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ABSTRACT Emergency vehicles (EVs) play an essential role in emergency services. One of the most
intuitive indicators of the emergency service process is the response time of EVs. This survey reviews the
latest traffic control strategies to reduce response time during EV’s traveling. Firstly, it classifies traffic
control strategies into route optimization, signal preemption, lane reservation, and mixed traffic control
strategies. Then, a systematic literature review of traffic control strategies with different algorithms is
presented. Besides, this survey classifies the articles by objective metrics. In addition to response time,
several other objective metrics are summarized. Finally, this survey reviews the limitations of existing
emergency traffic control strategies and critically analyzes them. Based on this, it indicates the core problems
and proposes potential research areas to be explored.

INDEX TERMS Emergency vehicles, traffic control, route optimization, traffic signal preemption, lane

reservation.

I. INTRODUCTION
Emergency vehicles (EVs), including ambulances, fire
trucks, police cars, and engineering rescue vehicles, play a
critical role in timely emergency service delivery. According
to the World Health Organization, more than 5 million people
die yearly due to delayed trauma treatment. The mortality
rate can be reduced by about 10% if emergency resuscitation
is timely [1]. The response time of an EV represents the
time required to travel from the starting point to the loca-
tion of an emergency event. Current strategies to improve
emergency response speed and reduce emergency response
times fall into facility enhancement and traffic control. The
former refers to increasing emergency service resources, such
as purchasing more ambulances or building wider roads while
the latter improves the utilization and efficiency of existing
facilities, thereby reducing emergency response time. This
survey focuses on traffic control strategies.

In the traffic control strategy, the response time of EVs
depends on several static parameters, such as the rescue
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distance and the number of intersection signals on the route,
and dynamic parameters, such as traffic flow and the average
speed. Such parameters make it complex and challenging
to reduce EV response time [2]. With the rise of the inter-
net of vehicles (IOV), connected autonomous vehicles, and
big data technology in recent years, several new trends have
emerged in the traffic control field [3], [4], [5], [6]. The traffic
emergency response involved in EVs has become a hot topic
nowadays. The emergency response problem differs from the
vehicle routing problem (VRP). VRP aims to achieve the
comprehensive benefit of all participants by optimizing vehi-
cle task allocation and route [7], [8]. In contrast, the critical
objective of the emergency response problem is to reduce EV
response time by optimizing EV routing, preempting signals,
and removing regular vehicles.

There are some literature reviews of emergency traffic con-
trol strategies. Aringhieri et al. review the planning issues of
the urgent care process and its relationship to related manage-
ment and organizational problems from the patient’s perspec-
tive [9]. Reuter-Oppermann et al. comprehensively describe
the management issues that arise in the emergency medical
services process, focusing on the dependencies between the
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planning issues and the level of planning [10]. However,
both reviews do not provide a systematic classification and
summary of the problems of EVs in road traffic control.
Weibull et al. study risk factors that cause accidents dur-
ing EV traveling and focus on investigating traffic control
strategies for vehicles in cooperative intelligent transporta-
tion systems to avoid traffic accidents of EVs [11]. However,
in this study, most traffic strategies are aimed at preventing
accidents with EVs, and investigating methods to shorten
EVs’ response time is inadequate. Lee et al. aim to ana-
lyze EV response time in fatal traffic accidents and explore
the factors that influence them [12]. This review shows that
EV response time are related to accidents, road, environ-
ment, and socioeconomic factors. However, this review is
insufficient to investigate emergency traffic control strate-
gies. Some researchers have deeply discussed this problem
and proposed solutions from different perspectives. Huma-
gain et al. classify strategies for reducing EV response time
into route optimization and preemption and provide a sys-
tematic review of both strategies [2]. Kamble and Kounte
investigate different preemption strategies and analyze the
gaps that have not been effectively addressed in the existing
literature [13]. The survey classifies EV preemption mod-
els into three main categories: routing-based, scheduling-
based, and miscellaneous strategies. In contrast to existing
work, this study reviews the state-of-the-art solutions for traf-
fic control, as shown in Fig. 1. We classify traffic control
strategies into three categories according to the controlled
objects: route optimization, signal preemption, and lane
reservation.

1) Route optimization refers to the EVs dynamically select-
ing the best route during their driving to obtain the shortest
response time.

2) Signal preemption, also known as “‘traffic signal prior-
ity,” gives priority to special vehicles such as EVs by adjust-
ing traffic lights.

3) Lane reservation usually refers to the advance evacua-
tion of traffic along an emergency route. Specifically, regular
vehicles are guided away while preventing regular vehicles
from entering the way of the EV.

The primary research question of our literature review is:
“What traffic control strategies are available in academia
and industry that can effectively reduce the response time
of EVs?” To make the literature as diverse and informa-
tive as possible, we search in the academic search engine
Google Scholar, the leading international academic publish-
ers IEEE, Science Direct, Springer, Hindawi, and the profes-
sional social network ResearchGate. We search for existing
works using keywords such as route optimization, signal
preemption, lane reservation, road pre-clearance, emergency
vehicles, and traffic control. The purpose of the literature
review is to collect traffic control strategies for EVs during
their traveling, which can effectively reduce their response
time. Therefore, we have selected 81 articles for a detailed
review. Among them, 27 papers propose route optimiza-
tion for EVs, 35 papers report techniques for signal pre-
emption, and 12 papers propose lane reservation and road
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pre-clearance for regular vehicles. The remaining seven arti-
cles present hybrid traffic control strategies.

Fig. 2 carefully classifies the emergency traffic control
strategies regarding the objects to be controlled and objec-
tive metrics, respectively. For the former, the traffic control
strategies are divided into route optimization for EVs, traf-
fic signal preemption, lane reservation for regular vehicles,
and mixed traffic control strategies. Subsequently, we further
divide the traffic control strategies according to the type of
algorithms. Regarding objective metrics, the core of all traffic
control strategies is the fast response to emergency services
and timely arrival at the incident scene. However, it is not
enough to focus only on the response time of EVs. Therefore,
we further study the objective metrics of the research arti-
cles, such as the cost of EVs, the negative impact on regular
vehicles, and the robustness of emergency routes. The main
contributions of the survey are summarized as follows:

1) The main objective of this survey is to review cur-
rently proposed solutions to reduce EV response time.
It examines 81 research articles, of which about 84% are
from 2017 to 2022, to ensure the real-time performance of
this study.

2) Traffic control strategies can be broadly classified into
route optimization, signal preemption, lane reservation, and
mixed traffic control strategies. Subsequently, we further
divide their traffic control strategies according to the type of
algorithms and comprehensively review the advantages and
limitations of these strategies.

3) Additionally, objective metrics referred to by the studies
are classified for comparison and analysis.

4) Finally, the pending problems and challenges in reduc-
ing EV response time are discussed, which provides neces-
sary guidance for future research in the field of emergency
traffic control.

We examine the latest route optimization and preemp-
tion techniques in Sections II and III. Section IV presents
the existing strategies for lane reservation, and Section V
reviews a combination of these strategies. Section VI
presents the objective metrics of the above research articles.
In Section VII we discuss the current challenges and future
research directions. The conclusion is shown in Section VIII.

Il. ROUTE OPTIMIZATION
Traditional route planning, such as the Dijkstra’s algo-
rithm [14] and A* algorithm [15], finds the optimal route
according to the weighted road network. However, the
dynamic nature of traffic often makes a previously planned
route no longer optimal. Therefore, it is crucial to dynami-
cally change the route according to the real-time traffic condi-
tions in the vehicle’s driving. The route optimization strategy
can dynamically realize the selection of the optimal route
under the preconditions and constraints. Therefore, route
optimization is also regarded as dynamic route planning.
The algorithms for route optimization are divided into the
following categories: 1) Traditional optimization algorithms,
such as greedy algorithms, local search algorithms, and
neighborhood search techniques; 2) Intelligent optimization
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FIGURE 1. Strategies for reducing EV response time.

radit
(| Int
Route optimization (27) |{
Traffic signal Tradit
ion (35)

Machi

g-based algorithms (12)

Raules-based methods (6)
Lane reservation (12)
jecti ing algorithms (6)
ute tion @)
- ane
U Hybrid (7) {Romenp(lm on + Lan n (0)

n (4)
Routc optimization + traffic signal preemption + Lane reservation (0)

Emergency traffic
control strategies
(" Response time
Response time + Cost of EVs
Objective | ) Response tme + Non-EVS ncgative impacts
metrics Response time + Road occupancy rate

Response time + Robustness of emergency routes

U Others

FIGURE 2. Structure of this review.

algorithms including the ant colony algorithm, genetic algo-
rithm, particle swarm optimization algorithm; 3) Machine-
learning-based algorithms such as reinforcement learning,
deep convolutional neural networks, and Markov decision-
making models; 4) Other specific algorithms such as the
branch and bound algorithm, dynamic programming method,
and approximation algorithm. Table 1 compares the route
optimization strategies used to reduce EV response time,
including the type of algorithms, the technique or specific
algorithms, the stochastic characteristic, and the evaluation.

A. TRADITIONAL OPTIMIZATION ALGORITHMS

Traditional optimization algorithms are generally designed
for structured problems with more explicit constraints.
In terms of route selection, Rosita et al. propose a multi-
objective decision-making method combining the vector nor-
malization technique and the Dijkstra’s algorithm [16]. The
optimal route is selected by assigning different decision pri-
orities to various parameters, such as cost, distance, con-
gestion, and risk. Yang et al. map a road network with
spatio-temporal characteristics into a dynamic road network
graph that changes over time and ranks all grids according to
the real-time capacity of the road network [17]. Based on this,
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a search algorithm based on contextual grids is proposed. This
algorithm is used to plan the vehicle route by considering the
road network’s changing factors.

Vehicle resource consumption also needs to be considered.
Guo et al. improve the traditional Dijkstra’s algorithm for
route planning and establish an economical and environmen-
tally friendly vehicle route planning method. This method
uses the dynamic traffic network to reduce fuel consump-
tion and emissions during vehicle running [18]. Liu et al.
construct a three-dimensional velocity-time network model
for describing the state information of vehicles in space and
time based on real-time road traffic flow, traffic lights, and
vehicle statuses, such as the driving speed and direction [19].
The model uses a novel energy-efficient dynamic route plan-
ning method for connecting self-driving vehicles to minimize
routes’ time and energy consumption by mixed-integer linear
programming.

When a large-scale disaster occurs, in addition to plan-
ning emergency rescue routes, planning emergency evacua-
tion routes is also an essential part of the emergency response
process, and both rescue and evacuation routes’ planning
need to be performed simultaneously. Chen et al. propose
a new bi-directional route planning method for emergency
rescue and evacuation, considering intelligent obstacle avoid-
ance [20]. A dynamic grid approach refreshes the road net-
work environment in real time. The Dijkstra’s algorithm is
used to calculate the bidirectional route model of linear pro-
gramming, and the optimal evacuation and rescue route is
estimated while avoiding potential conflicts. Liu et al. study
a two-way traffic organization problem of rescue and evacu-
ation under different rescue entrance opening schemes [21].
A two-stage optimization method for evacuation rescue traf-
fic organization is proposed by using mixed-integer linear
programming models.

A single objective model is often not feasible. As a
result, Zhao et al. construct a mixed integer linear program-
ming model for constrained multi-objective route optimiza-
tion based on rescue response time, road reliability, and
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TABLE 1. Comparisons of EV route optimization strategy.

Types References Solution Methods Randomness Practicality
. Dijkstra’s algorithm, Vector normalized technique, s . . .
Rosita et al. [16] Multiple-criteria decision-making Deterministic Simulation environment
Dynamic grid PageRank, Situational grid heuristic
Yang et al. [17] search algorithm, Pruning strategy based on time Stochastic Real-world test data
characteristics, Road network acceleration algorithm
Guo et al. [18] Improved Dijkstra’s algorithm Deterministic Real-world test data
Traditi 1 imizati . Velocity-space-time three-dimensional network, . . . .
raditional optimization Livetal. [19] X . . Deterministic Simulation environment
algori thms Dynamic route planning algorithm
Dynamic grid method, Two-way route planning of
Chen et al. [20] emergency rescue and emergency evacuation, Deterministic Simulation environment
Intelligent obstacle avoidance model
. Two-staged optimization method for evacuation and . . . .
Liuetal. [21] rescue traffic organization Stochastic Simulation environment
Zhao et al. [22][’2¥ang and Llang Depth-first search, Nondominated sorting Deterministic Simulation environment
The K-paths algorithm, Shuffled frog leaping .
Zhao et al. [24] algorithm Stochastic Real-world test data
The K-paths algorithm, Exponential bird swarm . . . .
Jose and Grace [25] optimization algotithm Stochastic Simulation environment
Mouhcine et al. [26] Ant colony optimization algorithm Stochastic Theoretical analysis
Wu et al. [27] Particle swarm algorithm, Ant colony algorithm Stochastic Real-world test data
Intelligent qptlmlzatlon Rout et al. [28] Fuzzy logic, Open-source routing machine Stochastic Simulation environment
algorithms
Constantinescu and Patrascu [29] Genetic algorithm, Distributed architecture Stochastic Simulation environment
Co-evolutionary path optimization, Ripple spreading . . . .
Huetal. [31] algorithm Stochastic Simulation environment
W t al. [32] Timing co-evolutionary path optimization, Improved Stochastic Simulation environment
enetal. ripple spreading algorithm
Co-evolutionary optimization algorithm, Ripple . . . .
Wen et al. [33] spreading algorithm, Dijkstra’s algorithm Stochastic Simulation environment
Liu et al. [34] A* algorithm, Reinforcement learning Stochastic Simulation environment
Koh et al. [35] Deep reinforcement learning Stochastic Simulation environment
Markov decision process, Prioritized experience . . . .
Yan et al. [36] replay deep Q-network Stochastic Simulation environment
. Long-short-term memory neural network, Value o §
Machine-learning-based Lietal.[37] iteration network, Markov decision process Stochastic Real-world test data
algorithms A hybrid cuckoo search algorithm, BP neural network . . . .
g Yang et al. [38] model, Edge computing Stochastic Simulation environment
Lietal. [39] Optimized Regularization Stochastic Real-world test data
. Social clustering method, Game evolution, Social .
Lin et al. [40] vehicle route selection Stochastic Real-world test data
: Distributed deep learning, Long-short-term memory e . . .
Lin et al. [41] neural network, Vehicle routing decision Stochastic Simulation environment
) Andelmin and Bartolini [42] K-path cuts, Cut-and-column generation algorithm Deterministic Simulation environment
Other algorithms
Elalouf [43] Exact pseudo-polynomial algorithm Stochastic Simulation environment

intersection safety indicators [22]. They use a multi-objective
optimization algorithm. The algorithm relies on depth search
and non-dominated sorting to obtain the optimal set of solu-
tions for the optimal rescue route. It selects the optimal rescue
route from the perspective of multiple optimization objec-
tives. According to the transportation cost and transporta-
tion risk of hazardous materials, Wang and Liang propose a
new algorithm by combining the depth-first algorithm with
fast non-dominated sorting [23]. This algorithm obtains the
Pareto-undominated solution set between two random points
in the road network through the mixed integer linear program-
ming model, which can be used by decision-makers to choose
traffic routes according to their preferences.
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B. INTELLIGENT OPTIMIZATION ALGORITHMS

Traditional optimization algorithms fail to solve route
optimization accurately within a limited time. Therefore,
intelligent optimization algorithms have emerged, seeking a
balance between the solving time and accuracy. Zhao et al.
propose a two-stage shortest route algorithm consisting of a
K -paths algorithm and a shuffle frog-jumping algorithm [24].
The K shortest paths for EVs are calculated by predicting the
road travel time. The optimal route is obtained with the goal
of the shortest travel time and minor traffic congestion. For
the same problem, Jose and Grace incorporate the concept
of exponentially weighted moving average into a bird swarm
algorithm and propose a hybrid exponential bird swarm
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optimization algorithm [25]. The algorithm selects the opti-
mal path for EVs from the K shortest paths.

For the EV route planning, Mouhcine et al. propose a novel
distributed system based on an ant colony optimization algo-
rithm to help EVs obtain the optimal route [26]. The proposed
method generates dynamic EV routes based on speed limits,
traffic congestion, and road conditions to compute alternative
routes to guide the vehicles. To cope with the impact of tem-
porary road blockage on traffic flow and to better adjust EVs’
dynamic routes, Wu et al. propose a dynamic route planning
method for congested traffic based on an improved ant colony
algorithm [27]. The algorithm combines particle swarm and
ant colony algorithms to make it more suitable for dynamic
route planning on congested roads by quantifying attributes
such as urban road length, lanes, and incoming and outgoing
traffic flow. Rout et al. propose a fuzzy logic-based decision
support system for estimating congestion at a specific loca-
tion on the road network and assisting an open-source routing
machine server to generate the shortest and congestion-aware
route [28]. Constantinescu and Patrascu find a route for
EVs based on a genetic algorithm that minimizes road occu-
pancy and dynamically adjusts the optimal route during the
journey [29].

EVs’ dynamic route planning problem is usually con-
strained by time efficiency, resource requirement, and road
network reliability. Based on the phenomenon of natural rip-
ple propagation, Hu et al. propose a novel ripple propagation
algorithm (RSA) for route optimization [30]. Hu et al. pro-
pose a co-evolutionary route optimization method for vehicle
route optimization in a dynamic routing environment [31].
Wen et al. propose a time-series co-evolutionary route opti-
mization algorithm [32]. This algorithm has strong robust-
ness without loss of efficiency. In addition, considering the
dynamic nature of urban roads, an improved RSA is used for
emergency rescue route planning. Subsequently, Wen et al.
further investigate dynamic vehicle route planning and pro-
pose a co-evolutionary algorithm to solve the route planning
problem for emergency rescue [33], where the optimal route
is calculated using the Dijkstra’s algorithm and RSA. The
optimal route is periodically optimized as the dynamic traffic
environment changes.

C. MACHINE-LEARNING-BASED ALGORITHMS

Machine learning continuously improves performance by
acquiring new knowledge or skills and reorganizing exist-
ing knowledge structures. Since the A* algorithm does not
apply to dynamic networks, Liu et al. design a hybrid algo-
rithm based on the reinforcement learning strategy of prior
knowledge and the A* algorithm of search optimization to
help intelligent driving vehicles choose the optimal path in
traffic networks in emergencies [34]. This algorithm can help
intelligent vehicles dynamically plan optimal traffic routes
under constraints such as accidents and congestion. For opti-
mal solutions in complex urban environments, Koh et al. pro-
pose a new deep reinforcement learning-based vehicle route
optimization method for finding the best route for vehicles
to reach their destinations and avoid congestion in complex
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urban traffic networks [35]. For a similar problem mentioned
above, Yan et al. develop a refined rescue route planning envi-
ronment based on the Markov decision process for congested
urban arterial roads [36]. A value-based deep reinforcement
learning algorithm is used to plan EVs’ routes in this envi-
ronment, aiming to reach the accident scene in the shortest
time and reduce the length of road vehicle queues in the road
network.

Combining machine learning with intelligent transporta-
tion systems has recently been a trend. Li et al. propose a
dual reward value iterative network for traffic flow prediction
to plan time-saving routes [37]. It uses a long and short-term
memory network to predict short-term traffic states and con-
struct a dual reward value iterative network for route genera-
tion to learn the routing behavior of experienced drivers based
on current and future traffic conditions. Yang et al. propose
a hybrid cuckoo search algorithm based on K optimal routes
to optimize the weights and thresholds of a back propaga-
tion neural network model to determine the optimal routes in
dynamic road networks [38]. Li et al. focus on the ambulance
driving environment during the rescue process and propose a
framework based on optimal regularization [39]. Specifically,
by extracting road features and surrounding environmental
conditions, the algorithm establishes a regularized linear loss
function to optimize rescue route selection. Lin et al. com-
bine social clustering with game evolution and propose a
social vehicle route selection algorithm to optimize vehicle
routes [40]. Combining multi- intelligent deep reinforcement
learning, Lin et al. propose a distributed learning-based vehi-
cle route decision algorithm for online adaptive adjustment of
vehicle routes [41].

D. OTHER ALGORITHMS

In addition to the above three algorithms, Andelmin and Bar-
tolini develop an exact algorithm for the green vehicle rout-
ing problem based on an ensemble partitioning formulation
strengthened by subset row inequalities and K - path cuts [42].
In addition, Elalouf uses an exact pseudo-polynomial algo-
rithm to find the best time-dependent route under uncertain
traffic conditions using real-time data [43]. The algorithm
uses dynamic programming to decompose complex problems
into simple subproblems. Finally, they improve the solution
using an e-approximation algorithm by restricting the results
to allowable lower and upper bounds of the cost function.

Ill. SIGNAL PREEMPTION
Traffic signals and other infrastructure are essential parts of
intelligent transportation systems. In recent years, with the
explosive growth of vehicles, proper optimization of signal
phases has played a crucial role in relieving traffic pressure to
ensure smooth traffic flow. In particular, EVs can effectively
shorten the delay of vehicles reaching their destinations by
reasonably preempting the phase of traffic signals.

Traffic signal preemption strategies are classified into the
following categories: 1) rule-based methods, 2) traditional
optimization algorithms, including quadratic programming
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and multi-objective programming, 3) intelligent optimization
algorithms such as the genetic algorithm, artificial bee colony
algorithms, and fuzzy logic-based control algorithms and
4) machine-learning-based algorithms such as reinforcement
learning, deep convolutional neural networks, deep reinforce-
ment learning models, multi-agent models, and combinatorial
models.

A. RULE-BASED METHODS

The frequently-used method of traffic light control is to
design priority reasonably for traffic flow from differ-
ent directions. Asaduzzaman and Vidyasankar propose a
priority-based signal control method [44]. The algorithm uses
signal priority techniques to adjust the signal phases for EVs.
More importantly, the algorithm reduces the delay impact on
regular vehicles due to signal preemption by EVs. Consid-
ering the vehicles in conflicting directions, Ma et al. sug-
gest assigning different priorities to these vehicles [45]. A
priority signal control model for multiple requests is intro-
duced to generate the optimal service order. Radiofrequency
identification (RFID) technology can be used for image pro-
cessing and solve many traffic control problems. Therefore,
Sharma et al. propose a new method using RFID to realize
the traffic light control system with priority for EVs [46]. The
method is simulated in real-time and achieves good results in
a multi-lane and multi-vehicle scenario.

EVs always have priority over regular vehicles when cross-
ing signalized intersections. Younes and Boukerche propose
a dynamic and efficient signal scheduling algorithm [47].
They use the real-time traffic distribution and dynamically
adjust the green light phase to make EVs pass the intersec-
tion. To avoid delays of EVs at intersections due to traffic
congestion, Ren et al. propose an adaptive signal control
method to prevent potential intersection blockage [48]. The
method relies on realistic and feasible vehicle speed measure-
ments to adaptively allocate the signal phases. Most previous
studies have used control of traffic light signals for central-
ized management. However, optimization methods for traffic
light signal control based on traffic flow conditions also have
some practicality. Younis and Moayeri propose dynamically
collecting road conditions through devices deployed at the
roadside and propose a novel distributed algorithm to decide
when to switch traffic lights to alleviate congestion [49].

Some methods are proposed to obtain real-time traffic
information in the IOV to ensure EVs cross intersections
smoothly. Noori et al. propose a novel traffic signal control
model and use a networked vehicle infrastructure to reduce
the response time of EVs [50]. It changes the state of the sig-
nal before the arrival of an EV to provide a green phase for the
EV. The application of wireless sensor networks (WSN) has
proved beneficial in designing adaptive dynamic traffic light
systems. Goel et al. use a WSN to implement an intelligent
dynamic signal control system for the EV priority [51]. The
system minimizes the waiting time of vehicles and adaptively
manages traffic load at intersections. To solve congestion in
Indian cities, Abishek et al. control and optimize the duration
of the green light and the number of vehicles passing the
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intersection within a given time interval with a WSN-based
solution [52].

B. TRADITIONAL OPTIMIZATION ALGORITHMS
Traditional optimization algorithms build programming mod-
els to simulate the traffic light preemption to ensure the EVs
pass the intersection. Yao et al. propose a coordinated control
model and design traffic signals with a two-level program-
ming method [53]. The work considers different priorities for
various EVs. Mu et al. propose a path-based signal preemp-
tion control method to reduce the time delay of EVs at inter-
sections [54]. According to detecting the current traffic lights
at the EV route intersections, they get the earliest start time
and the latest start time of each green light. The signal pre-
emption method reduces the EV delay. The number of passing
regular vehicles through the whole system is increased, and
the vacuuming efficiency of the system is improved.

C. INTELLIGENT OPTIMIZATION ALGORITHMS

Compared with traditional optimization methods, intelligent
optimization algorithms have strong adaptability to the uncer-
tainty of the calculating data. Therefore, many scholars use
intelligent optimization algorithms for traffic light control.
Marciano et al. utilize a genetic algorithm to develop a sig-
nal setting model and a dynamic path selection model. They
set up the signals by using the behavioral rules of various
users. The signal setting model dramatically reduces the total
delay and vacuuming time on the network. The complexity
problem is also an issue worth to be studied in traffic light
scheduling [55]. Gao et al. propose an improved artificial bee
colony algorithm to solve the urban traffic signal scheduling
problem. The algorithm overcomes the potentially high com-
putational complexity [56].

Most studies on traffic signal control have ignored the
effect of right-turning vehicles. Therefore, it is necessary
to establish a traffic flow model to prevent queue overflow.
Bi et al. propose a type-2 fuzzy coordination method to allo-
cate the green time of traffic lights [57]. This work uses a
gravity search algorithm to achieve optimization alternately
to avoid queue overflow in traffic models. In addition, Col-
lotta et al. propose a new method to manage the isolated
traffic light phase dynamically [58]. They use parallel fuzzy
controllers to determine the duration of the green signal in
four stages. Shelke et al. also use fuzzy logic to dynamically
assess road sections’ priority [59]. The method uses sensor
nodes to monitor traffic information and transmits it to the
traffic management center. Fuzzy logic is applied to traffic
light control. Miletic et al. compare the performance of the
rule based on fuzzy logic with that based on vehicle tracking
arrival time and queue length [60], [61]. They find that the
former is more adaptable and has better performance. Besides
fuzzy logic, Qin and Khan adopt a two-phase algorithm [62].
The algorithm comprises a relaxation method and a step-up
search strategy for EV signal preemption control strategies.
This work overcomes the difficulty in solving the optimal
control model and minimizes the impact of the EV operation
in general traffic.
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Because of its advantages in describing dynamic systems
with concurrency and asynchrony, Petri nets (PNs) are com-
patible with traffic control characteristics and can reflect the
traffic signal control logic. Therefore, PNs have been used to
design EV signal preemption by many scholars. Huang et al.
use timed Petri nets (TPNs) to simulate the preemption of
the EV system and propose an EV preemption strategy to
ensure that EVs can move through intersections with less
delay [63]. Mu et al. use the preemption control problem of
EVs by using the timed colored PNs to make an efficient and
safe operating environment for EVs [64]. Qi et al. design a
two-stage strategy in signal intersection [65]. The first level
is the prohibited signal strategy, and the second is the warning
strategy. They use TPN to design a smart traffic light control
system to prevent traffic congestion on urban roads caused
by accidents. Further, Qi et al. propose a re-routing model
based on PN, in which traffic signal controller and dynamic
message sign are considered [66]. The model can help vehi-
cles pass crowded intersections without stopping or changing
routes.

D. MACHINE-LEARNING-BASED ALGORITHMS

In recent years, machine learning and reinforcement learning
relevant technologies have been successfully applied in com-
puter vision, speed recognition, and natural language pro-
cessing. Therefore, many scholars attempt to use them in
intelligent transportation systems, especially traffic signals.
Wei et al. investigate recent reinforcement learning-based
methods for traffic signal control and present some interesting
real-life case studies [67]. Inspired by the current research on
reinforcement learning, Guo et al. propose a reinforcement
learning method using Q-network as an approximator [68].
They design intelligent traffic signals to manage real-time
and high-dimensional traffic information. The technique has
significant convergence and generalization performance, and
the model can reduce vehicles’ queue length and waiting time
at intersections.

Delays of EVs at intersections have been a matter of inter-
est. With the development of machine learning techniques,
deep neural networks are the primary focus method for solv-
ing such traffic problems. Building on recent advances in
deep neural networks, Mnih develops a novel artificial agent
termed a deep Q-network. It can learn successful policies
directly from high-dimensional sensory inputs using end-to-
end reinforcement learning [69]. Deep Q-network can be
well applied to traffic signal control, improving traffic con-
gestion and reducing vehicle delays. Liang et al. propose a
double dueling deep Q-network with prioritized experience
replay [70]. The model can learn a good policy during rush
hour and normal traffic flow. After simulation experiments,
the proposed model reduces the average vehicle waiting time
by more than 20% and outperforms other models in learn-
ing speed. Li et al. propose an algorithm for deep neural
networks [71]. The core idea is to design a signal timing
plan by deep reinforcement learning and find the appropriate
signal timing strategy to control the action and system state
changes by implicit modeling. Zaatouri and Ezzedine propose
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a real-time traffic light control algorithm based on deep con-
volutional neural networks for real-time target detection [72].
The algorithm optimizes the traffic signal phase based on
the collected preemptive information, such as queue length
and waiting time. Kumar et al. propose an intelligent traffic
light control system based on a deep reinforcement learning
and fuzzy inference model [73]. The system uses real-time
traffic information as input to adjust the traffic light duration.
Then, the system can reduce the vehicles’ average waiting
time.

In the IOV, each traffic signal is no longer a separate entity.
Therefore, EVs need multiple traffic signals to collaborate
in performing their tasks. Most research work has focused
on applying deep reinforcement learning to multi-intelligence
cases. Louati et al. use a longest queue first-maximal weight
matching algorithm to control traffic lights [74]. This paper is
the first work to integrate the algorithm into a multi-agent sys-
tem to manage signalized intersections efficiently. Chu et al.
propose for the first time a fully scalable and decentralized
multi-agent reinforcement learning algorithm for the most
advanced deep reinforcement learning agent, the dominant
actor critic, in the context of adaptive traffic signal con-
trol [75]. It is superior to other decentralized multi-agent
reinforcement learning algorithms in optimality, robustness,
and efficiency of sampling. Van der Pol and Oliehoek propose
a scalable multi-intelligence method using a transfer scheme
and a maximum additive coordination algorithm [76]. This
method reduces the delay time of vehicles compared to the
previous methods based on the reinforcement algorithm.

In addition, many scholars also design new frameworks
based on deep learning. Tan et al. propose a deep coopera-
tive reinforcement learning framework [77]. The model can
solve the problem that reinforcement learning agents can-
not simultaneously monitor multiple signal lights in different
areas. Cao et al. propose a new multi-agent shared parame-
ters deep reinforcement learning framework [78]. The over-
all workflow of the model can be divided into pre-training,
training, and running phases, as shown in Fig. 3. In the pre-
training phase, the agent randomly selects actions and gen-
erates enough samples [s;, a;, 71, sy+1]. Then, in the training
phase, they train the Q-network as an estimator for the max-
imum Q-value. At the end of the training phase, the agent
eventually learns to achieve a high cumulative reward by
reacting to different flows. Finally, the trained deep Q net-
work is applied in practice to perform EV preemption control
on traffic signals. Combined with the reward calculation algo-
rithm, the framework of the EV can not only ensure the EV’s
fast pass in various situations but also alleviate congestion in
conflicting directions.

IV. LANE RESERVATION

Lane reservation provides a non-congested and safe traffic
environment for special-use vehicles. Evacuation and merg-
ing of regular vehicles in advance are the primary way to
complete the lane reservation. Therefore, it is necessary to
carefully decide which lanes must be reserved and design
reasonable traffic measures. We will classify the studies
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FIGURE 3. Training process of the intelligent model.

according to 1) rule-based methods and 2) multi-objective
programming algorithms.

A. RULE-BASED METHODS

Designing algorithms or methods that conform to traffic rules
is the research direction of most scholars. Wu et al. studies
a task merging lane reservation problem (LRP-TM), which
aims to optimize the choice of reserved lanes in the road
network and design a time-critical route for each task com-
bination [79]. This paper develops two new integer linear
programming models of LRP-TM. The authors combine a
fast and effective improved differential evolution algorithm.
The validity and effectiveness of the model are validated.
Yoo et al. use sensor networks to respond to EVs [80]. They
design reserved road schemes to ensure EVs can reach their
destinations on time.

To improve pavement conflict in emergency traffic,
Mitrovic et al. propose a combination of alternate direc-
tion lane allocation and reserved-based intersection control
(CADLARIC) method for organizing directional unrestricted
traffic flow in an autonomous vehicle environment [81]. The
scheme assigns different turning flows to separate lanes in
an alternating manner. In this way, all left and right move-
ments pass through an intersection without conflicts, reduc-
ing the potential conflicts to only vehicles moving through the
intersection. The alternating traffic pattern helps to minimize
disputes between EVs and regular vehicles at intersections.
In 2022, Azadi et al. propose a flexible lane allocation and
reserved-based intersection control (CFLARIC) method [82].
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Compared with fixed time control, fully reserved crossover
control, and CADLARIC, the CFLARIC strategy outper-
forms the other three strategies in terms of both reducing
vehicle delay and reducing the number of conflict situations.

In addition, scholars design a reasonable system to achieve
the expected effectiveness. Hannoun et al. propose a semi-
automated system that provides instructions to downstream
vehicles [83]. It facilitates the movement of emergency
response vehicles through transport links. Chen et al. design
a new reservation framework for urban roads based on police
cordons [84]. The framework alleviates the traffic congestion
within the warning line and presents better comprehensive
network performance.

B. MULTI-OBJECTIVE PROGRAMMING MODELS

Considering the development prospects of connected vehi-
cles, combining multiple objectives can achieve better results.
Cheng et al. study a discontinuous reserved lane and consider
heterogeneous traffic requirements [85]. They present a dis-
crete two-level programming model. The upper layer deter-
mines the reserved sections, and the lower layer optimizes
the route selection. Numerical experiments verify that the
model reduces the target travel time of special-use vehicles
and the negative impact on regular vehicles. Considering the
traffic impact, Wu et al. prioritize EVs by co-driving with
surrounding connected vehicles (CVs) [86]. They implement
pre-clearing measures for CVs on EV lanes. They design
the optimal trajectory for the EV and surrounding vehicles
and minimize the impact on normal traffic. Hannoun et al.
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TABLE 2. Hybrid strategies.
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Ogunwolu v Dijkstra’s algorithm v RFID \ \ Analyst, Proteus timing can be more
etal. [91] Simulator optimal
Off-line training of
Simulation of multi-signal
Su et al. v Improved Dijkstra’s v Multi-agent advantage \ \ Urban Mobility cooperation cannot
[92] algorithm actor-critic (SUMO) adapt to dynamic
changes in the
environment
Min et al. v Multi-criteria labeling J Non-intrusive traffic \ \ Autonavi adljgnsllf[:?;ﬁt h
[93] method preemption algorithm Navigation £¢ n g
traffic situations
Diahel et Fuzzy logic, Multi Failure to consider the
J \ \ N Fuzzy logic N agent system based SUMO synergistic operation
al. [94] next-turn re-routing between signals
. . Failure to consider the
Xie et al. \ \ v Dedicated short-range v DSRC SMARTS negative impact of
[95] communication (DSRC) simulator EVs on traffic
TP—— The dynamic
N VZX services, erclcss Heuristic traffic clear- character of traffic
guyen et access in vehicular e .
179 \ \ v environment access in N out coordination SUMO causes the previous
al. [96] vehicular environment algorithm route planning not to
be optimal
w Based on sections Failure to consider the
ang et preemption control Bureau of public roads negative impact of
al. [97] ' | J strategy inductive J function (BPR function) PTV-VISSIM EVs on regular

control

vehicles

propose the movement of the emergency vehicle through the
transport link [87]. It reduces collision and confusion experi-
enced by downstream vehicles.

The dangerous goods transport is a particular emergency
scenario. Zhou et al. propose a new lane reservations algo-
rithm to solve the transportation of hazardous goods [88].
They establish a bi-objective integer programming model for
the problem. Considering the selection of reserving lanes
for the government and planning routes for dangerous goods
carriers, Zhang et al. propose a two-hybrid meta-heuristic
algorithm [89]. The algorithm is based on a particle swarm
optimization algorithm and a genetic algorithm to solve the
bilayer model. The two-layer model can effectively reduce
the risk of dangerous goods transport and assures the inter-
ests of hazardous goods carriers and ordinary passengers.
Considering that reserved lanes require cost, Wu et al.
propose a new dual objective integer linear programming
model [90]. The model can determine the reserved lanes in
time-limited special transportation networks, increase rev-
enue, and effectively decrease the negative impact of reserved
lanes.

V. HYBRID STRATEGIES

Using one of the above strategies to reduce the response time
of EVs is not enough. Combining multiple strategies to deter-
mine the fastest route for EVs in intelligent transportation
systems has received much attention. The studies on hybrid
strategies have already achieved remarkable results, as shown
in Table 2.

To reduce the travel time of EVs while reducing the aver-
age travel time of regular vehicles, Ogunwolu et al. optimize
the route of EVs by using the Dijkstra’s algorithm, and they
preempt the signals on the route with radio frequency sig-
nals [91]. Su et al. propose a dynamic route optimization
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based on an improved Dijkstra’s algorithm and a hybrid sig-
nal control strategy based on reinforcement learning [92].
Min et al. search for a reliable route with the shortest esti-
mated arrival time under changing traffic conditions by path
search and adopt elastic signal preemption to reduce the neg-
ative impact on the overall traffic flow due to prioritizing
EVs [93].

In addition to the combination of route optimization and
signal preemption strategy, signal preemption and lane reser-
vation strategy also have been combined. Djahel et al. pro-
pose an adaptive traffic management system incorporat-
ing fuzzy logic [94]. Methods for signal preemption and
clearing regular vehicles on emergency routes based on the
severity of the emergency and the current level of traf-
fic congestion estimated using fuzzy logic-based are used
to speed up the progress of EVs while avoiding conges-
tion around their routes. To ensure that EVs have a higher
chance of reaching their destinations without slowing down,
Xie et al. broadcast to regular vehicles and traffic signals
on emergency routes a certain distance in advance using
dedicated short-range communication to preempt roads and
intersections [95].

With the power of high-definition real-time maps and a
novel on-demand traffic control model, Nguyen et al. pro-
pose a forward-looking controlled path planning and traf-
fic scheduling scheme [96]. The optimal emergency route
is selected to ensure a delay-free lane on all road sections.
The combination of lane reservation and signal preemption is
applied to effectively alleviate the negative impact on regular
vehicles caused by the EVs. Wang et al. develop a model for
estimating the travel time of EVs under preemption control
conditions [97]. Combining signal preemption and clearing
regular vehicles on the route, these strategies will ensure that
EVs have priority access.
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TABLE 3. Summary of the objective metric.

[41], [42]

References
Objective metrics :
.Ro.ute. Slgnal Lane reservation Hybrid
optimization preemption
[17], [20], [26], [31], | [44], [46], [47], [51]
Response time [34], [351, [37], [39], [52], [54]-[56], (80] [95]
[40], [43] [581, [64], [70], [72]
Response time + Cost of EVs [18],[19] [45], [49], [50] [79], [84], [86] \
R . . (48], [53], [57],
esponse time + negative impacts on [60]-[62], [68], [811-[83],
regular vehicles 3¢l (70, 7475, (7 (851, [90], (11, (921, (94, [96]
78],
Response time ;; tl:oad occupancy [24]. [27]-129] \ \ \
Response time + Robustness of (321, (331, [38] \ \ [97]
emergency routes
Others [16], [21]-[23], [25], [591, [63], [65]-[67], (87]-(89] 93]

[691], [73], [76]

VI. OBJECTIVE METRIC

This section analyzes the current state of research by cat-
egorizing the objective metrics of the examined articles,
as shown in Table 3. The response time of EVs is one of
the most frequently-studied objective metrics. However, it is
not enough for a traffic control strategy to focus only on the
shortest response time. A reasonable strategy should con-
sider more objective metrics and the interests of multiple
parties. Therefore, we categorize the objective metrics of the
reviewed articles, such as the cost of EVs, including route
length and energy consumption, the negative impact on reg-
ular vehicles, road occupancy, and robustness of emergency
routes.

In terms of route optimization, Guo et al. [18] and
Liu et al. [19] aim to minimize the time and energy cost
of the routes. Chen et al. consider that the ultimate goal of
planning bidirectional routes for emergency rescue and emer-
gency evacuation in Chemical Industrial Park is to find the
route with the shortest distance, which in turn reduces the
emergency response time [20]. Constantinescu and Patrascu
aim to find a route with low road occupancy to shorten the EV
response time [29]. Yan et al. provide optimal path planning
for EVs to reach the scene of traffic accidents with the shortest
time and the least length of road queuing [36]. Yang et al.
propose optimization objectives for path reliability and emer-
gency response time [38]. Zhao et al. use the emergency
response time, link reliability, and intersection security as
evaluation metrics to construct a constrained multi-objective
path optimization model and use the multi-objective opti-
mization algorithm [22].

In terms of traffic light preemption, Younes and Boukerche
adjust the optimal green phase time to allow each EV to pass
smoothly and aim to reduce EV response time [47]. Younis
and Moayeri aim to shorten EV response time and reduce
environmental costs [49]. Ren et al. propose an adaptive sig-
nal control scheme that can effectively prevent intersection
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congestion and improve the performance of intersections in
terms of vehicle delay and throughput [48]. Qi et al. propose
a two-stage strategy to model traffic light control and use TPN
to prove their strategy can prevent traffic congestion on urban
roads caused by accidents [65].

In terms of lane reservation, Yoo et al. propose a road
reservation scheme for safe and aim to EV fast response
using sensor networks [80]. To highlight the effectiveness of
the proposed traffic control strategy, Chen et al. propose the
expected reservation effect in terms of total travel time and
reduces the total cost of the road reservation system [84].
Wau et al. seek to minimize the disturbances on regular vehi-
cles, and the proposed upper-level task attempts to reduce the
interference on the EV [86]. Zhang et al. establish a two-
level optimization model to minimize the risk of dangerous
goods transportation and significantly reduce the solution
time [89].

In terms of hybrid strategies, most studies are no longer
limited to reducing the response time of EVs. Scholars con-
sider more useful factors, such as reducing the negative
impact on regular vehicles [91], [92], [94], [96], and choos-
ing highly reliable rescue routes [97]. Min et al. aim to find
reliable arrival time estimates under changing traffic condi-
tions and reduce the negative impact of EV's on overall traffic
flow [93].

VII. DISCUSSION

A. SUMMARY

We now summarize EV traffic control strategies discussed in
the previous sections.

1) Traffic control strategies are classified according to
the objects to be controlled, including route optimization
strategies for EVs, pre-emption strategies for traffic signals,
and road reservation strategies for regular vehicles. However,
the current articles in the hybrid strategy research field are
insufficient.
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2) From the perspective of algorithms, traffic control strate-
gies have shifted from the previous traditional optimization
algorithms to the current intelligent optimization algorithms
and machine-learning-based methods. It is worth noting that
traffic control strategies are no longer based on a single
class of algorithms but a combination of different types of
algorithms.

3) The objective metrics of traffic control strategies show
a development trend from single to multiple objective met-
rics. The reason is that multi-objective metrics focus on the
interests of various participants in a traffic road network.
Thus, multi-objective metrics provide strong support for the
real-world deployment of traffic control strategies.

B. DIRECTION OF FUTURE RESEARCH
We discuss possible future directions for EV services.

1) Better transportation facilities and more intelligent
transportation systems are the most effective for enhancing
EV services. Due to the dynamic and complex nature of road
traffic, it is crucial to improve the efficiency of transportation
services. Emerging technologies, such as distributed systems,
big data processing, and edge computing, can better serve
road traffic [98], [99], [100].

2) The collaborative interaction between automatic driving
emergency vehicles and traffic signals should be one of the
research directions in the future [101]. Reinforcement learn-
ing provides the technology for implementing autonomous
vehicles [102].

3) With the development of intelligent transportation and
connected autonomous vehicles. It is foreseeable that future
transportation will be a hybrid environment with mainly
connected autonomous vehicles and human-driven vehicles.
Therefore, the interaction between connected autonomous
vehicles and human-driven vehicles will be an area worthy
of research.

4) Intelligent traffic signals are one of the critical com-
ponents of intelligent transportation systems. In the IOV
environment, the interoperability of multi-agent systems
improves traffic efficiency and ensures traffic safety [103].

5) The issue of vehicle-to-vehicle and vehicle-to-
infrastructure communication is an essential direction for
the present and future. The emergence of framework tech-
nologies such as software-defined networking has improved
efficiency in the communication process [104]. In addition,
the issue of reducing interference and communication costs
while ensuring the accuracy and stability of communication
is also worth considering.

6) An effective traffic flow prediction model is one of
the essential prerequisites for deploying traffic control strate-
gies [105]. Therefore, efficient and stable traffic flow predic-
tion is indispensable.

7) The current traffic control strategies mainly focus on a
single strategy, and practical results are not guaranteed. The
combination of multiple strategies can be a research direction.
From the current point of view, the combination of route
optimization and signal preemption is a feasible solution.
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However, coping with the constant route optimization of EVs
may not reduce should be an issue worth investigating. The
combination of lane reservation and signal preemption is like-
wise a hot direction. First, the route of an EV is fixed once
planned. The route planning is not only based on the current
traffic conditions but should be integrated with historical traf-
fic data for route planning. Secondly, the smoothness along
the emergency route to make the EV travel at the desired
speed is also worth considering and exploring.

8) Considering the realities of the environment, the travel
of EVs under adverse weather, such as haze, will be the next
consideration. The peculiarities of the climate result in high
accident rates. The issue of how to mitigate the impact of
traffic in adverse weather through intelligent transportation
systems will be far-reaching in the future [106].

9) In addition, in the case of EVs, most studies are coor-
dinated with the surrounding regular vehicles. Planning the
traffic strategy in the particular case of two or more kinds of
special-use vehicles could be a direction for scholars to con-
sider. Designing an integrated management system that han-
dles vehicular, pedestrian, and bicycle will be an inevitable
choice for the future intelligent city transportation system.

10) The optimization problem is a core issue. A sin-
gle objective makes the studies stay only at the theoretical
and experimental simulation stage, which is not conducive
to practical deployment. The selection of objective metrics
should tend to develop in multi-objective research [107].

VIil. CONCLUSION

This survey reviews the emergency response problem, focus-
ing on traffic control strategies for EVs. The traffic control
is divided into route optimization for EVs, traffic signal pre-
emption, lane reservation for regular vehicles, and mixed
traffic control strategies for the three objects according to
the objects to be controlled. We then classify the articles on
these strategies based on algorithms. This survey attempts to
provide insights into the emergency response problem and an
overview and analysis of the currently proposed solutions for
EV response time reduction and their objective metrics.

This survey suggests that researchers in emergency man-
agement services must focus on making optimized response
time more dynamic through real-time traffic data. Beyond
that, most current research considers only one of the three
strategies, which have only been tested in simulations and are
difficult to achieve commercial deployment. Further research
should combine multiple strategies to address the challenging
task of reducing response time. In addition to the objective
metric focusing on the response time of EVs, future studies
should consider the negative impact of regular vehicles, the
overhead of all vehicles, and other factors. Therefore, there
is a great potential and need for more significant research to
minimize the negative impact of EVs and regular vehicles to
contribute to emergency services significantly.
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