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ABSTRACT Community detection is a flourishing research field with a plethora of applications ranging
from biology to sociology. Local community detection has emerged as a promising subfield of research
concerned with community identification around a set of seeding nodes. The practical significance of local
community detection is important for numerous real-world applications such as protein interactions and
targeted advertising. Since 2005, when the first research paper on local community detection appeared,
the literature has been vast and difficult to navigate, as each method works best under certain conditions
and assumptions regarding the seed nodes and the identification of their community. For this reason, and
motivated by the many real-world applications of local community detection, in this paper we provide a
comprehensive overview and taxonomy of local community detection algorithms. There are quite a lot of
surveys on community detection that make a compendious reference to local community detection. However,
they do not achieve a systematic and comprehensive coverage of this particular field. Since the research
area of local community detection is quite extensive, it is necessary to categorize and discuss the various
methods, techniques, and assumptions used to address the problem. This survey aims to fill this gap and
help researchers get a clear overview of the local community detection problem. To this end, we have also
gathered the best documented tools and the most commonly used datasets in the local community detection
literature to help researchers identify the tools they can use to prove their methods.

INDEX TERMS Algorithms, community detection, local, survey.

I. INTRODUCTION
Various real world systems [1], [2], [3], [4] are often
described by networks because it is a convenient way to
represent data. In particular, community detection can reveal
the hidden structures and functions in networks [5], [6], and
therefore attracts the attention of researchers from various
fields [7].

As a result, there are many algorithms in the literature
which aim at identifying communities in networks. Most of
them focus on detecting the partitioning of the entire network
into communities, i.e., global community detection [8], which
implies a global knowledge of the structure of the entire
network. Girvan and Newman’s (GN) [9] method was the
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first proposed method for global community detection. Since
then, the problem of community detection has attracted the
attention of a large part of the scientific community, and a
very large number of articles have already been published.
More importantly, this large number of articles spans a variety
of different disciplines, from computer science to physics,
to biology, and to social sciences.

In reality, however, it is more common to know only
part of a network, either because of its size or because it
is dynamic (e.g., the WWW network) or because one is
interested in a particular part of the network (e.g., particular
neurons in a brain network). In such cases, it is very difficult
or even impossible to obtain the information of the whole
network [10]. As a result, local community detection (LCD)
has attracted the attention of researchers. In general, LCD
is applied to find one or a few communities starting from
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certain nodes of the network, called seeds. This problem is
also known as seed set expansion [11]. The practical impor-
tance of LCD is very significant for numerous real-world
applications, such as analysing terrorist activities or deter-
mining the placement of advertisements in social media [12].
Furthermore, LCD can be applied in web search, where with
a few known pages containing similar information, one can
generate a larger set of web pages that contain the relevant
content related to a particular search query. Besides, in prod-
uct networks, expanding the starting set allows an analyst
to automatically categorize products that are in the same
community as the tagged items [13]. In addition, LCD is also
critical in biological networks analysis like protein-protein
interactions, where LCD helps determine additional members
of a protein complex [14], or in human brain co-activation
networks, where the discovered communities provide spatial
and functional meanings to the analyst. Nowadays, people
pay great attention to the flavor profiles of culinary ingredi-
ents in order to customize their diets. The network of flavors
where nodes represent ingredients and edges are between two
ingredients if they have similar flavor compounds, can be
used to create new recipes from existing ones by considering
the local communities discovered in this network for key
ingredients [15]. What is more, LCD is effectively used in
collaboration networks where an analyst can determine the
membership of a particular person in a working group by
detecting local communities [16].

Clauset A. [17] was the first to suggest an LCD method.
Since then, several LCD methods have been proposed by
researchers. These approaches are not all appropriate for
every LCD problem. Many factors need to be evaluated to
select the most appropriate [18].

The motivation of this survey stems mainly from the fact
that the literature for local community detection is scattered
mainly between Physics and Computer Science and there is
not a single point of entrance for a new researcher in this
area. This results in raising the difficulty of entrance to this
area of research. Indeed, to the surprise of the authors when
they started working on local community detection, there was
no publication (or a survey to be more specific) that would
allow us to get to know this research area faster. This was
the starting point for envisaging such a survey that could help
researchers quickly review existing work and decide which
of them fits their own problem.

Additionally, motivated by the numerous practical appli-
cations of LCD in real world networks, and with a view to
help scientists choose quickly the best fitting method for par-
ticular problems, we present here a classification of existing
local community detection techniques. While there are some
surveys on community detection in general, as far as the
authors are aware, there is no specific survey on the important
problem of LCD. Therefore, the innovation of our paper lies
on the fact that it attempts to fill this gap by providing an
assistive taxonomy of existing LCDmethods in the literature.
Furthermore, the fundamental difference between our survey
and other existing surveys, is that our work is dedicated to

local community detection techniques and not generally to
community detection.

A. CONTRIBUTIONS
The purpose of this review is to organize and categorize the
existing approaches to LCD in networks that have been pro-
posed in the literature especially over the last decade. Taking
into account past, present, and future trends, the present work
aims to help researchers and practitioners understand the field
of local community detection with respect to the following
aspects:

• Taxonomy and Review: We propose a systematic
taxonomy of existing local community detection tech-
niques. For each class, we summarize and review repre-
sentative work.

• Source Code, Tools andDatasets:Weprovide statistics
on the availability of the source code of the papers
studied and the datasets used. We have also compiled
and compared the available and best documented tools
that help researchers detect communities in networks,
by type, platform, and license.

• Trends and Future Directions:As research in local
community detection has seen an upsurge in recent
years, we discuss current trends in the field and open
problems for the future.

The rest of the survey is organized as follows. Section II
contains basic definitions related to the current survey
domain. In Section III, related surveys on the general problem
of community detection are discussed. The classification of
the existing LCD approaches is presented in Section IV.
In Section V, well-documented tools for community detec-
tion are presented. Besides, commonly used datasets in LCD
experimental evaluations are presented in the same section.
The authors’ insights over the Local Community Detec-
tion literature as well as future directions are discussed in
Section VI. Finally, we conclude in Section VII.

II. DEFINITIONS
In the present work, we assume that a network G = (V ,E)
consists of a node set V = {1, . . . , n} where n = |V | are the
nodes, and an edge set E ⊆ V 2 where m = |E| are the edges.
In Table 1 we summarize main mathematical symbols used
throughout the paper.
Definition 1: A Community C is defined as a sub-network

ofG in which the nodes inside C are more densely connected
to nodes within C than to nodes outside C .
Definition 2: Seed Nodes or Seeds or Source Nodes are the

nodes that define the community one wishes to discover.
Definition 3: A Local Community LC is defined as the

community to which the seed nodes belong. Thus, a network
G can be divided into LC and the rest of the networkG−LC =
U . Figure 1 shows the commonly accepted definition of the
local community in a network G.
Definition 4: Community Detection is the procedure to

find all communities Ci with i ∈ Z forming the network G
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TABLE 1. Main mathematical symbols used throughout the paper along
with their description.

FIGURE 1. General scheme of local community definition.

and
⋃
Ci = V . Local Community Detection (LCD) is the

process of finding only a subset of the communities which
constitute the network. Thus, only a part of G is known at a
local level and not the whole community structure of it.

At this point it should be noted that LCD is a term used
in the literature for two similar problems. On the one hand,
LCD refers to finding the community to which a seed node (or
group of seed nodes) belongs. On the other hand, LCD refers
to a method that uses local information to discover all com-
munities in the network [19]. In the taxonomy of a following
section, algorithms of both categories are presented, as they
can both be used to uncover the community of particular
node(s).

III. RELATED WORK
There are many surveys in the literature on the prob-
lem of community detection. However, there is no sur-
vey that focuses exclusively on methods for detecting local
communities. Nevertheless, in some of these works there is a
subsection describing the techniques of LCD, but this is not
comprehensive.More specifically, Table 2 lists in chronologi-
cal order some of the community detection surveys published
in the last decade. In particular, Papadopoulos et al. [20]

investigated the computational and memory performance of
community detection algorithms specifically in social media.
They studied six different local methods, focusing mainly
on their scalability compared to global methods. In addi-
tion, Dhouioui Z. and Akaichi J. [21] reviewed community
detection literature that can be used to detect overlapping
communities. Under these circumstances, they dedicated one
of the five algorithm categories to local expansion algo-
rithms. Specifically, eleven different local community detec-
tion algorithms for overlapping communities were reviewed.
Furthermore, Harenberg et al. [22] evaluated community
detection algorithms with datasets that have ground-truth
communities. Two of the thirteen algorithms evaluated focus
on local expansion. Fortunato and Hric [7] gave a com-
prehensive overview of the problem of community detec-
tion in networks. However, this review did not specifically
address local methods, but only mentioned five of them.
Besides, Maivizhi et al. [23] investigated another aspect of
the community detection problem, that of the tools used.
In particular, the authors provided an overview of the tools
available for community detection and mining. In addition,
Javed et al. [24] surveyed community detection approaches
and their related real-world applications. The authors cate-
gorized community detection algorithms into four different
classes. Among these surveyed algorithms, the authors have
selected some local algorithms that fall into the first four
classes, so no section is devoted to local approaches. More-
over, Ma et al. [25] presented an experimental evaluation
of local community metrics. More specifically, they divided
the metrics into degree-based and similarity-based ones and
conducted experiments on eight different metrics. Besides,
Dakiche et al. [26] presented a classification of community
evolution tracking methods in dynamic social networks into
four main categories. The authors discussed three approaches
for detecting local communities that fall into these categories.
Furthermore, Dilmaghani et al. [19] proposed a scheme to
explore the concept of locality at each step of a community
detection process. The authors suggested a four-step com-
munity detection process (flow) and reviewed works that
follow this flow. More specifically, they reviewed nineteen
different works that use the concept of locality in one or more
steps of their flow. Huang et al. [27] presented a survey of
approaches to community detection in multilayer networks.
The work discussed included three local approaches for mul-
tilayer networks. Souravlas et al. [18] proposed a three-class
categorization of community detection methods in social
networks. Among the discussed methods there were some
local approaches. Furthermore, Meena et al. [28] survey also
presented community detection techniques applied to social
networks. They also reported other applications where com-
munity detection is used. The methods discussed are divided
into three categories. A few local approaches that fall into
these categories were presented. More recently, Su et al. [29]
presented a survey of deep learning methods for community
detection. These methods were divided into three categories.
Popular datasets and evaluation metrics were also discussed.
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The overview includes a discussion of a corresponding local
method.

All this related literature present indicative methods for
local community detection but they are very far from covering
it completely as intended in this survey. Therefore, there is a
big gap with respect to the extent and depth of the coverage of
local community detection methods from the existing survey
papers on community detection that this survey aspires to
fill. Of course, there is an undoubtable connection between
the general concept of community detection discussed in the
related work and LCD, but there are also important appli-
cations and specific methods that exploit aspects of local
approaches. Thus, there is a need for an overview of methods
related to local community detection.

To the best of the authors’ knowledge, the present study is
the first comprehensive study dealing exclusively with local
community detection techniques in networks.

IV. LOCAL COMMUNITY DETECTION TAXONOMY
It has been quite a while since Clauset A. [17] firstly pro-
posed the formal definition of local community detection
in networks in 2005. Subsequently, many approaches have
been proposed until today making LCD a very active research
problem in networks. In this survey, we provide an overview
of the work that has been proposed on this problem since the
introduction of LCD in 2005. However, we mainly focus on
works from the last decade (2012-2022), since they are the
most widely used today. We also present the most popular of
the earlier approaches (2005-2011).

These methods can be classified into different groups con-
sidering various criteria. Therefore, the classification of the
approaches is not absolute, but differs with respect to the aim
of the taxonomy. Algorithms proposed to detect local com-
munities are classified here according to the type of networks
in terms of static, temporal/dynamic or fully streaming ones.
Besides, we classify the methods according to the type of
approach to detect local communities: greedy or non-greedy
ones.

The three categories of local community detection algo-
rithms in terms of network type are: 1) the methods used in
static networks, 2) the techniques used in dynamic/temporal
networks, and 3) those used in fully streaming networks.
Static networks are those whose components, i.e., nodes and
edges, remain the same. Dynamic or temporal networks are
networks that change over time. Thus, both nodes and edges
can be added or removed, resulting in evolving communities.
For both forms of networks, the initial or past information
about them is always available. More precisely, for the static
networks the former is self-explanatory. For the dynamic net-
works, this means that all past information about the network
is available when the network changes. In contrast, edges
in graph streams are only available once. More specifically,
when an edge ei is processed in stream S, the past edges
cannot be accessed again, and the subsequent edges in the
stream are unknown, i.e. ∀j 6= i, ej is not accessible when ei
arrives in stream S.

TABLE 2. Surveys on community detection in the literature.

Figure 2 shows the general taxonomy of local community
detection techniques that the present survey suggests.

Table 3 briefly presents all works reviewed for the survey,
classified according to the proposed taxonomy of Figure 2.
We have used the same colors for each class as in Figure 2
to help the reader understand in which class each work is
classified. The arrows show the flow of further classification.

A. TECHNIQUES FOR STATIC NETWORKS
Techniques related to static or dynamic networks can be
divided into two main groups of algorithms in terms of the
approach they follow to expand a community. These groups
are greedy and non-greedy. Regarding greedy algorithms,
these methods focus on the technique used to add nodes: A
node is selected for inclusion in a community if and only if
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TABLE 3. Works reviewed in the present survey classified according to their class. We use the same class colors as in 2 for reader convenience.

FIGURE 2. Proposed taxonomy of local community detection techniques.

that node has the maximum value of a quality function that
assigns a value to each node [36]. The majority of existing
algorithms belong to this category. The group of non-greedy
algorithms includes techniques that do not attempt to greedily
expand a community, but use various methods to find local
communities. Most algorithms in this category use random
walks.

1) GREEDY TECHNIQUES
In greedy techniques there is a general scheme that the algo-
rithms follow and describes the knowledge of the graph at
each step. This scheme consists of three main steps and is
depicted in Figure 3. LC represents the local community
under investigation in a network G, and is usually initialised
with the starting node(s). The set N contains nodes adjacent
to at least one node of LC . Nodes that are not adjacent to any

element of LC form the set U , the unexplored nodes. Apart
from the first set classification, LC can be further divided
into two subsets: LCcore, which contains nodes that have no
neighbour in the set N , and LCboundary, which contains nodes
with at least one edge to a node in the set N . Thus, LCcore =
LC−LCboundary. Greedy local community detection methods
are also called greedy seed expansion methods. In the follow-
ing, we provide the description of the basic greedy scheme for
LCD based on Chen et al [45].

1) Initialize LC with seed node n0
2) Initialize N with the neighbours of n0
3) The value of the quality function Q of the initial com-

munity is set to 0
4) Find the node n ∈ N which maximizes the quality

function used in the algorithm
5) If the insertion of the above node to the set LC increases

the quality criterion, then the node is moved from N to
LC and the subset N is updated

6) The former process is repeated until there is not any
node n whose inclusion to LC increases the quality
function

7) (Optional step) Check LC for nodes that need to be
removed according to a filtering method

8) Now LC contains the local community of n0

The former process can be generalized to more than one
seed nodes.

In general, there are two main problems to solve in greedy
techniques: 1) starting node selection and 2) the quality cri-
terion [47]. The first describes the problem of which node
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FIGURE 3. Scheme of local community definition for greedy techniques.

should be selected as the starting node (seed) to begin the
process of discovering a local community. The second con-
cerns the quality criterion that is checked after each node is
added to the community. This criterion is also crucial for the
termination of the process, i.e. when to stop adding nodes to
the community.

Based upon the two main problems arising in greedy tech-
niques for LCD, we categorize them in two groups; a) greedy
methods for LCD which try to improve the node selection
process IV-A1.a, and b) greedy methods for LCD which try
to optimize the quality function. IV-A1.b

a: METHODS FOCUSING ON NODE SELECTION
This category contains algorithms that focus mainly on opti-
mizing the selection of the seed node(s). There are two main
problems that arise when using greedy seed expansion, and
both are related to seed node(s) selection. The first prob-
lem is the seed-dependent problem. It means that the loca-
tion of the seed node(s) affects the quality of the detected
local community. The second problem is known as seed-
invalid problem, which means that many LCD algorithms
cannot ensure that the seed node(s) participate in the final
detected local community [37]. The methods in this category
follow different approaches to selecting the starting node,
with a view to overcome the above problems. Most of these
approaches focus on finding important nodes that are good
representatives of the community to which they belong.

Bagrow et al. [30] aim to better represent the actions
that members of a network would take to identify their own
communities. To achieve this, they propose to start the LCD
process from an l− shell where l is the distance from starting
node to all shell nodes N . The suggested method is based
on a parameter, α, which controls when to stop the spread
of the l − shell. The performance of their approach highly
depends on the parameter l as well as on the starting node,
since the resulting communities differ a lot if the algorithm
starts from border nodes. The speed of the algorithm is also
very low [10]. Experiments are conducted only on small
networks, i.e. the largest one is the polbooks dataset [103]
with 105 nodes.

Xu et al. [12], acknowledge the problem of the limited
ability to deal with large-scale networks suggesting a method
of community discovery based on the seed expansion, which
is inspired by the ego-centered theory. More specifically, they
suggest dividing the network into k communities and find the
k-top leader nodes. These k-top leaders are then selected as
the seed nodes. In each iteration the extension can start with
these new seed nodes. Nodes are added in the community if
its similarity (calculated based on common neighbors) with
the community is above a threshold σ . They only experiment
with real networks, and besides discovering the local commu-
nity, their method also finds the linked nodes that are loosely
related to the community. A conclusion made by the authors
about their method is that threshold σ has a great impact on
the community size, i.e. the largest the threshold, the smaller
the community. The largest dataset (Sina micro-blog [104])
that they experiment with has 310.000 nodes.

Another method that focuses on the starting node is the one
proposed by Zhang et al. [31]. The authors’ motivation is the
fact that if the position of the starting node is at the boundary
of the communities, the local community structures detected
have low accuracy. Thus, they propose to count the degree
centrality of each node in the communities and select the
nodes with maximum degree as core nodes. The first step is to
find the communities of the network and then identify the core
nodes of each community. From these nodes, they start the
LCD process to obtain the new communities of core nodes.
They choose to test their method on real networks. However,
sometimes their proposed method fails to detect communities
with high accuracy. The largest dataset that they experiment
with is Political blogosphere [105] with 1733 nodes.

Moradi et al. [33] propose a different parameter-free
method for finding better seed nodes. In particular, the
authors suggest a seeding algorithm that first computes the
similarity score of each node based on link prediction, and
then it uses a biased graph coloring algorithm to improve
the seeding process. There are various proposed similarity
scores but they prefer using metrics that require only access
to the node’s neighborhood. The experiments performed on
real networks of products, collaboration and social networks,
have shown that the proposed method successfully detects
communities of good quality in less time than without their
proposed seeding procedure. The largest dataset that they use
to test their method is a dataset collected by the authors from
Soundcloud with 5187722 nodes.

Furthermore, Xia et al. [10] suggest the ILCDSP algo-
rithm with a view to overcome the seed-invalid problem.
This algorithm uses a selection probability for the candidate
nodes at each step, so that the nodes with a high selection
probability are more likely to be included in the community.
They experiment with both synthetic and real networks. The
largest network that the authors use to evaluate their method
is a synthetic one generated by the LFR method [106] with
5000 nodes. Compared to Clauset [17] and Luo et al. [44] the
proposed method achieves better overall F1 score, precision
and recall values for the small number of real networks that

110706 VOLUME 10, 2022



G. Baltsou et al.: Local Community Detection: A Survey

were used. Although their suggested algorithm improves the
accuracy of community detection, it is not stable enough in
terms of not achieving the best precision values in all datasets.

Moreover, Fanrong et al. [34] discuss the seed-invalid
problem, where the seed node sometimes does not partici-
pate in the detected community. Thus, they propose to start
community expansion not from a single node, but from a
maximal clique containing the seed node and suggest an algo-
rithm named Local Community Detection algorithm based on
Maximum Cliques extension (LCD-MC). Their experiments
with both synthetic and real networks show that the proposed
method can detect high-quality communities. The largest
datasets that the authors use are synthetic generated by the
LFR method [106] with 5000 nodes each. More precisely,
their method compared to Clauset A. [17] and Wu et al. [48]
presents better results in terms of F1 score and NMI (Normal-
ized Mutual Information) [107].

Hamann et al. [36] also suggest to start the expansion of the
community from the largest clique in the neighbourhood of
the seed node. Besides, they introduce Triangle-based Com-
munity Expansion (TCE) as an alternative strategy for greedy
community expansion. Their method utilizes the fact that
edges inside communities are usually embedded in triangles.
Thus, the authors propose triangle-based edge evaluation to
decide which node should be added to the community in each
step. The proposed approach is applicable to both unweighted
and weighted networks and overlapping communities. They
conduct experiments with synthetic as well as real networks
and compare their method with other algorithms, includ-
ing Infomap [108], a global community detection algorithm.
They are comparing their method to seven different local
community detection approaches. Four of them are density
based ( [45], [71], [109], [110]) and the others ( [34], [46],
[53]) start the LCD process from a maximal clique (e.g.,
triangles). Their largest datasets are from Facebook [111]
with at most 41536 nodes. They conclude that any algorithm
which assumes a maximal clique rather than a single node,
leads to higher quality communities in terms of F1 score
metric, especially in real networks. However, the choice of the
expansion algorithm should always depend on the network
type. In addition, the source code of their proposed method is
publicly available.

Besides, Ding et al. [37] aim to overcome both the
seed-dependent and the seed-invalid problems, and suggest
replacing the seed node with the core member of the target
community. The core node is a node that has the strongest
relationship with the starting node and also higher central-
ity than the starting node. Next, the core member is taken
as the initial community and then they extend it based on
community relation strength. Their method is called RTLCD.
The authors conduct experiments on both synthetic and real
networks and find that their suggested method is more robust
to the seed-dependent problem and the seed-invalid problem
compared to [17], [44], [45], [48], [34], and [112] in terms of
F1 score, NMI andNCR (Node Coverage Rate). Furthermore,
their method tends to find more ground-truth community

members. The largest dataset that this method is tested on is
the DBLP network [113] with 317080 nodes.

Tasgin et al. [38] focus on the boundary nodes of the
communities and propose an LCD method based on label
propagation. In this method, after identifying the boundary
nodes between communities and ranking them, a node with
the highest score among its neighbors propagates its label and
finally, the communities are extracted from the network. The
suggestedmethod is better than existing ones in terms of NMI
only when the communities are subtle. However, experiments
with synthetic and real networks (co-purchase, collaboration
and social) revealed the main weaknesses of this method,
namely instability in determining the final communities and
weak performance in identifying a reasonable number of
communities. The largest dataset that this method is tested
on is the youtube network [113] with 1134890 nodes. The
source code of the proposed method is publicly available.

In addition, Xu et al. [39] present a distributed LCD algo-
rithm name DLCD-CCE, based on community center exten-
sion for large complex (weighted) networks. Their motivation
is to provide an algorithm to an as wider as possible scientific
and analytic community. The algorithm is evaluated using
a Spark-based prototype system to verify its accuracy and
scalability. The results of experiments on co-purchase, social
and collaboration networks, show that DLCD-CCE has better
accuracy, stability, and scalability compared to typical local
community detection algorithms like [17], [44], and [32],
in terms of precision, recall and F1 score, and effectively
overcomes the problem that existing algorithms are sensi-
tive to the location of initial seeds. The largest dataset that
this method is tested on is the youtube network [113] with
1134890 nodes.

Guo et al. [8], propose the InfoNode algorithm aiming at
overcoming quality and stability deficiencies in overlapping
community detection. It uses local degree central nodes and
Jaccard coefficient to detect core members in the network.
The detected core members are then treated as seed nodes,
which guarantee that they are central nodes of the communi-
ties. Next, the node with the highest degree among the seed
nodes applies the fitness function strategy for pre-expansion.
In the last step, the top k nodes with the best performance
in the pre-expansion process are expanded by the fitness
function with internal force between nodes. Three parameters
have to be defined to use InfoNode: α (used to control the
scale of communities detected), k (used to select the top k
nodes that have the best performance in the pre-expansion
process), and ε (used to select seeds in the network). Exper-
iments with synthetic and real networks have shown that
InfoNode can accurately discover communities. The largest
dataset that this method is tested on is the CA-GrQc net-
work [114] with 14845 nodes. More precisely, InfoNode was
compared to several methods like [109], [32], and [75], upon
many different datasets (social, co-purchase, power, collab-
oration), and was found that it can accurately uncover local
communities in terms of EM (extension of Modularity) [115]
and NMI.
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Furthermore, Liu et al. [16] propose the algorithm
HqsMLCD to detect multiple overlapping communities for
a given starting node. Their motivation is to define an LCD
method that is not sensitive to the position of the seed node
but it is sensitive to the local structure of the seed node.
HqsMLCD first finds seeds of higher quality than the given
seed node, and then expands these seeds sequentially to
obtain multiple communities that are likely to overlap. They
test their method on real networks and find that it successfully
discovers high-quality communities (in terms of F1 score),
compared to [75], [80], and [116]. They experiment with
three real datasets (co-purchase, collaboration and social),
the largest of which is the LiveJournal network [113] with
3997962 nodes.

In addition, a recent approach by Aghaalizadeh et al. [41]
proposes a local and deterministic method named LCDR for
detecting communities in social unweighted and weighted
networks using core nodes. The authors are motivated by
the fact that the quality of the detected communities depends
on the selected important nodes as community cores. In this
method, core nodes of the networks that are responsible
for influencing other remaining nodes are detected and then
communities are formed around these nodes using a Sorensen
similarity index. The core nodes are selected according to
their importance, which is calculated considering the first
and second degree neighbors of each node. The experiments
performed on both synthetic and real networks (co-purchase,
collaboration, social) show that the proposed method is stable
and detects high-quality communities quite quickly, com-
pared to other approaches like [108] and [38], in terms of
modularity and NMI. The largest dataset that this method is
tested on is the youtube network [113] with 1134890 nodes.

Finally, Hu et al. [42] propose three hybrid local central-
ity measures which combine degree and denseness of node
neighborhood to evaluate how good a node is as a seed,
and then apply them to a local algorithm for selecting seeds
in networks. They focus on local seeding because of its
efficiency. Experimental results with the proposed method,
called S-LM, in both synthetic and real networks show that
their method performs well. However, it is inferior to using
the conductance centrality in networks where the difference
between degrees is small and the community structure is
clear. The largest dataset that this method is tested on is the
LiveJournal network [113] with 3997962 nodes. The results
of the experiments were evaluated with F1 score and overlap-
ping modularity [117].

Further research papers that belong in this category include
Chen et al. [32] (LMDmethod), Wang et al. [35] (MAGA-LC
method), Luo et al. [40] (LCDNN method) and Ji et al. [43]
(CAELCD method) which are not analyzed due to the simi-
larity with the previously discussed methods.

b: METHODS FOCUSING ON QUALITY FUNCTION
The local community approaches of the present category
focus mainly on community valuation. More precisely, the
starting node of the local community we want to discover is

already given. The goal is to extend the community beyond
the starting node by optimizing a quality function.

Clauset A. [17] was the first to propose an approach for
LCD, motivated by the fact that in many cases there is a
lack of global knowledge of a graph’s topology. Thus, the
author propose a measure of community structure indepen-
dent of global properties, the local modularity R. This metric
represents the fraction of boundary edges which are internal
to the local community. The proposed algorithm merges the
neighbour nodes one by one, that increase the value ofR, until
the community size reaches a predefined size. Thismeans that
it is not a parameter-free approach. The suggested method is
used in both synthetic and real networks (co-purchase, col-
laboration). The largest dataset that this method is tested on is
the Amazon.com recommender network with 409687 nodes.
The discovered communities usually have high recall but
low accuracy (compared to the ground-truth communities),
as the algorithm is sensitive to the position of the source
node. It is also possible for this method to identify multiple
communities for the seed node as it explores the network.
Furthermore, the resulting community may contain many
outliers.

Chen et al. [45] propose the metric L to decide whether
a new node is going to be added in the local community,
aiming at avoiding outliers. This metric is the ratio between
the community internal relation (based on node degrees),
to the community external relation (based on node degrees).
Based on this metric, a two-phase algorithm which does
not require initial parameters, is suggested to identify the
local community of starting nodes. Experiments conducted
on real networks (football, co-purchase) prove the accuracy
and the effectiveness of the proposed method compared to the
ground-truth communities in terms of precision, recall and F1
score. The largest dataset that this method is tested on is the
Amazon.com network collected by [44] with 585283 nodes.
However, when the starting node is on the boundary of
another community, the proposed method may not recognize
its proper community.

LTE algorithm is suggested by Huang et al. [46] based
on a quality metric, named similarity-based tightness. The
authors focus on avoiding a priori assumptions of network
properties and predefined parameters like other methods.
Tightness metric consists an adaptation of the cosine simi-
larity function and computes the internal similarity between
nodes in a community. The proposed method can be used
in both unweighted and weighted network as well as for
overlapping and non-overlapping communities. Experiments
on both real (social, football, co-purchase) and synthetic
networks showed that the suggested approach achieves good
performance in efficient time compared tomethods [17], [44],
[109] in terms of precision, recall, NMI and Generalized
Normalized Mutual Information (GNMI) [109]. The largest
dataset that this method is tested on is the Amazon.com
network collected by [44] with 585283 nodes. However, the
suggested method is seed-dependent in networks without a
clear community structure.
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Branting et al. [47], focus on improving node selection
in the community expansion phase independently to the ter-
mination and filtering stages. The authors compare different
local community detection methods, which are classified
into two categories, xenophobic and non-xenophobic: the
former try to maximize (or minimize) internal (or external)
connectivity, while the non-xenophobic algorithms discard
external connectivity. They also propose an evaluation crite-
rion for LCD algorithms that takes into account the relative
centrality of nodes within the target community, Normal-
izedUtility-WeightedRecall (NUWR). After an experimental
evaluation with synthetic and real networks (power, collab-
oration, football, social), the authors conclude that there is
no single LCD algorithm, but instead algorithms should be
selected based on the properties of the graph and the nature
of the community to be detected. The largest dataset that this
method is tested on is the Western US Power Grid [118] with
4941 nodes.

Moreover, Wu et al. [48], propose a method to determine
the local community structure by analyzing the link sim-
ilarity between the community and a node, motivated by
the fact that most existing methods are dependent on seed
node and impose too strict a policy in the expansion phase.
Link similarity of a node is regarded as the ratio between
the number of common edges of the node and the com-
munity and the number of neighbors of the node. Inspired
by the fact that elements in the same community are more
likely to have common edges, the community structure is
explored heuristically by prioritizing nodes that have high
link similarity with the community. To improve the qual-
ity of the community structure, a three-step process is also
used. Experiments with both synthetic and real networks
(football, citation) show that the suggested method detects
stable and high-quality communities compared to [17], [44],
and [45] in terms of F1 score, although it is only suitable
for undirected networks. The largest dataset that this method
is tested on is the Cora Citation Network [119] with about
17000 nodes.

Ngonmang et al. [49] try to optimize a well-known quality
metric, modularity, in order to detect local overlapping com-
munities, overcoming the problem of failure when the starting
node is at the boundary of community. More specifically
they are based on the work of Chen et al. [45], which sug-
gests a metric that considers the densities of intra-community
edges and outer edges rather than their number, and try to
optimize it. The problem with the former method is that it
may not recognize the local community of a starting node
that is on the boundary of another local community. The
method that is suggested here is called IOLoCo. Experiments
with synthetic and real networks (collaboration, co-purchase,
social) show that their proposed method can be successfully
used to improve recommendation systems in social networks,
compared to [17], [44], and [45] and evaluated by perfor-
mance index [120]. The largest dataset that this method is
tested on is the Amazon.com network collected by [121] with
548552 nodes.

Furthermore, a method called GMAC for LCD is pre-
sented by Ma et al. [51], focusing on the seed-depended
problem. This method estimates the similarity between nodes
via examining the neighborhood of nodes and reveals a local
community by maximizing its internal similarity while min-
imizing its external similarity. The Compactness-Isolation
(CI) Metric is used to decide the inclusion of new nodes in
the local community. According to this metric, the nodes of a
good local community should have high internal similarities
and low external similarities, resulting in a high CI value.
The authors conducted experiments on synthetic and real
networks (social, football, collaboration, power, co-purchase)
and proved that their method is more insensitive to seeds
than approaches like [46] and [17]. In addition, the suggested
method discovered local communities more accurately in
terms of precision, recall and F1 score. The largest datasets
that the authors use are synthetic by the LFR method [106]
with 10000 nodes each.

Moreover, Fagnan et al. [53] focus on accurately iden-
tifying communities, outliers, and hubs in social networks.
The main component of the algorithm is the T -metric, which
evaluates the relative quality of a community by consider-
ing the number of internal and external triads (i.e., 3-node
cliques/triangles) it contains. Intuitively, this metric favours
nodes that formmany triads with nodes inside the community
and few triads with nodes outside the community. Experi-
ments on real networks with ground truth communities (co-
purchase, football, social, politics) verify that the proposed
method performs as well as, or in some cases better than,
state-of-the-art methods like [17], [44], and [45], in terms
of Adjusted Rand Index (ARI) [122]. The largest dataset
that they experiment with is Political blogosphere [105] with
1733 nodes. The authors consider their method applicable to
directed networks too, even though they did not experiment
on such networks.

Besides, Wu et al. [54] examine an interesting aspect of
LCD methods: the free-rider effect. This effect is related to
the observation that most existing metrics tend to include
irrelevant subgraphs in the detected local community. More
precisely, they study the existing goodness metrics and pro-
vide theoretical explanations for the causes of the free-rider
effect. They also develop a query-oriented node weighting
scheme to reduce this effect, and a corresponding algorithm
for LCD. Experimental results in synthetic and real networks
(co-purchase, social, collaboration) show that the proposed
method efficiently reduces the free-rider effect and discover
ground-truth communities more accurately in terms of F1
score when compared to other approaches like [17], [44],
[71], [79]. The largest dataset that they experiment with is
Friendster [113] with 65608366 nodes. Besides, the authors
propose two variants of their suggested method for overlap-
ping and multiple communities respectively.

Xia et al. [56] propose a new local modularity metric G
and a two-stage algorithm for LCD based on it, considering
networks lacking global information. Themethod they follow
adds nodes to the community until G stops increasing. G is
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defined as the ratio between the number of internal edges in
the community and the sum of internal edges in the commu-
nity, edges with only one endpoint in the community, and the
number of edges between the neighboring nodes’ set of the
community. The suggested method was tested on synthetic
and real networks (football) and proved to be quite effective
in terms of precision, recall and F1 score compared to [17]
and [44] methods. The largest dataset that this method is
tested on is NCAA football network [9] with 179 nodes.

In addition, Kanawati et al. [57] explore and evaluate
the combination of different local modularity functions to
identify the node-centric communities in weighted networks.
Various ensemble-based approaches are proposed and imple-
mented, including approaches based on ensemble rankings
and ensemble clustering. Experiments are conducted on
synthetic and real networks (social, co-purchase, football)
with ground-truth communities and show that ensemble
ranking-based approaches outperform other approaches con-
sidering ARI and NMI values. The largest dataset that the
authors use is a synthetic one by the LFR method [106] with
2000 nodes.

Zhao et al. [58] propose an approach for LCD via edge
weighting. More specifically, they first design a new measure
of node similarity considering the weights of neighbouring
nodes. They also develop an edge weighting method based
on this similarity measure. Then, they define a new goodness
metric, Closeness-Isolation (CI), to quantify the quality of
the local community by integrating the edge weights. In this
algorithm, they discover the local community by giving pri-
ority to those shell nodes that have maximum similarity with
the current local community. The CI metric is defined as
the ratio between the sum of the weights of all edges in the
community and the sum of the weights of all edges with
one node in the community and the other in the shell. The
suggested approach has been evaluated with both synthetic
and real networks (social, football, co-purchase) and achieves
good performance in terms of precision, recall and F1 score,
compared to [17], [44], and [51]. However, the real networks
used are quite small. The largest dataset that this method is
tested on is NCAA football network [9] with 179 nodes.

Liu et al. [59] are motivated by the fact that there is no algo-
rithm that guarantees finding an optimal local community
structure and develop a method for LCD with a given starting
node. This method has as its first step finding the most similar
node adjacent to the starting node and forming the initial local
community C together with the starting node. The similarity
is calculated based on the number of common neighbours
between the two nodes. Then, the connectivity degree of the
nodes belonging to the neighbours of C is calculated and the
node whose connectivity degree is maximum to C is added
when the modified local modularity measure is increased.
The modification refers to the exception when the external
edges of a community are zero. More precisely, the local
modularity proposed by Luo F. et al [44] is defined as follows:

M =
Ein
Eout

where Ein is the number of edges with two endpoints in C
and Eout is the number of edges with one endpoint in C .
Liu J. et al [59] modify the local modularity as:

M ′ =
Ein

Ein + Eout

The proposed method was tested on synthetic and real net-
works (social, football, co-purchase, politics) and, in terms
of precision, recall and F1 score, exhibited good results
compared to [17] and [44]. The largest dataset that this
method is tested on is the Amazon.com network collected by
Liu et al. [44] with 585283 nodes.

Besides, Interdonato et al. [60] propose the first method for
LCD inmultilayer networks (ML-LCD).Multilayer networks
model multiple but different interactions among nodes. For
example, in social computing, a person often has multiple
accounts in different social networks, and in fact, nowadays
it has become important to link distributed user profiles of
the same user from multiple platforms. Therefore, in the
presented work, a greedy algorithm is proposed to find a
community shared by all networks. The authors provide three
definitions of the objective function of theML-LCD problem,
corresponding to different ways to incorporate intra-layer and
cross-layer topological features. They also provide the source
code of the method, which is also tested on seven real net-
works (transportation, biological, collaboration and social).
The suggested approach was compared with both single-layer
LCD methods, ( [45] and [13]), as well as multilayer global
community detection methods. The results show that the
method successfully detects multilayer local communities.
The largest dataset that this method is tested on is the DBLP
network [123] with 83901 nodes.

Moreover, Luo et al. [61] propose two LCD algorithms,
DMF_M and DMF_R, based on the local modularity metrics
as suggested by Luo et al. [44] and Clauset [17], respectively.
The former methods consider the characteristics of the local
community during its creation process. These two algorithms
divide the detection process into three stages and employ dif-
ferent dynamic membership functions for each stage to find
local communities. The results after experiments on synthetic
and real networks (social, co-purchase, football) show that
the detected local communities are of high quality compared
to methods of Luo et al. [44] and Clauset [17], in terms of
precision, recall and F1 score. However, the proposed method
is only applicable to undirected networks, and the algorithm
is sensitive to seed node’s position. The largest dataset that
this method is tested on is the Amazon.com network [113]
with 334,863 nodes.

Given a node that belongs to multiple communities, the
approach of Ni et al. [62], focuses on finding the commu-
nities to which it belongs according to local information. The
authors propose a framework named LOCD, for overlapping
communities in three steps: first, a group of nodes in different
communities to which the node belongs is identified, then
the representative members of the group are selected, and
finally the communities to which they belong are determined.
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Experiments with synthetic and real networks (co-purchase)
lead to high quality communities considering precision, recall
and F1 score, comparedwithmethods likeMULTICOM [75].
LOCD is proved to be simpler and more efficient than MUL-
TICOM. The largest dataset that this method is tested on is
the Amazon.com network [113] with 334863 nodes.

Furthermore, Li et al. [63] investigate the LCD prob-
lem in multi-layer networks concerning the trust relation.
The framework proposed by the authors is called MTLCD
and is based on the selection of nodes to be included in
social network communities according to the trust relation.
Users who are trusted can influence others according to
their preferences, since they want to connect with influ-
ential and trustworthy people. Through experiments with
real multilayer networks (biological, satelite, social, mobile
network), the results show that the proposed algorithm is
highly competitive for multilayer social networks compared
to other methods in terms of modularity. However, in non-
social networks, where the trust relation between nodes
cannot be computed well, the results deteriorate as the
social trust increases. The largest dataset that this method
is tested on is the Mobile QQ Zone network [124] with
562062 nodes.

An LCD algorithm based on local modularity density
(LCDMD) is proposed by Guo et al. [64], with a view to limit
sensitivity to seed node selection and unstable communities
problems. More specifically, the algorithm divides the pro-
cess of local community formation into a core area detection
phase and a local community expansion phase according to
the density of the community tightness based on the Jaccard
coefficient. In the core area detection phase, the modularity
density is used to ensure the quality of the communities. In the
local community expansion phase, the influence of the nodes
and the similarity between the nodes and the local community
are used to determine the boundary nodes to reduce the
sensitivity to the selection of the starting nodes. The source
code of the proposed algorithm is publicly available. Experi-
ments with synthetic and real networks (social, co-purchase,
word, collaboration, transportation) lead to high accuracy and
stable communities in terms of precision, recall, f1 score
and conductance, compared to several methods like [14],
[17], [44], [116], and [75]. The largest dataset that this
method is tested on is the roadNet-CA [125] with 1965206
nodes.

More recently, the Hint Enhancement Framework (HEF)
has been proposed by Baltsou et al. [65]. In particular, this
framework provides an efficient method for detecting bet-
ter quality local communities of predefined important nodes
called hints. In many cases the choice of seed(s) incorporates
external knowledge that attaches to these nodes an additional
importance for their community. This knowledge, may be
derived from an expert on the domain, or may arise from the
network’s side information and it constitutes the motivation
for the this work. HEF applies a two-step procedure to dis-
cover the community of hints: 1) it modifies the network by
enhancing the hints using reweighting or rewiring strategies

to materialize the preference, and 2) it applies local com-
munity detection algorithms to the modified network from
step 1. The proposed method is applied on both unweighted
andweighted networks. Extensive experiments with synthetic
and real networks (social, collaboration, biological) prove the
accuracy of the framework to detect local communities com-
pared with local methods like [36], [46], [126] and a global
one [108], considering precision, recall and F1 score. The
largest dataset that they experiment with is Friendster [113]
with 65608366 nodes.

Shang et al. [66] propose an interesting approach to extend
local communities, with a view to solve the problem of poor
algorithm results caused by low-quality seeds. The algorithm
suggested is called HSEI and is based on higher-order struc-
ture and edge information. More specifically, first, different
ways of selecting the first node to join a local community
are used depending on the motif degree of the seed. Second,
a new motif-based modularity function is proposed to extend
the local community so that the extended community is more
tightly connected. A new motif-based central node of the
community is defined to extend the central part of the local
community. For the edge of the community and the area
with sparse connections, the edge information is used to
mine the membership strength between nodes and commu-
nities to obtain more complete members of the local commu-
nity. They experimented on various real networks including
social, collaboration, co-purchase and www networks. The
largest dataset that this method is tested on is the Live-
Journal network [113] with 3997962 nodes. The approach
was compared with others like [13], [37], [61], and [40] in
terms of precision, recall and F1 score, and outperformed the
other methods even when the seed nodes were considered of
low quality.

Further research papers that belong to this class include
Kudvelka et al. [50], Cui et al. [52], Chang et al. [55] which
are not analyzed due to the similarity with other, previously
discussed works.

2) NON-GREEDY TECHNIQUES
This group includes algorithms that find local communities
in ways other than greedily adding a node at each step. Such
techniques require a stopping criterion to define the boundary
of the community. Conductance is a widely used metric for
determining the boundary of a community. Methods that use
conductance try to minimize it, since it measures the fraction
of edges that leave the community. Conductance is defined
for a community C as [101]:

φ(C) =
adj(C,V ) \ C

min{adj(C,V ), adj(V \ C,V )}

where adj(C,V ) = |{(u, v) ∈ E : u ∈ C, v ∈ V }|.
The conductance minimization is an NP-hard problem [127]
thus non-greedy techniques try to approximate a solution
(e.g., [81]). The techniques used in non-greedy LCD are
categorized into Flow-Propagation (FP) and Random-Walk
(RW) based ones.
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a: FLOW-PROPAGATION BASED TECHNIQUES
The methods of this category work as follows: the seed node
emits a stream that shares flow with the adjacent nodes, i.e.
its neighbours. Each of these nodes, stores a flow to pass on
to its neighbors but may also return a part of the flow to the
first node. The probability p(x) of a node to belong to the same
community as the seed node s, is analogous to the stored flow
of the node x. This probability is:

p(x) = ρ−d(x),

p(x) 6

∑
y∈n(x)

p(x)

|n(x)|

where x ∈ V , d(x) the shortest path distance between node x
and s, ρ the average ratio of local links to node degree value
and n(x) the neighbours of node x.

The work of Orecchia et al. [67] presents the first local
graph-partitioning algorithm that combines flow and spectral
methods. The authors propose this combination to achieve
better results when searching for low conductance cuts.
In particular, they show how to locally find a Õ( 1

γ
) approx-

imation to the conductance given a starting set that overlaps
the cut by a γ fraction. Their approach can be generalised
to weighted networks. Although this method is theoretically
efficient, it relies on a complicated variation of Dinic’s algo-
rithm [128], which is difficult to implement in practice.

The FlowPro algorithm is proposed by
Panagiotakis et al. [68] with a view to provide a useful com-
munity detection tool for a simple user of a social network,
which is impossible to know the entire graph structure.
More precisely, in each iteration of the main process of the
algorithm, the starting node propagates a flow that is shared
among its neighbors. Each node can store a portion of the
received flow, propagate it to its neighbors, and send it back
to the starting node. When the algorithm converges, the flow
stored in the nodes belonging to the community of the initial
node is usually higher than the flow stored in the rest of
the nodes of the graph, since the stored flow of a node is
analogous to p(x), and thus forms the desired community.
The algorithm does not require access to the entire network
to proceed. FlowPro has the additional ability to remove
and add edges to s to increase d(x) for nodes x that do not
belong to C(s) (e.g., removing bridges) or decrease d(x) for
nodes x that do belong to C(s). This feature increases the
convergence and performance of FlowPro, as experiments
with many synthetic (208 synthetic networks in total) and real
networks (collaboration social, www) have shown, compared
to [109]. FlowPro detected communities more accurately
and efficiently than [109]. Besides, FlowPro seems to per-
form better against the seed-invalid problem than methods
like [109]. The source code of the proposed method is also
provided. The largest dataset that this method is tested on
is the WWW network with 325730 nodes. The proposed
method was tested also on networks with low overlapping
communities and can be extended to weighted networks.

Veldt et al. [69] introduces the SimpleLocal algorithm that
begins with a reference set reflecting an important part of
the network and seeks for a better conductance set nearby.
Their method is simple to implement and can take advantage
of many maximum flow algorithms [129]. Experiments were
conducted on real networks (collaboration, biological) and
accurately discovered local communities considering preci-
sion and recall. However, the suggested method relies on
repeatedly solving numerous maximum flow problems, with-
out taking advantage of the similarity between consecutive
flow problems. An improvement on the SimpleLocal algo-
rithm, called FlowSeed, is presented in Veldt et al. [70] by the
same authors. In this work, the authors develop a framework
that allows users to place strict constraints and soft penalties
on excluding specified seeds from the result set, depending
on the user’s level of confidence for whether or not each
node should belong to the result set.Experiments on real
networks (social, co-purchase) show the robustness of the
proposed method compared to others like [71], [77], and [69],
in terms of F1 score and execution time. The largest dataset
that these methods were tested on is an MRI network [130]
with approximately 18000000 nodes.

b: RANDOM-WALK BASED TECHNIQUES
The general idea of RW-based methods is that if a given
network has a community structure, a random walker should
be trapped in a community for a relatively long time before
leaving it. This arises from the high density of edges within
communities and the sparse connections between communi-
ties. In the algorithms in this category, the paths of random
walkers are repeatedly sampled around the starting node(s)
until a convergent probability distribution for the visits of
random walkers to the nodes is obtained. Then, this proba-
bility distribution is considered as a measure of the similarity
between the starting node and its neighbors. Nodes with
higher similarity values indicate that they are more likely
to be placed in the seed community [131]. Most algorithms
in this category can be classified into three main groups:
1) PageRank, 2) Heat-kernel and 3) Local spectral based.

c: PAGERANK BASED TECHNIQUES
Personalized PageRank (PPR) is based on a random walk
with restart and is the most commonly used score for non-
greedy LCD. Given a parameter α ∈ (0, 1), it is assumed that
a random walk X0,X1, . . . starts uniformly at random from
the starting set S and at each step moves from a node u to a

node v with probability a
Auv
du

and restarts from a uniformly

at random selected node of S with probability 1− α. A is the
adjacencymatrix of the network and d is the degree of a node.
For all t ≥ 0 and v ∈ V it holds:

Pr(Xt+1 = v) = (1− α)
1s(v)
|S|
+ α

n∑
u=1

Auv
du

Pr(Xt = u).

There is a unique stationary distribution p for the Markov
chain (Xt )t≥0, which is the limiting distribution of Xt when
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t →∞. This distribution satisfies the linear system:

p(v) = (1− α)
1s(v)
|S|
+ α

n∑
u=1

Auv
du

p(u). (1)

The vector p is known as the Personalized PageRank (PPR)
associated with the seed set S. However, solving the above
linear system is computationally inefficient [75]. Therefore,
methods for approximating PPR have been proposed in the
literature. In practice, experimental results show that a few
iterations of the above fixed point equation are sufficient to
obtain a very good ordering of the nodes [74]. In general,
the methods in this category attempt to solve the conduc-
tance minimization problem locally, where the running time
depends only on the volume of the output set.

Andersen et al. [71] suggested a method called PageRank
Nibble that improves the work of Spielman et al. [132]. More
specifically, they suggest a local partitioning algorithm using
a variation of PageRank with a specified starting distribution
and show that the nodes’ ordering produced by a PageRank
vector, reveals a cut with small conductance.

An evaluation of different variants of the PageRank
method can be found in Kloumann et al. [74] focusing
on heuristics that one can control in practice. In partic-
ular, the authors show that standard PageRank performs
better than degree-normalized, personalized PageRank (DN
PageRank). DN PageRank is adopted by several competing
PageRank-based community detection methods, including
the PageRank Nibble method by Andersen et al. [71]. Their
approach is evaluated using real networks with ground-truth
communities (collaboration, co-purchase, social) and the
authors conclude that almost all PageRank performance
improvements result from only two or three iterations of the
PageRank update rule. The largest dataset that this method is
tested on is the youtube network [113] with 1134890 nodes.
However, the highest value of recall is achieved when a large
proportion of target community nodes is used as seeds, e.g.,
10% in the case of the collaboration network.

A different approach is proposed byYin et al [14] where the
Motif-based Approximate Personalized PageRank (MAPPR)
algorithm is presented as an adaptation of the classical
Approximate Personalized PageRank (APPR) method. The
aim of this work is to find the local community that the
seed node belongs, which has theminimalmotif conductance,
a generalization of the conductancemetric tailored to network
motifs. The authors consider as motif any small connected
graph (such as a triangle). Experiments on both synthetic
and real networks (collaboration, co-purchase, social) show
that the proposed framework MAPPR successfully detect
local communities compared to the ground truth, in terms of
precision, recall and F1 score. The largest dataset that they
experiment with is Friendster [113] with 65608366 nodes.
The suggested method can be applied to directed networks
too.

Moreover, Hollocou et al. [75] propose MULTICOM,
a method to detect multiple local communities around a

given seed set that may overlap. MULTICOM finds multiple
local communities by iteratively finding new seed sets and
determining local communities on that basis. The algorithm,
whose implementation is publicly available, consists of three
main steps. In the first step, the local algorithm is used to
find a community for each node in the seed set. In the second
step, the scoring function is used to assign a vector to each
node in the network. The obtained vectors are clustered using
the DBSCAN algorithm to obtain multiple communities.
The algorithm is tested on both synthetic and real networks
(social, co-purchase, collaboration) and compared to other
approaches like [71], [133], and [13] in terms of F1 score. The
largest dataset that this method is tested on is the youtube net-
work [113] with 1134890 nodes. However, in the suggested
method the number of communities detected is highly related
to the input parameters, making it not so efficient as other
methods like the approach of Ni et al. [62].

Similar research papers to the ones described above include
Gharan et al. [72] and Zhu et al. [73].

d: HEAT-KERNEL BASED TECHNIQUES
The heat kernel is another type of graph diffusion that is
useful for discovering communities near a starting node. The
heat kernel method uses the Taylor series expansion of the
exponential function of the transition matrix.

After theoretically analyzing the heat kernel diffusion
property in a previous work [133], Chung et al. [76] propose
a randomized Monte Carlo method to estimate the diffusion.
More specifically, they present an algorithm that takes as
input a graph and a boundary condition and outputs a vector
that is a good approximation to the solution of the linear
SDD (Symmetric Diagonally Dominant) system with bound-
ary conditions. The suggested method can be generalised to
weighted networks too.

Besides, Kloster et al. [77] are the first to propose a
deterministic method for computing a heat kernel diffusion
in a graph. More precisely, the authors present a relaxation
method (hk-relax) to solve a linear system for estimating
the heat kernel diffusion, where the heat value of each node
represents the probability of association. Thus, it consists
a useful approach compared to similar ones like [76] They
show, after an experimental evaluation with synthetic and real
networks (collaboration, social, co-purchase), that the heat
kernel outperforms the personalized PageRank of [71], with
higher values in the F1 score. The largest dataset that they
experiment with is Friendster [113] with 65608366 nodes.
They also provide the source code of their approach.

A parallel version of heat kernel algorithms, among others,
is presented by Shun et al. [78], which besides being tested on
the large network of Friendster [113] with 65608366 nodes,
is also tested on a very large network from Yahoo [134] with
1413511391 nodes.

e: LOCAL SPECTRAL BASED TECHNIQUES
Algorithms in this category apply spectral techniques to
detect local communities. In particular, these methods require
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first obtaining the embedding of the nodes and then applying
the vector clustering method to the embedding matrix.

Mahoney et al. [79] suggest a locally-biased analogue
of the second eigenvector that can be used to compute an
approximation to the best partition near an input seed set.
They also provide an empirical evaluation of their method
called LocalSpectral, on synthetic and real networks (social,
collaboration) and show that it can be applied to finding
locally-biased sparse cuts around an input node set in small
social and information networks. The largest dataset that this
method is tested on is a collaboration network [135] with
379 nodes.

In addition, the LEMON (Local Expansion via Minimum
One Norm) algorithm is presented by Li et al. [13]. The
algorithm is based on the extraction of a sparse vector y in
the span of the so-called local spectral subspace of the graph
around the seed set S. Its source code is also publicly available
for use. The previouslymentioned vector y is used as a scoring
function. The LEMON algorithm is an iterative algorithm,
since the nodes with the highest scores are used to expand
the seed set S and find a new vector y. The iteration stops
when the conductance starts to increase. Experiments with
both synthetic and real networks (co-purchase, collaboration,
social) prove the effectiveness and efficiency of LEMON in
finding communities with high accuracy, compared to local
methods like [77], [136], and [74], and certain global commu-
nity detection methods, considering the F1 score. The largest
dataset that this method is tested on is the orkut network [113]
with 3072441 nodes. In interesting insight concerns how
the size of the seed set affects the algorithm’s performance.
In general, as the seed set size increases, the seed expansion
algorithm performs better. Nevertheless, in LEMON only a
small proportion of the target community nodes is needed in
order to accurately detect a local community, i.e. 2 to 3 nodes.

Moreover, a method for local overlapping community
detection is proposed by He et al. [80]. The method is called
LOSP and its source code is publicly available. More pre-
cisely, the authors suggest extracting the local community by
searching a sparse vector from the local spectral subspaces
using l1 norm optimization. Experiments with real-world net-
works (co-purchase, collaboration, social) show that LOSP
outperforms in terms of F1 score methods like [77] and [13].
In contrast to LEMON [13], which needs more than one seed
node to execute, LOSP can achieve high F1 score values
even with a single seed node. The largest dataset that this
method is tested on is the LiveJournal network [113] with
3997962 nodes. An extension of this work is also proposed
by the same authors in He et al. [85]. However, the quality of
detected communities of the suggested method is sensitive to
the position of the seed node in the community.

Besides, an LCD method based on network motifs
(LCD-Motif) is proposed by Zhang et al. [86], which incor-
porates higher-order network information. LCD-Motif uses
the local expansion of a seed set to identify the local com-
munity with minimal motif conductance, a generalization
of the conductance metric for network motifs. Different

from PageRank-like diffusion methods, LCD-Motif finds the
community by searching for a sparse vector in the span of
the local spectra such that the seeds lie in its support vec-
tor. The authors evaluate their approach on both synthetic
and real networks (citation, biological, social, food chain)
with good and comparable results to several state-of-the-art
approaches like [13], [74], [77], [136], and [14] in terms of
precision, recall and F1 score. The largest dataset that this
method is tested on is the LiveJournal network [113] with
3997962 nodes.

Finally, Shi et al. [88] propose a Locally-Biased Spectral
Approximation (LBSA) approach to identify all latent mem-
bers of a local community from very few seed members,
which improves the suggested algorithm by Li et al. [13].
In addition, this method is the first to use the Lanczos
iteration [137] for the local community detection problem,
a classical method for computing eigenvalues (the spectra
of the matrix). They also use the heat kernel as a sam-
pling method instead of detecting communities directly.
Experimental results with several synthetic and real net-
works (co-purchase, collaboration, social) show that the pro-
posed method outperforms state-of-the-art LCD algorithms
like [71], [77], [80], and [13] in terms of F1 score and
Jaccard index. The largest dataset that they experiment with
is Friendster [113] with 65608366 nodes. The source code of
their method is provided.

Similar random walk based algorithms can be found in
Luo et al. [15], [82], [83], [84], [87], [89].

B. TECHNIQUES FOR DYNAMIC/TEMPORAL NETWORKS
The methods for LCD in dynamic/temporal networks can be
divided into two groups: 1) Snapshot model and 2) Temporal
Smoothness. In the first group, snapshots of the evolving
network are available at different points in time. At each
of these points in time (timestamps), several changes (addi-
tions/deletions of nodes/edges) may occur. Because of these
changes, the communities may also change. The algorithms
belonging to this category focus on updating the communities
in each snapshot considering the community structure of the
previous snapshot. Temporal smoothing methods focus on
finding local communities over time and updating them after
each atomic change, i.e., addition/deletion of nodes/edges.

1) SNAPSHOT MODEL
Takaffoli et al. [90] propose an incremental community min-
ing approach called incremental L metric, in order to detect
more stable communities compared to previous approaches.
The main contribution of their work is to adopt the static
L-metric approach [138] to compute dynamic communities.
Community mining starts at each snapshot with the com-
munities found in the previous one. The communities found
in different snapshots are then matched based on their sim-
ilarity (i.e., the L-metric) and grouped as instances of the
communities evolving over time. The main assumption of
the L-metric is that a community has fewer connections from
its edge nodes to the unknown part of the graph. Although
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the experiments were only performed with a real network,
they resulted in meaningful communities compared to other
methods like [139] in terms of a modified modularity metric.
The largest dataset that this method is tested on, is Enron
email network [125] with 87273 nodes.

Furthermore, in Zakrzewska et al. [11] a dynamic algo-
rithm is proposed to expand the seed set by updating the
fitness score of each snapshot incrementally, focusing on
efficiency. The work focuses on maintaining a community
centered around the seed. Therefore, it is necessary to track
the order in which the nodes were added. Thus, the pro-
posed method ensures that the order of fitness scores remains
monotonically increasing and then restarts the algorithm. The
process is finished when there is no node whose addition
to the community increases the fitness score. The choice of
fitness score metric is left to the user. Experiments with real
networks (social, email) show that the proposed method is
faster than re-computation approaches and that the perfor-
mance improvement is greatest when low-latency updates
are required in terms of precision, recall, ratio of the fit-
ness scores in the dynamic algorithm vs. those obtained by
re-computation and the ratio of the size of the community
output by the former methods. However, it holds that the
suggested algorithm is not time-efficient. The largest dataset
that this method is tested on is the DBLP network [113] with
317080 nodes.

An interesting approach is presented by Nathan et al. [92].
Their main goal is to tie together community detection and
centrality by studying how personalized centrality metrics
can be used for LCD in dynamic networks. The authors are
the first to update the personalized centrality vector each
time the network changes, and then determine the new local
community based on the updated centrality vector. More
specifically, they combine Katz and PageRank centrality val-
ues to obtain local communities of a network. Katz central-
ity values count the number of weighted walks in a net-
work starting from a node, penalizing longer walks with a
user-selected parameter α. PageRank, as mentioned earlier,
is also a walk-based centrality metric that assigns a high
score to nodes visited by a large number of random walks in
the network. Once the personalized Katz or PageRank cen-
trality scores are calculated, the local community is formed
from the nodes with the highest centrality scores. The main
drawback of this method is that it requires a priori knowl-
edge about the size of the community. Experiments with
synthetic and real networks (social, email) show that the
proposed method results in similar high-quality communities
as static re-computation approaches, but is more efficient in
terms of both time and number of iterations required. The
largest dataset that this method is tested on is the youtube
network [140] with 3223589 nodes.

Moreover, the work by DiTursi et al. [93] aims to find
communities with stable membership over time, where mem-
bers interact mainly with each other rather than with the
rest of the network. To model this intuition, the authors pro-
pose the temporal conductance measure, an extension of the

already well-known conductance metric. Thus, they suggest
a method called PHASR to find the temporal community
with the lowest conductance. Evaluations on synthetic and
real networks (road, communication, www) show that the
proposed algorithm scales better than existing alternatives
like [71] and [90] and achieves significant runtime reduction.
The largest dataset that this method is tested on, is a prefer-
ential attachment synthetic network [141] with 15000 nodes.
PHASR, is related to [90], with the difference that PHASR
achieves the discovery of communities with lower conduc-
tance since it considers the full timeline as opposed to con-
sidering only consecutive time steps.

Javadi et al. [94] suggest using the concept of leader nodes
to detect dynamic communities, as they assume that commu-
nities are formed around them. They define the node with the
highest degree of centrality as the leader. Experiments have
shown that their method can effectively detect communities
in both real (social, communication) and artificial dynamic
networks. However, as the size of the dynamic networks
increases, the time efficiency decreases dramatically. The
largest dataset that this method is tested on, is the Enron email
network [125] with 87273 nodes. Leader nodes have also
been used by Gao et al. [91] to detect a network’s community
structure with their proposed method called EvoLeaders.

In addition, the method of Guo et al. [95] first finds the
starting nodes of the community using a metric called the
local fitness of the nodes. Next, a static algorithm is used
to obtain communities in the initial snapshot of the network.
Finally, node contribution is proposed to incrementally reveal
communities in non-initial snapshots of the network with
a suggested method called DyCDNC. The authors perform
experiments on synthetic and real networks (email, routers)
to prove the accuracy of their method for detecting local
communities compared to methods like [142] and [143] con-
sidering modularity and NMI. The largest dataset that this
method is tested on, is Enron email network [125] with
87273 nodes.

More recently, Papadopoulos et al. [96] extended the
PHASR [93] algorithm to conform to the Apache Spark
engine distributed processing standard. An approximation
method for computing the personalised PageRank vector in
the refinement step is also proposed. Performance evaluation
results with synthetic and real networks (communication,
web, road) have shown that the proposed approach is scalable
by increasing the degree of parallelism.

Since a starting node can belong to multiple communi-
ties, in [97] Liu et al. extend their static algorithm [16]
to the dynamic network to solve this problem. In fact,
they are the first to propose a method for multiple LCD
in dynamic networks, called HqsDMLCD. Their method
achieves comparable results to the static method in real
networks (co-purchase, collaboration, social), in terms of
F1 score, conductance, community coverage and num-
ber of detected communities. The largest dataset that this
method is tested on is the LiveJournal network [113] with
3997962 nodes.
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2) TEMPORAL SMOOTHNESS
Hu et al. [98], propose a local algorithm (LDM-CET) for
dynamic community detection that focuses only on the part of
the network that changes at each time step, since network data
usually does not change dramatically in a short time. First,
a static community detection algorithm is executed, and then
a personalized PageRank approach is applied. The starting
nodes are selected based on a strategy that tracks the behavior
of dynamic communities that construct a partial evolution
graph. In general, the PageRank approach is chosen because
it runs fast. However, the chosen strategy for finding seed
nodes is impractical because it spends a lot of time check-
ing whether a node is a local-minimal conductance node or
not. Experimental results with synthetic and real networks
(co-authorship) show that the proposed method tracks the
community structure well when a network does not change
dramatically, in a more efficient way than the compared
methods like [139]. The largest network that the authors use
to evaluate their method is a synthetic network generated by
the LFR method [106] with 1000000 nodes.

An interesting approach is presented by Rigi et al. [99],
where a method for detecting local communities inspired
by geometric active contours is proposed. Geometric active
contours are widely used in machine vision to detect objects
in 2D images. They are known for their speed, autonomous
and unsupervised nature, and ability to track dynamic objects.
The proposed model introduces and uses the derivative-based
concepts of curvature and gradient of the boundary of a con-
nected subgraph in networks. Then, a velocity function based
on curvature and gradient is proposed to determine whether
the boundary of a community should evolve to include a
neighbouring candidate. A framework is proposed to approx-
imate derivatives in graphs. This framework is tested on real
networks (social) and leads to local communities with high
accuracy compared to [30] and [79] in terms of conduc-
tance, precision, recall and F1 score. The largest network that
the authors use to evaluate their method is Facebook graph
FB-JHK of John Hopkins University [111] with 5180 nodes.

Besides, method L-MEGA is suggested by Fu et al. [100],
which is based on motif-based clustering. The authors use the
multi-linear PageRank vector by edge filtering andmotif push
operation, and then apply an incremental sweep cut to obtain
the local community. Experimental analysis of synthetic and
real networks (rating, communication, contact) shows that
the proposed method can detect high-quality communities
in an efficient manner, compared to both static and dynamic
state-of-the-art methods like [144] and [14] considering con-
ductance and triangle density (i.e. the ratio of triangles in
the returned local community). The largest network that the
authors use to evaluate their method is the contact interaction
network [145] with 10972 nodes.

Finally, based on static local seeding, Hu et al. [42] pro-
pose a dynamic local seeding algorithm to handle dynamic
networks by considering only the nodes affected by network
changes. More precisely, the authors suggest a technique to
update the centrality values of nodes involved in network

change. Experiments with synthetic networks show that the
proposed method, called D-LM, is quite fast, but not when
many nodes are affected by changes. The authors use the
F1 score, coverage and modularity in order to evaluate the
suggested method. The largest network that the authors use
to evaluate their method is a synthetic one by the LFR
method [106] with 1000000 nodes.

C. TECHNIQUES FOR GRAPH STREAMS
As far as the authors are aware, there are only a few papers
in the literature on LCD in graph streams, since the specific
problem has engaged the scientific community only in the last
two years.

More specifically, Liakos et al. [101] are the first to propose
a streaming graph community detection algorithm, which
they call CoEuS (source code is publicly available). The algo-
rithm aims to expand seed sets from nodes to communities
under the constraints posed by the streaming model, which
dictates that only a single access to the stream is possible
and the working memory is limited. The proposed approach
has been evaluated on synthetic and real networks (social, co-
purchase, collaboration) and leads to comparable results with
methods for detecting local communities without streaming
like [13] and [80], but utilize the entire graph structure,
considering F1 score. The largest dataset that they experiment
with is Friendster [113] with 65608366 nodes.

Moreover, Baltsou et al. [102] and its extension
Christopoulos et al. [146], describe a framework, which is
used to strengthen the vicinity of the seed set (called anchors)
by exploiting the fact that the seed set is of central importance
for the evolving community. Informally, the anchors are con-
sidered the core of their community because they contribute
in someway to its formation and definition, regardless of their
topological properties within the network. The multi-step
framework that is suggested, firstly applies a static algorithm
to discover the initial anchor’s community and then for each
incoming edge change in the influence range of the anchor,
the anchor’s community is updated. With a view to discover
the most stable anchor’s community, the authors suggest
using a node rewarding method. That is, for each update, the
stable edges in the anchor’s influence range are rewarded by
a weight increase. Experiments are conducted on synthetic
datasets along with three proposed rewarding methods, and
the results are compared with the case where no rewarding
method is used. The authors’ findings indicate that all three
dynamic methods with rewards outperform the dynamic
method without rewards in terms of recall, precision and F1
score. The largest network that the authors use to evaluate
their method is a synthetic one by the RDyn generator [147]
with 5000 nodes.

Tables 4-12 contain all publications discussed in the
present survey, separated by their class. Each Table contains
the references of a class together with the name of the pro-
posed algorithm (if any), some important features, and the
availability of the source code.
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V. TOOLS AND DATASETS USED FOR LOCAL
COMMUNITY DETECTION
A. TOOLS
Since network analysis is a very important research topic
in recent years, many tools have been developed to help
researchers uncover important properties of networks. As can
be inferred, these tools are not specifically designed for
detecting local communities, but for detecting communities
in general. Of course, researchers can use such tools for
LCD, and here we present several that are either packages
based on graphical user interfaces (GUIs) or libraries in
scripting/programming languages [23], [148]. In Table 13 we
present in alphabetical order the most popular tools used in
network community detection, along with their type (GUI or
library), the platform requirements to be installed and their
licenses.

1) GRAPHICAL USER INTERFACES
As can be deduced, GUIs are easier to use than script-
ing/programming languages because they consist of a graph-
ical interface that guides the user. Here we present the most
commonly used ones, which are also well documented.

a: GEPHI
[149] It is a free open source platform for interactive net-
work visualization. Users can interact and manipulate struc-
tures, colors, and shapes to discover hidden properties of
the graph. Communities can be detected using the Louvain
algorithm [150]. The Louvain algorithm attempts to greedily
optimize modularity by randomly moving nodes in multiple
layers from one community to another.

b: CYTOSCAPE
[151] This is an open source software platform for visualizing
complex networks and integrating them with any type of
attribute data.

c: GRAPHVIZ
[152] It is an open source graph visualization software.
It contains various graph designs for displaying networks in
interactive mode.

d: SocNetV
[153] It is a free open source software for social net-

work analysis and visualization. This tool provides var-
ious metrics for graph and network cohesion, as well
as numerous layout models. It also implements commu-
nity detection algorithms such as triad and clique cen-
sus. Finally, it offers famous datasets for social network
analysis for use.

e: PAJEK
[154] It is a software program for analysis and visualization
of very large networks, which is free for non-commercial
use. It helps to calculate various network metrics and detect

community structures. Communities are found using the Lou-
vain and Visualization Of Similarities (VOS) methods. It also
includes several network layouts.

f: CFinder
[155] It constitutes a free software for finding and visualizing
overlapping network communities, based on the Clique Per-
colation Method (CPM) [156]. CFinder uses spring layouts
to visualize graphs.

g: VISONE
[157] It is a free tool for social network analysis and visual-
ization. It implements the Louvain algorithm for community
discovery.

h: NetMiner
[158] It is not an open source tool. NetMiner can be used
to analyze and visualize network data and implements sev-
eral algorithms to detect community structures such as Edge
betweenness, Blondel, Eigenvector, Label propagation and
modularity. In addition, it supports a wide range of visual-
ization layouts.

i: NodeXL
[159] It is a tool for displaying graph data, performing
network analysis, and exploring networks visually. It supports
multiple social network data providers that import graph data
into a spreadsheet format.

2) SCRIPTING/PROGRAMMING LANGUAGES LIBRARIES
Scripting/programming language libraries require knowledge
of the particular language to be used. Therefore, they may be
more difficult to learn than GUIs, but they are much more
powerful and extensible.

a: networkX
[160] It is a Python package for creating, editing and studying
the structure, dynamics and functions of complex networks.
It contains many community detection algorithms such as
Louvain, k-cores, label propagation and others.

b: IGRAPH
[161] It is a library for network analysis and visualiza-
tion in R, Python, and C/C++. It contains several algo-
rithms for community detection, such as Edge betweenness,
Infomap, Label propagation, Louvain method and Random
walk method among others.

c: Neo4j
[162] It is a platform for graph data that also provides
many tools for network analysis. More specifically, the
Neo4j library includes several community detection algo-
rithms such as Louvain, Label Propagation and others.
It also includes many useful metrics such as centralities,
similarities, etc.
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TABLE 4. References of LCD on static networks. Greedy techniques focusing on starting node(s).

d: SNAP
[163] It is a library for network analysis. It contains interfaces
for both Python and C++. It also provides a large number of
different network datasets, including temporal ones.

e: GUNROCK
[164] It is currently the most powerful CUDA graph process-
ing library designed specifically for the GPU.Manymethods,
useful for community detection, are implemented and exe-
cuted in optimal time, such as Louvain, PageRank Nibble and
others. However, it only supports static graph datasets and not
dynamic ones.

f: SENTENCETRANSFORMERS
[165] It is a Python framework for state-of-the-art sentence,
text and image embeddings. It can be used along with GPU
for very fast implementation. Among others, it implements a
local community detection algorithm that is tuned for large
datasets (50k sentences in less than 5 seconds). The user can
also specify the minimal size of a local community.

Among the works included in this survey, only a few
provide their source code. More precisely, the 20% of the
works make their algorithm available online for anyone to
use. Figure 4 shows the source code availability of the works
presented in this survey.

B. DATASETS
There is a plethora of datasets that are used to experiment with
proposed approaches. However, there are certain datasets
that are very commonly used by researchers. In particular,
in the LCD-related literature, we found that most papers use
the same network datasets for their experiments. The main
reason for this is that it allows us to make a fair compar-
ison with competing methods. Another reason is that there

FIGURE 4. Source code availability in works of the present survey.

are not many well-described datasets that simultaneously
share certain characteristics, e.g., ground truth communities.
In Table 14 we present the most commonly used synthetic
and real-world datasets in the works for LCD along with their
usage percentages.

In most works, concerning LCD, researchers choose to
experiment with both synthetic and real network datasets.
More specifically, about 78% of the papers presented here
use both synthetic and real networks, while 22% use only real
networks. As can be deduced, there is no work that uses only
synthetic networks.

As for synthetic datasets, about 59% use the LFR bench-
mark network [106]. The remaining works use one of the
following: Dynamic Benchmark Network Generator [169],
Girvan-Newman network generator [9], R-MAT genera-
tor [170], Stochastic Block Model [171], preferential attach-
ment synthetic networks [141], dynamic network generator
based on Markovian evolution [172], Ulam networks [173]
and the RDYN graph benchmark [147].
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TABLE 5. References of LCD on static networks. Greedy techniques focusing on quality metric.

TABLE 6. References of LCD on static networks. Non-greedy techniques using flow propagation.

Regarding the real-world datasets they are of different
domains, although most of them are social networks. The
DBLP [113] website contains an extensive list of research
papers from the field of computer science. The dataset is a
collaboration network where each node denotes a researcher
and each edge represents the existence of a collaborative
work. Amazon [44] represents a co-purchase network in
which nodes refer to products sold on the Amazon website,
and the edge between two nodes indicates that they are fre-
quently purchased together. Football [9] describes American
football games between division IA colleges during the Fall
2000 regular season. The nodes represent football teams, and
an edge between two nodes indicates that a game occurred
between the two teams. The remaining datasets are social
networks. More specifically, Karate [166] is a network in
which each node represents a member of Zachary’s karate
club, and an edge indicates that two members are friends.
Youtube [167] is another social network where each node rep-
resents a user and each edge represents a friendship between
two users. LiveJournal [113] is another social network where
edges indicate that two users have formed a friendship. Pol-
books [103] is a network of books about US politics. Each

node represents a book, and an edge between two books indi-
cates that they are often bought together. Dolphins [168] is
a social network with frequent interactions between dolphins
living in New Zealand. The nodes represent dolphins and the
edges indicate that the corresponding dolphins have frequent
contact. Besides, Orkut [113] is also a social network where
users make friends with each other. Finally, Friendster [113]
is an on-line gaming network while it started as a social
networking site where users could be form friendships with
other users. Figure 5 shows the usage percentage of real
networks used in the literature of this survey.

VI. INSIGHTS AND FUTURE DIRECTIONS
To suggest the best performing methods to the reader, it is
necessary to take into consideration several of their aspects.
Thus, we have to consider if a method is tested along with
state-of-the-art approaches and proved to perform better in
terms of specific metrics. Besides, it would be a plus if a
method is tested on several and of different real datasets.
Furthermore, it is also important for a method to provide
the source code, so as the researchers could compare their
methods with the existing ones.
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TABLE 7. References of LCD on static networks. Non-greedy, random-walk based techniques using PageRank.

TABLE 8. References of LCD on static networks. Non-greedy, random-walk based techniques using heat kernel.

TABLE 9. References of LCD on static networks. Non-greedy, random-walk based techniques using local spectral.

The best performing methods that focus on node selection
in terms of accurately identify local communities are those
that propose starting the LCD process from maximal cliques
rather than a single seed node proposed by Fanrong et al. [34]
and Hamann et al [36]. However, the method proposed by
Hamann et al. [36], might be the best overall approach, since
it is extensively experimented on many different datasets and
compared to several other state-of-the-art approaches. Fur-
thermore, the suggested method is suitable for (un)weighted
and overlapping networks. Moreover, the source code is pub-
licly available.

Considering greedy methods that focus on a quality metric,
probably the best performing method is the one proposed
by Guo et al. [64]. With a view to limit sensitivity to seed
node selection and the instability of communities, the authors
suggest an algorithm that uses a simple quality metric based
on Jaccard coefficient. The proposed method is publicly
available and the authors conducted many experiments with
both real and synthetic networks in order to compare with
several existing methods.

As for non-greedy methods, the random-walk based
method seems to perform better than flow based meth-
ods, especially when the seed set is small compared

FIGURE 5. Real-world datasets used in works of the present survey.

with the community it belongs. The random-walk based
method proposed by Shi et al. [88] performs very well
compared to other state-of-the-art methods. The authors
also provide the source code of the proposed approach
and conducted experiments with several real and synthetic
datasets.

Concerning the temporal networks, the methods pro-
posed by DiTursi et al. [93] and Fu et al. [100] respec-
tively, seem to perform more effectively and efficiently than
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TABLE 10. References of LCD on dynamic networks. Techniques using snapshot model.

TABLE 11. References of LCD on dynamic networks. Techniques using temporal smoothness.

TABLE 12. References of LCD on graph streams.

other state-of-the-art approaches. Both methods are exten-
sively compared with others on synthetic and real networks
of various types, and detect high quality communities (in
terms of conductance and triangle density) in an efficient
manner.

Another aspect that we discuss here concerns the scala-
bility of LCD methods. In general, one of the reasons that
local approaches are preferred over global ones, is the fact
that the size of the network does not have an important role
in the community detection process, since the researcher
is interested in only a specific region of the network i.e.
around the seed nodes. Thus, the time needed to detect a
community is proportional to the size of the community [14],
[33], [34]. However, mostly in diffusion approaches, their
run-time as well as the quality of the detected local com-
munities may depend on some other characteristics of the
networks like density and community diameter [25], [39],
[68], [100]. For instance, a simple method such as a short ran-
dom walk may be efficient on a dataset with small diameter
communities, but may fail to reach a large part of a commu-
nity in a sparser graph with a larger diameter. Nonetheless,
a more complex approach such as a local spectral method
might maintain consistent community quality across these
graphs, but as the graph size increases, orders of magnitude
become slower.

Considering the future directions of local community
detection, these may be determined, to some extent, by cur-
rent trends in the field. More specifically, as the available

amount of data becomes larger and more mutable, there
is the need for effectively and efficiently analyze rapidly
changing large networks. Thus, researchers of the domain
should probably focus on techniques designed for dynamic
networks and for graph streams. Another trend that was
observed, concerns multilayer networks. Since social net-
works play a vital role in users data analysis, it is impor-
tant to link distributed user profiles of the same user
from multiple platforms. In such cases, multilayer net-
works are used as a modeling tool. We believe that the
local community detection approaches concerning multi-
layer networks will attract more and more researchers’
interest.

Finally, deep learning is gaining popularity in recent years
as it can be used to solvemany problems in various fields such
as speech recognition, natural language processing, image
classification, and so on. One important reason for this is
the performance superiority of Deep Learning techniques
in processing large amounts of data compared to traditional
machine learningmethods. In problems related to community
detection, convolutional graphs are used as a semi-supervised
method. More specifically, given several communities of
a network as training data the aim is to discover more
communities in the same network [174]. Today, there are
few works on LCD in graph convolutional networks [175],
[176], but in the future such methods may attract the interest
of researchers, although they should focus at unsupervised
methods.

VOLUME 10, 2022 110721



G. Baltsou et al.: Local Community Detection: A Survey

TABLE 13. Tools used for network community detection in alphabetical
order.

TABLE 14. Datasets mostly used in LCD papers of the present survey.

VII. CONCLUSION
Local community detection has been a very active area of
research in recent years. There are a variety of proposals
to achieve this goal, but they are not all applicable to any
particular problem. Motivated by the abundance of practi-
cal applications of local community detection, we suggest
a classification of the local community detection techniques
proposed in the literature, focusing on the techniques of the
last decade. This classification is not absolute, as there may

be different separation criteria. Our goal is to help researchers
decide which approach is the best for their particular problem,
based on the type of network and local community detection
method they wish to use. Besides, we discuss tools that are
commonly used in the detection of local communities. These
tools are either GUIs or scripting/programming languages.
Furthermore, we present a list of the most commonly used
synthetic and real datasets in the literature so that researchers
can test their approaches and compare them to others.

As it can be concluded from the present survey, there is
no LCD approach that can be said to be the best or the one
that fits all. Rather, the researcher must choose the most
appropriate method for the problem at hand, depending on the
nature and characteristics of the network and the constraints
that she/he might place on the setting.

In the future, it would be very interesting to extend the
present study with an experimental comparison of local com-
munity detection algorithms. This would give, to any inter-
ested researcher, a more thorough and complete overview of
the available options to LCD problems.
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