not
need a one-to-many search, but the search results are obtained
directly. In the second approach, FHE-based comparisons are
executed for a small fraction of facial references.

In [13], an efficient privacy-preserving person re-
identification scheme is proposed. To extract the persons’
features, convolutional neural network (CNN) and kernels
based supervised hashing (KSH) are used. To calculate the
similarity of the images’ features by the cloud server, a secret
sharing based Hamming distance computation protocol is
developed. Moreover, to allow users to validate the correct-
ness of the matching results, a dual Merkle hash trees based
verification is developed.

C. RESEARCH GAP AND MOTIVATIONS
Most of the existing papers in the literature measure the dis-
tance between two embedding vectors and use a threshold to
decide whether the vectors are for the same image. However,
this approach may not give good results when the data is large
and obtained from different camera sources with different
image quality and resolutions. Our experiments confirm this
and the results are consistent with other works such as [30],
[31], [32] which confirm that Euclidean distance metric is
not preferable for high dimensional data mining applications.
To address this issue, we propose a more accurate approach
for multiple cameras surveillance system using a pre-trained
machine learning model. The model is designed in such a
way that makes its evaluation over encrypted data to preserve
privacy efficient. We also train the model using federated
learning to avoid sharing the images of the visitors and the
persons of interest, and thus preserve privacy.

FIGURE 1. The network model considered in this paper.

Moreover, most of the existing encryption schemes that
are used in the literature to match the images’ vectors over
encrypted data to preserve privacy are designed for one data
source (i.e., single pubic place), and thus, it is inefficient to
use them in multi-data-source system (i.e., multiple pubic
places). To address this issue, we have modified a cryptosys-
tem [22] that does inner product operations over encrypted
data to be suitable for the case of multi-data-source system
where vectors can be encrypted by multiple public places
and each place uses a different key and the other vector is
encrypted by a single entity (law enforcement agency).

To the best of our knowledge, this is the first work that
uses a combination of a deep learning model, federated learn-
ing, and efficient cryptosystem to evaluate the model using
encrypted data to create an accurate and privacy-preserving
person localization for multi-camera surveillance system.

III. SYSTEM MODELS AND DESIGN GOALS
In this section, we first discuss the network and threat models
considered in this paper, and then, we discuss the design goals
that should be realized in our scheme.

A. NETWORK MODEL
Figure 1 depicts the network model considered in this paper.
It can be seen that the model has three main parties including
an offline key distribution system (KDC), a law enforcement
agency, public places, and a cloud server. The role of each
party and the communication between them are explained as
follows.

• Offline Key Distribution Center (KDC): The KDC
distributes the secret keys needed to execute our scheme
to the different parties in the system. This process is

VOLUME 10, 2022 109897



M. Nabil et al.: Accurate and Privacy-Preserving Person Localization

offline in the sense that once the KDC distributes the
keys, it is not involved in the execution of the scheme.

• Law Enforcement Agency: This agency is the entity
that has images for persons of interest and it needs
to know the locations visited by these persons without
knowing the images or the embedding vectors of the
public places’ visitors. For each image, it uses machine
learning models to compute the embedding vector of
the facial features of the person of interest, and then
inputs the vector to a neural network (a part of the
machine learning model we propose in this paper) and
encrypts the output of the network with an inner prod-
uct encryption cryptosystem and sends the ciphertext
(called trapdoor) to the cloud server. The details of the
neural networks and the cryptosystem are discussed in
section IV

• Public Places: Examples for public places include gro-
cery stores, banks, gymnastics centers, gas stations,
etc. Surveillance cameras are installed at the public
places. The cameras take pictures of the visitors and use
machine learning models to compute embedding vectors
containing the visitors’ facial features. Then, each public
place passes each visitor’s vector to a neural network
(a part of the machine learning model we propose in
this paper) and encrypts the output of the network with
an inner product encryption cryptosystem and sends
the ciphertext (called index) to the cloud server. The
details of the neural networks and the cryptosystem are
discussed in section IV.

• Cloud Server: The cloud server is an independent entity
that is managed and operated by a third party. Using the
indices and trapdoors sent by the public places and the
law enforcement agency, the server computes the output
of our model to learn the locations visited by the persons
of interest and communicate this information to the law
enforcement agency without knowing the images or the
feature vectors of the visitors or the persons of interest.

B. THREAT MODEL
The attackers can be external eavesdroppers or internal enti-
ties such as the cloud server, the law enforcement agency,
and the public places. The attackers can eavesdrop on all
communications in the system. The paper focuses on the
honest-but-curious threat model, where attackers do not want
to disrupt the system, but they want to infer sensitive informa-
tion including the images and the embedding vectors of the
visitors and the persons of interest.

C. DESIGN GOALS
We aim to achieve the following important requirements in
our scheme.

1) Privacy Preservation. Our scheme should enable the
law enforcement agency to locate persons of interest while
preserving the privacy of the public places’ visitors, i.e.,
attackers should not be able to identify the visitors by reveal-
ing their images or feature vectors.

2) Accurate Localization. The accuracy of the person
localization should be high under the setting of different pub-
lic places’ camera surveillance systems. To do that, instead of
using a simple approach that measures the distance between
two embedding vectors and uses a threshold to determine
whether the two vectors are for the same person, we train a
machine learning model that can better learn the character-
istics of the embedding vectors of the same persons to make
accurate decisions.

3) Scalability and Efficiency. The system is scalable in
the sense that it has many public places and visitors, so our
scheme should be efficient in the communication and com-
putation overhead and the server should able to compute the
output of the model using the indices of the visitors and
the trapdoors of the persons of interest fast. To achieve this
requirement, we modify an inner product encryption cryp-
tosystem that requires a pairwise shared key between each
public place and the law enforcement agency (single-single
setting) so that the law enforcement agency uses only one key
and computes only one trapdoor for each person of interest
while this trapdoor can be matched to the indices computed
with different keys by the public places.

IV. PROPOSED SYSTEM
In a typical face recognition system, the facial features within
an image are encoded as a set of real-numbers called an
embedding vector. The embedding vector of a person of inter-
est is compared against a set of candidate embedding vectors,
and a hit is reported if the distance between two vectors (e.g.,
using the Euclidean distance) is below a pre-define threshold
value. This paper, instead, uses a deep-learning model to
decide whether two input vectors are for the same person.
In the case of multiple camera surveillance systems, we will
demonstrate that this approach is more accurate compared to
conventional techniques. Three main stages are executed by
our scheme, called generation of embedding vectors, training
of a similarity check model and encryption and localization.

In the first stage, law enforcement agency and public
places encode the facial features of the image of each per-
son of interest and visitor into an embedding vectors and
then encrypt these vectors. A machine learning model is
used to locate the face in the input image, and then another
model is used to estimate the locations of the face landmarks.
A face detection model, in specific, can be used to locate
image areas containing faces. Because of its superior results
in similar tasks, we use a pre-trained Convolutional Neural
Network (CNN) slidingwindowmodel, called Dlib [33]. Dlib
takes into account cases where a person’s face might change
depending on his/her posture and emotion. After the face
detection, a face landmark localization is used to locate the
important features of the face. A set of 68 landmark points on
the human face are used to define these features. The points
include the mouth, right and left eyes, right and left eyebrows,
jawline, and nose. An embedding vector is generated using
the 68 landmark points to better quantify face features. The
landmark points’ coordinates are used to generate a 128-d

109898 VOLUME 10, 2022



M. Nabil et al.: Accurate and Privacy-Preserving Person Localization

real-valued number embedding vector that encodes the input
face. The details of this stage will be discussed further in
subsection IV-A.

In the second stage, a federated deep-learning model is
computed to decide whether two embedding vectors are for
the same person instead of depending on threshold-based
distance metrics. To train the model, a dataset that resembles
the images from various public places and a law enforcement
agency is created. Each row in the dataset contains two
embedding vectors and a label, where one vector is from the
dataset of the public places and the other vector is from the
dataset of the law enforcement agency. The label indicates
whether the two vectors are for different persons (i.e., belong
to the negative class) or for the same person (i.e., belong to
the positive class). The model is designed in such a way that
makes it efficient to be evaluated by the cloud server using
encrypted vectors. To do that, each of the two input vectors
goes through a distinct set of learning layers. This part of the
model is executed by the law enforcement agency and public
places. Then, the output vectors of these layers are multiplied
by the cloud server (over encrypted data) to compute the
classification of the model, i.e., whether the two vectors are
for the same person. This stage is demonstrated in detail in
subsection IV-B.

Lastly, in the third stage, we investigate an efficient cryp-
tosystem to enable the cloud server to determine the locations
visited by a person of interest by executing the last layer
in the model over the encrypted data without inferring the
vectors or the images of the persons of interest and the
visitors of the public places. This stage will be explained
in subsection IV-C.

A. GENERATION OF EMBEDDING VECTORS
This subsection demonstrates the generation of the embed-
ding vectors from the images of persons’ faces. To generate
embedding vectors, three stages are required including face
detection, face landmark localization, and embedding vector
computation. The details of these stages are as follow.

Face Detection: This step locates the areas of human
faces in an image [34]. Viola-Jones’ face detection system
is developed for low-cost cameras [35]. The system is an
object detection framework that integrates concepts such as
Haar-like features, integral images, and cascade classifiers to
provide fast and accurate object detection system. Recently,
more accurate and low-cost solutions were developed. Deep
learning approaches such as [33], [36], [37], [38], [39] are
regarded to have the best detection performance. As a result,
we use Dlib [33], the pre-trained CNN sliding windowmodel,
because of its high performance. The input of the model is
a window taken from the image of interest and the output
indicates whether there is a face in the window or not. The
model is trained on the iBUG 300-Faces-In-the-Wild land-
mark dataset [40], and it has three down-sampling layers, four
convolution layers, and a feed-forward layer.

Landmarks Localization: The features of a person’s
face may change depending on his or her posture, lighting

TABLE 1. Facial landmarks and their positions.

conditions, and facial expression. Consequently, even images
of the same person can result in low similarity score under dif-
ferent conditions. Thus, face landmark localization is adopted
to extract a variation-independent set of features that can
boost the similarity score under different conditions. A set
of 68 landmark points that define mouth, right and left eye-
brows, nose, right and left eyes, and jawline are used as
variation-independent features. Table 1 gives the number of
the landmark points and its belonging to the facial regions.
Our approach relies on the Dlib [33] face detection and the
face alignment technique proposed in [41]. TheDlib is trained
on a dataset of facial landmarks of different persons where
each landmark is defined with (x, y) coordinates.

The intensity of the pixels at each landmark is used to
train a set of t tree-based regression predictor functions
{r0, r1, . . . , rt−1}. For an input image, each predictor func-
tion estimates the position of the facial landmarks’ position.
The gradient boosting tree algorithm [40] is used to train
the predictor functions on the iBUG 300-Faces-In-the-Wild
landmark dataset.

Computation of Embedding Vector: This stage converts
the detected landmark positions into an embedding vector that
expresses the facial features. A deep learning model is used
to generate the embedding vector where the input is three
images called triplets. Two images of the triplets are for the
same person but under different conditions. These two images
are referred as the anchor, and the positive. The third image
is called the negative input where a different random face is
used.

The loss function used in the training has two compo-
nents. The first component aims to reduce the difference
between the vectors generated for the positive and the anchor
inputs. The second component aims to increase the difference
between the vectors generated for the negative and anchor
input. The triplet loss function is defined as follows:

Lθ (Pos,An,Neg) = max(‖fθ (Pos)− fθ (An)‖2

−‖fθ (Neg)− fθ (An)‖2 + γ, 0)

where Pos, Neg, and An define the positive, negative, and
anchor inputs, respectively. The value γ is a small margin
between negative and positive inputs. It should be noted that
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FIGURE 2. The embedding vector is constructed by a deep learning model
that takes three inputs called triplets. The triplets provide positive and
anchor inputs for a person’s face, as well as negative input for a second
person face. The model generates a 128d vector for each positive face by
employing a triplet loss function.

θ defines the optimal parameters of the deep neural network.
The cost over a batch of M training triplets can be used to
describe the training optimization as follows:

J = min
θ

M∑
j=1

Lθ (Posj,Anj,Negj)

The architecture of a network relies on the implementation
of the ResNet34 network as discussed in [42]. However, less
number of layers and filters is used to speed up the training.
A dataset collected from a variety of sources is used for
training [33]. The dataset size is approximately three million
images. The performance of this network outperforms the
existing image recognition approaches in accuracy [33].

B. TRAINING OF A SIMILARITY CHECK MODEL
Using a standard distance metrics (e.g., Euclidean distance)
to measure the similarity between embedding vectors is not
often a preferable choice because of the low performance in
many practical applications [30]. This is because they need
to compute a threshold for the maximum distance allowed
between two embedding vectors to be for the same person.
In addition, standard distance metrics are excessively reliant
on the image source from which the vectors are computed.

As discussed in our network model, various kinds of
surveillance cameras may be deployed in public spaces, with
cameras of varying models, resolutions, and images quality.
Thus, an optimal distance threshold for a dataset generated
by one camera might not be the optimal threshold for another
camera. To demonstrate this claim, we have used six pub-
licly available datasets to conduct experiments that identify
the optimal threshold of each dataset. The datasets include
IRIS Dataset [43], Head Pose Image Dataset (HPID) [44],
the Extended Yale Face Dataset B (EYaleB) [45], FEI Face

FIGURE 3. The accuracy versus the threshold value.

Database [46], Georgia Tech Face Dataset (GTech) [44], and
Yale Face Dataset [47]. More details about the datasets will
be discussed in section VI.

Figure 3 gives the relation between the accuracy in terms of
the percentage of properly identified images and the threshold
value for the six datasets. It can be seen that FEI’s optimal
threshold is around 0.1 which means that if the distance
between two vectors is less 0.1, they are deemed for the
same person. When the threshold value is below 0.1, the
accuracy starts to degrade as the Euclidean distance between
the two vectors of the same person exceeds this low threshold,
and thus, they are deemed for different persons. A degrada-
tion in the accuracy also occurs when the threshold value
is set greater than 0.1. This is because a person’s image is
mistakenly deemed to belong to other persons because their
Euclidean distances are less than this large threshold value.
The same conclusions can be drawn from the results of the
other datasets, but with different optimal threshold values.
Consequently, It is not possible to find a threshold value that
provides optimal performance for all datasets. To address
this issue, we train a deep learning model that can accurately
determine the embedding vectors of the same person instead
of depending on threshold-based distance metrics. We design
the model in such a way that requires an efficient cryptosys-
tem to evaluate it using encrypted data to preserve privacy,
as will be explained later.

The design of our deep learning model is shown in Fig-
ure 4. The model is executed by three parties as follows. The
public place evaluates the first set of layers of the model
using the embedding vector of each visitor, while the law
enforcement agency evaluates the second set of layers using
the embedding vector of each person of interest. The outputs
of these two sets of layers are encrypted using the cryptosys-
tem that will be discussed in subsection IV-C, and then the
ciphertexts are sent to the cloud server. Finally, the server
evaluates the last layer in the model by computing the inner
product of the two vectors using their ciphertexts and executes
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FIGURE 4. An overview for the deep learning model proposed in this paper.

Algorithm 1: FederatedAveraging. The Training
Batch Size Is B. The Learning Rate Is η. [48]

1 Server()
2 Randomly initialize weights w0;
3 for each communication round t = 1, 2, . . . do
4 P← Select random set of participants;
5 for each participant pk ∈ P do
6 wkt+1← ParticipantUpdate(p,wt );

7 wt+1←
∑

k
|pk |
|P| w

k
t+1;

8 return;
9 ParticipantUpdate(p, w);
10 for each training epoch e = 1, 2, . . . ,E do
11 for each batch b of size B in client p data do
12 w←= w− η∇`(w; b)

13 return w to the server;

a sigmoid activation function over the output to classify the
vectors either for the same person or not. The key reason for
this design is that most of the computations can be done in
the plaintext domain and it needs an efficient cryptosystem
to enable the server to execute the last layer and learn the
visited locations by the persons of interest without being
able to obtain the images or the embedding vectors of the
persons of interest or the public places’ visitors. The details
of the cryptosystem and the secure inner product evaluation
are discussed in subsection IV-C.

To train the model, federate learning algorithm denoted as
FederatedAveraging [48] is employed. The idea is that
each public place and the law enforcement agency creates
a local dataset where each row in the dataset contains two
embedding vectors and a label which indicates whether the

two vectors are for the same person (i.e., belong to the positive
class) or for different person (i.e., belong to negative class).
Once the local datasets are created, the public places and
the law enforcement agency participate in the training of the
model by first training local models on their local datasets
and then sharing their models’ updates with the cloud server
as illustrated in Algorithm 1.

For every communication round t , the global model wt
computed by the server is downloaded by each participant.
Then, each participant p computes the weights updates on
their local dataset pk using the current version of the global
model and sends the ephemeral and focused updates to the
server. The cloud server combines the updates of the different
participants by averaging them to create a more accurate
global model wt+1. Weighted averaging is used by the server
to compute the aggregated model weights. Note that, the
initial global model w0 is either selected randomly or by
pre-trained model on a public dataset. Federated learning
has been proved to be more secure with using approaches
like privacy-preserving data aggregation [49] and differential
privacy [50].

There are two main advantages that can be achieved
by using federated learning. First, it can preserve privacy
because the participants do not need to reveal their sensitive
data. It can also achieve efficiency because the participants
share only the updates of the local models whose size is much
smaller than the size of the dataset.

C. ENCRYPTION AND LOCALIZATION
This subsection explains

V. PRIVACY AND SECURITY ANALYSIS
Our scheme can achieve the following prepositions.
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Preposition 1: The cloud server can learn the locations
visited by a person-of interest without being able to identify
the visitors or the persons of interest.

Proof: We use the following notations to prove this
preposition.

History.We denote the group of encrypted vectors resulted
from the evaluations of the neural networks by the public
places on the embedding vectors of the visitors’ images as
a set of indices IP = {I1, I2 . . . , Ik} which correspond to the
vectorsW = {w1, . . . ,wk}. In additions, we denote the group
of encrypted vectors resulted from the evaluations of the
law enforcement agency’s neural networks on the embedding
vectors of the person-of-interest images as trapdoors TLEA =
{T1,T2, . . . ,Tj}, which correspond to V = {v1, . . . , vj}. The
history is denoted as Hst = {IP, TLEA}.
Trace. It represents the information the cloud server can

deduce by analyzing the history Hst , denoted as Tra(Hst),
where Tra(Hst) is defined over all the trapdoors, i.e.,
Tra(Hst) = {Tra(T1), . . . ,Tra(Tl)}. The search pattern is an
example for traces.

View. It represents the observation of the cloud server,
which is represented by the encrypted history and its trace,
denoted by View(IP,TLEA,Tra(Hst)).
A simulator SIM wants to compute a false view View′

that is indistinguishable from the true view View using the
following steps.

1) SIM executes the oracle SystemSetup() to get a secret
key SK′.

2) SIM computes a set of visitors’ embedding vectors
W ′ = {w′1, . . . ,w

′
k} such that |wi| = |w′i|, 1 ≤ i ≤ k ,

where W ′ is a random copy ofW .
3) SIM computes a set of embedding vectors for random

images V ′ = {v′1, . . . , v
′
j} such that |vi| = |v′i|, 1 ≤ i ≤

j. Note that V ′ is a random copy of V .
4) SIM computes an index I ′P and trapdoor T ′LEA using

SK′, V ′, and T ′LEA.

Based on the above construction, our scheme can achieve
adaptive distinguishability if for any SIM with a history
Hst ′ = {I ′i , IT

′
} and trace Tra(Hst ′) similar to Tra(Hst) such

that an adversary cannot distinguish between the two views
View(IP,TLEA,Tra(Hst)) and View′(I ′P,T

′
LEA,Tra(Hst

′)).
Preposition 2: The embedding vectors of outsourced visi-

tors’ indices and trapdoors of persons of interest cannot be
obtained by adversaries.

Proof: In our scheme, an inner product encryption cryp-
tosystem is used to encrypt the resulted vector after inputting
the embedding vector of a visitor or a person of interest
to a neural network. Without knowledge of the secret keys,
decrypting the indices and trapdoors is impossible. Because
each pubic place uses a unique key, the indices of a public
place cannot be decrypted with the secret keys of the other
places. We conclude that our scheme is secure in the known
ciphertext model, where attackers cannot obtain the secret
keys or the plaintext vectors using the trapdoors and indices.

Preposition 3: The indices of same persons are not linkable
under the known-ciphertext model.

Proof: Our cryptosystem uses random numbers in the
encryption process to ensure that the ciphertexts of the same
embedding vectors look different and are unlinkable. Specif-
ically, for each visitor’s embedding vector, the public place
generates a random number by picking up a random element
α ← Zq and uses it to compute the index, and the law
enforcement agency uses β ← Zq in the computation of
the trapdoor, so when an index or trapdoor is computed
for the same image’s embedding vector, it looks different.
This feature is important to prevent linking the indices of
the same person who visits different public places. Tracing
the locations of a person for a long time may lead to the
identification of the person from the visited locations.
Preposition 4: Each public place cannot decrypt the

ciphertexts of other places because a shared key is not used,
i.e., each public place has a unique secret key.

Proof: If a public place can decrypt the ciphertexts of
other places, it can track the locations visited by the visitors
because the plaintext embedding vectors of the same person
are close, and then it can identify the persons from the visited
locations. In our scheme, the indices computed by one public
place cannot be decrypted by other places because all public
places do not use the same secret key, but each place uses
a unique key. In spite of using different keys by the public
places to compute the indices, the cloud server is still able
to evaluate the machine learning model by computing the
inner product of the indices and the trapdoors computed by
the law enforcement agency. Moreover, a public place cannot
use its secret key to compute the secret keys of the other
public places because the key has

(
N1
−1B′,N2

−1B′′
)
and

B′ + B′′ = B−1 and thus the public place cannot know the
master key N2

−1, N1
−1, and B−1. It cannot also know the

randommatrices B′ and B′′ that are used to compute the other
public places’ keys.
Preposition 5: The cloud server should not be able tomatch

a large number of indices and trapdoors to avoid leaking side
information

Proof: The cloud server should be able to match indices
and trapdoors to find the locations visited by persons of inter-
est without being able to identify the persons. However, if the
cloud server has a large amount of data collected over a long
period of time, it may use the data to infer statistical and side
information such as collecting a large number of locations
visited by an anonymous person of interest. To prevent the
cloud server from collecting side information, the keys of the
involved parties should change frequently, e.g., every month,
to make sure that the ciphertexts sent after updating the keys
cannot be matched to the old ciphertexts because they are
encrypted with different keys.

VI. EXPERIMENTAL RESULTS
In this section, the performance of the proposed scheme is
evaluated using the following metrics: (1) computation and
communication overhead, and (2) localization accuracy.

109902 VOLUME 10, 2022



M. Nabil et al.: Accurate and Privacy-Preserving Person Localization

TABLE 2. The computation times of the main operations used by our
scheme.

A. EVALUATIONS OF THE CRYPTOSYSTEM
Our scheme is implemented using Python programming lan-
guage and a machine with Intel 8 Cores i7-8665U CPU
1.90GHz processor and 16 GB RAM. This subsection dis-
cusses the communication and computation overhead of our
scheme.

1) COMPUTATION OVERHEAD
The computation overhead is measured by the times needed
to encrypt a vector by the law enforcement agency and public
places, evaluate the model using encrypted data by the cloud,
and compute the keys by the KDC. Table 2 gives the computa-
tion times of the main operations used by our scheme, where
TB, TE , TM and TA stands for the times required for computing
one bilinear pairing, exponentiation, multiplication, and addi-
tion, respectively. These operations are used in our scheme to
compute keys, encrypt vectors, and measure the similarity of
two vectors using their trapdoors and indices.

The last layer of the neural network that is encrypted by the
public places and the law enforcement agency is composed
of 16 group elements. To compute the key of the law enforce-
ment agency, 4096 multiplication operations are needed for a
vector size of 16 elements and 3840 addition operations, i.e.,
4096 * TM + 3840 * TA, which takes around 20.48 + 8.1 =
28.58ms using themeasurements given in Table 2. The key of
each public place requires 4096multiplication operations and
4096 addition operations, i.e., 4096 * TM + 4096 TA, which
takes 20.48 + 8.6 = 29.08 ms. Also, as shown in Figure 5,
our scheme can reduce the number of keys that need to be
computed in the system from 2n in the cryptosystem [22] to
n+ 1 in our scheme, where n is the number of public places.
This is because the cryptosystem [22] is designed for sin-
gle public place and single law enforcement agency setting,
where the law enforcement agency needs to share a unique
key with each public place, while our scheme is designed for
multiple public places and single law enforcement agency
setting, where each public place and the law enforcement
agency use only one key.

To encrypt the vector of a person-of-interest by the law
enforcement agency or the vector of a visitor by each public
place, 33 exponentiation operations, 480 addition operations,
and 544 multiplication operations are needed, i.e., 33 * TE +
480 * TA+ 544 * TM , which takes 39.47+1+2.72 = 43.2ms.
To compute the inner product of two vectors using indices
and trapdoors, the cloud server needs 33 bilinear pairing and
16 multiplication operations, i.e., 33 * TB + 16 TM , which
takes 221.04+0.08 = 221.12ms. Also, as shown in Figure 6,

our scheme can reduce the number of encryption operations
that are needed for each vector of a person-of-interest from n
in the cryptosystem [22] to only one. This is because in [22],
the law enforcement agency needs to encrypt each vector n
times with the n keys shared with the public places, while in
our scheme, the law enforcement agency has only one key
that is used to do only one encryption operation.
Based on the results given above, we can conclude that the

computation times are in the order of msecs. This proves that
our scheme is efficient, practical, and scalable. The scalability
is important in our application because the public places may
be visited by a large number of persons, and thus they need
to do many encryptions and the cloud server needs to do a lot
of localization operations.

2) COMMUNICATION OVERHEAD
The communication overhead is measured by the size of the
messages sent to the cloud server and also the number of
keys that are distributed to the system’s parties. Since the last
layer of the neural network at the public places and the law
enforcement agency is composed of 16 elements, as given in
Section VI-B2, using asymmetric pairing curve (BN256) of
size 256 bits where the size of a group element is 32 Bytes, the
size of each encrypted vector (index or trapdoor) is 33× 32
Bytes (1.056 KB). Also, as shown in Figure 6, our scheme
reduces the number of encryptions that are needed for each
vector of a person-of-interest from n in the cryptosystem [22]
to only one. For the key size, it has two matrices with 16 ×
16 elements in Zq. The key size is 2 × 16 × 16 × 16 =
8 KB, where the size of each element in Zq is 16 Bytes.
Figure 5 indicates that our scheme can reduce the number
of keys that need to be distributed in the system from 2n in
the cryptosystem [22] to n+ 1 in our scheme, where n is the
number of public places.

The results given above indicate that the communication
overhead of our scheme is acceptable and the existing com-
munication protocols can transmit the encrypted vectors in
short time. We can conclude that our scheme is efficient and
practical.

B. LOCALIZATION ACCURACY
1) METRICS AND DATASETS
a: PERFORMANCE METRICS:
Four metrics are used to evaluate the accuracy of the local-
ization, including the false acceptance rate (FA), localization
rate (LR), and highest difference (HD), and the accuracy. FA
measures the percentage of visitors that are incorrectly clas-
sified as persons of interest. LR calculates the percentage of
persons of interest that are correctly localized. HD calculates
the difference between LR and FA. The accuracy calculates
the ratio of number of correct predictions to the total number
of predictions. These metrics are defined as follows.

LR =
TP

TP+ FP
, FA =

FP
TN + FP

, HD = LR− FA
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FIGURE 5. The total number of keys in the system with using the
cryptosystem in [22] (single public place and single law enforcement
agency setting) and our scheme (multiple public places and single law
enforcement agency setting).

FIGURE 6. The total number of encryptions needed for each image of a
person-of-interest using the cryptosystem in [22] (single public place and
single law enforcement agency setting) and our scheme (multiple public
places and single law enforcement agency setting).

Accuracy =
TP+ TN

TP+ TN + FP+ FN

where TP, FP, and TN stand for true positive, false positive,
and true negative.

b: DATASETS USED AND PREPROCESSING
The datasets used in our experiments to evaluate our machine
learning model include IRIS Dataset [43], Head Pose Image
Dataset (HPID) [44], Georgia Tech Face Dataset [44], Yale
Face Dataset [47], FEI Face Database [46], and the Extended
Yale Face Dataset B (EYaleB) [45]. Each dataset is processed
and assumed to belong to one public place. The subjects in
each dataset were divided into two groups. The first group
in dataset i is selected randomly and denoted as X iPOI , and it
represents the images of the persons of interest. The second
set of images, denoted as XPP, represents the images of the
visitors of the public places. The two groups have an equal
number of images.

FIGURE 7. The communication rounds required by the federated learning
versus training loss and accuracy.

2) RESULTS AND DISCUSSION
Python Dlib [33] face_recognition library is used to gener-
ate the embedding vectors of each dataset. Each embedding
vector is normalized to the unit norm using l2-normalization,
allowing the Euclidean distance to be determined from the dot
product of any two embedding vectors. As shown in Fig. 4,
the input of our model is two embedding vectors and a feed
forward architecture is used. We use 5-fold cross validation
to find the optimal values for the model’s hyper-parameters,
such as the type of activation functions and the number of
layers, and the top performing model is selected. We found
that the top performing model has eight hidden layers with
the following dimensions [128, 128, 64, 64, 32, 32, 16, 16],
hyperbolic tangent activation function, and Adam optimizer.

Our privacy-preserving federated learningmodel (i.e., with
encrypted vectors, denoted as MD+ Privacy) is compared to
two baselines. The first baseline is a federated learning model
without privacy (denoted as MD). In the federated learning,
each dataset is partitioned into training and testing with ratio
5:1. The deep architecture of all the models is set to be the
same. The second baseline uses the Euclidean distance metric
for localization instead of a machine learning model, where
each dataset is used to compute the threshold needed to locate
the persons-of-interest. The results are given in Table 3.

The results indicate that our scheme performs better than
the Euclidean distance approach because instead of using a
threshold to decide the similarity of an index and a trapdoor,
we use a machine learning which can learn the features of the
embedding vectors of the same persons and thus make accu-
rate decisions. Note that, as discussed earlier, it may be diffi-
cult to find a good threshold that can give good performance
in case of images taken from different sources. Moreover,
the results indicate that the privacy-preserving model (MD+
Privacy) performs almost similar to the plaintext model (MD)
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TABLE 3. The performance results of MD, MD+Privacy, and the Euclidean distance approach.

FIGURE 8. The receiver operating characteristic curves of MD,
MD+Privacy, and the average result of the Euclidean distance.

in terms of overall performance. This indicates that executing
the model over encrypted data using our cryptosystem does
not degrade the accuracy of the model.

Figure 7 shows the number of communication rounds
needed by the federated averaging algorithm to converge. The
figure shows that our model starts to achieve over 90% of
training accuracy after the first 20 communication rounds,
and it takes around 80 rounds for the loss and the validation
accuracy to converge. The given results indicate the efficient
training of the developed neural network architecture using
federated learning. Figure 8 shows the Receiver Operating
Characteristics (ROC) and the Area Under Curve (AUC)
for MD, MD+Privacy, and Euclidean distance approach.
The black line indicates a random performance classi-
fier. The given results of both MD and MD+Privacy indicate
that the performance of our scheme with privacy preservation
is comparable to that of the scheme without privacy preser-
vation with almost no performance loss. In addition, both
MD and MD+Privacy outperform the Euclidean distance
approach.

VII. CONCLUSION
This paper proposes an accurate person localization scheme
that enables a law enforcement agency to locate persons
of interest with privacy preservation. Our scheme trains a
machine learning model to decide whether two embedding
vectors storing facial features are for the same persons. Using

six publicly available datasets, our experimental results indi-
cate that our approach is more accurate than the existing
approaches that measure the Euclidean distance because an
optimal decision threshold of a dataset might not be the
optimal threshold for the other datasets. Ourmachine learning
model is designed in such a way that makes executing it
over encrypted data efficient. Most of the model’s layers are
executed using plaintext data by the public places and the law
enforcement agency and only one layer is executed by the
server over encrypted data using an inner product encryption
scheme to preserve privacy. We have also modified an inner
product encryption cryptosystem that is designed for a single
public place to make it more efficient in our application that
has multiple public places. Our experiments indicate that this
modification can significantly reduce the number of keys in
the system and the number of ciphertexts that are computed
by the law enforcement agency. To prevent leaking sensitive
information by sharing the images of the visitors to train the
model, we use a federated learning training approach. Our
experiments indicate that our scheme has high localization
accuracy and the use of federated learning and executing a
part of the model over encrypted data has a slight impact
on the accuracy. The results of a formal proof and extensive
analysis confirm that our scheme can preserve the privacy of
the public places visitors.
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