
Received 29 August 2022, accepted 2 October 2022, date of publication 12 October 2022, date of current version 18 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213844

Cognitive Complexity and Graph Convolutional
Approach Over Control Flow Graph for
Software Defect Prediction
MANSI GUPTA , KUMAR RAJNISH , AND VANDANA BHATTACHARJEE
Department of Computer Science and Engineering, Birla Institute of Technology Mesra, Ranchi 835215, India

Corresponding author: Mansi Gupta (phdcs10003.19@bitmesra.ac.in)

ABSTRACT The software engineering community is working to develop reliable metrics to improve
software quality. It is estimated that understanding the source code accounts for 60% of the software
maintenance effort. Cognitive informatics is important in quantifying the degree of difficulty or the efforts
made by developers to understand the source code. Several empirical studies were conducted in 2003 to
assign cognitive weights to each possible basic control structure of software, and these cognitive weights are
used by several researchers to evaluate the cognitive complexity of software systems. In this paper, an effort
has been made to categorize the Control Flow Graphs (CFGs) nodes according to their node features. In our
case, we extracted seven unique features from the program, and each unique feature was assigned an integer
value that we evaluated through Cognitive Complexity Measures (CCMs). We then incorporated CCMs’
results as a node feature value in CFGs and generated the same based on the node connectivity for a graph.
In order to obtain the feature representation of the graph, a node vector matrix is then created for the graph
and passed to the Graph Convolutional Network (GCN). We prepared our data sets using GCN output and
then built Deep Neural Network Defect Prediction (DNN-DP) and Convolutional Neural Network Defect
Prediction (CNN-DP) models to predict software defects. The Python programming language is used, along
with Keras and TensorFlow. Three hundred twenty Python programs were written by our talented UG and
PG students, and all experiments were carried out during laboratory classes. Together with three skilled
lab programmers, they compiled and ran each individual program and detected defect/no-defect programs
before categorizing them into three different classes, namely Simple, Medium, and Complex programs.
Accuracy, Receiver Operating Characteristics (ROC), Area Under Curve (AUC), F-measure, Precision and
hyper-parameter tuning procedures are used to evaluate the approaches. The experimental results show that
the proposed models outperformed state-of-the-art methods such as Nave Bayes (NB), Decision Tree (DT),
Support Vector Machine (SVM), and Random Forest (RF) in all evaluation criteria.

INDEX TERMS Basic control structures, cognitive complexity measures, control flow graphs, graph
convolutional network, neural network, software defect prediction, cognitive informatics.

I. INTRODUCTION
Software defect is miscalculation within the code or incorrect
behavior in software execution, conjointly outlined as failure
to satisfymeant or such that requirements. code responsibility
is thought to be one in all the crucial issues in software engi-
neering. Thus, the models accustomed guarantee software

The associate editor coordinating the review of this manuscript and

approving it for publication was Yudong Zhang .

quality is required, and therefore the software defect predic-
tion model is one of them. Defect prediction will estimate the
foremost defect-prone software elements exactly and facili-
tate developers allot restricted resources to those bits of the
systems that are possibly to contain defects in testing and
maintenance phases [1].

The traditional approaches concentrate on creating and
fusing program features. The majority of product metrics are
based on statistics on source code. For instance, Halstead

108870
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3090-1216
https://orcid.org/0000-0001-9263-3072
https://orcid.org/0000-0002-0680-2691
https://orcid.org/0000-0002-4870-1493

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

metrics are determined by counting the number of operators
and operands [2], Chidamber and Kemerer (CK) metrics
are determined by counting the number of functions and
inheritance [3], and McCabe’s metric calculates a program’s
complexity by examining its control flow graph [4].

Unfortunately, ancient ways of software package defect
prediction primarily specialize in making static code metrics
that are fed into machine learning classifiers to predict code
defects. Meanwhile, intensive machine learning algorithms
Decision Tree (DT) [5], Random Forest (RF) [6], Support
Vector Machine (SVM) [7], and Naive Bayes (NB) [8] are
utilized by several researchers to classify software modules
and verify whether or not every module is defect prone
or not, so train their model accordingly. Deep neural net-
work (DNN) and Convolutional Neural Network (CNN)
models made victimization acceptable sophistication selec-
tions are essential for achieving the specified classifier per-
formance. This can be particularly vital once predicting the
fault nature of software package modules. When properly
known, this might facilitate to scale back testing prices by
guiding a lot of attention to the modules identified as fault
prone. Since deep learning design will with efficiency capture
very advanced nonlinear characteristics, deep learning has
become a superb technique for automatic feature generation.
Some researchers [9], [10] have already used deep learning
algorithms, suggestive of Deep Belief Network (DBN) and
Convolutional Neural Network (CNN), in learning linguistics
options from programs Abstract Syntax Trees (ASTs), and
verified that it outperforms typical camp-made features in
defect prediction. This is often as a result of deep learning
algorithms have the power to come up with powerful fea-
tures. Furthermore, ancient handcrafted features reminiscent
of modularity, centrality, and node degree are still utilized in
defect prediction modelling victimization network analysis
technologies. Network illustration learning, a rising deep
learning technology, becomes a completely unique approach
for mechanically learning latent options of nodes in a very
network [11] and receives heaps of attention. As a result,
using representation learning to extract structural information
from code files then applying the learned features to defect
prediction might improve the performance of existing pre-
diction models significantly. Early neural network deviants
may solely be enforced using regular data; however, they
need found tremendous success as GCN are helpful because
several information sets within the space have non-regular
underlying graph structures.

Large-scale software systems are acknowledged as being
extremely complex and singular artefacts that defy all known
physical laws. Software engineering must establish its own
framework and laws, which are thought to be primarily based
on cognitive informatics, in order to become a mature engi-
neering discipline. Understanding the core traits of software
systems is the focus of Cognitive Informatics (CI). Cognitive
complexity describes the effort it takes a person to complete
a task or the difficulty encountered when trying to under-
stand the source code. According to CI, the input, output

and other information that the software contains, as well
as its internal flow of control, determine how functionally
complex the software is [12]. Numerous cognitive metrics
have been developed to assess the complexity of software
components. Section II covers a comprehensive review of
his work (Related Studies). In contrast to previous stud-
ies, we summarize our contributions to the current state of
research as follows:

1) Three Hundred twenty Python programs has been pre-
pared by our skilled UG and PG students and all experi-
ments were conducted during laboratory classes. Along
with three skilled lab programmers have compiled
and run each individual program and have detected
defect/no-defect programs and finally they have cat-
egorized in into three different categories of classes
i.e., Simple, Medium and Complex programs.

2) An effort has been made to categorize the Control Flow
Graphs (CFGs) nodes according to their node features
(in our case, we extracted seven unique features from
the program) and each unique feature was assigned
an integer value that we evaluated through Cognitive
ComplexityMeasures CCMs) and incorporated CCMs’
results as a node feature value in CFGs and generated
the same based on the node connectivity for a graph.

3) In order to obtain the feature representation of the
graph, a node vector matrix is then created for the graph
and passed to the Graph Convolutional Network (GCN)
which aggregates information and generates useful rep-
resentation for nodes in a graph. We prepared our
data sets (Simple, Medium and Complex) using GCN
output.

4) Finally, we formulate Deep Neural Network Defect
Prediction (DNN-DP) and Convolutional Neural Net-
work Defect Prediction (CNN-DP) models to predict
software defects.

The rest of this paper is organized as follows: Section II
is an overview of the work related to this topic. Sections III
describe related theories and propose approaches to pro-
gram level defect prediction, cognitive complexity measures,
GCN, CNN and Deep Neural Network (DNN). Section IV
describe the overall architecture of propose DNN and CNN
approaches to defect prediction and parameter tuning pro-
cedures. Section V contains detailed experimental settings
and key results. Some threats to validity that may affect our
research are presented in Section VI. Finally, we finish work
in Section VII and present the agenda for future work.

II. BACKGROUND OF THE RELATED WORK
In this section, we present the review of research papers on
cognitive complexity measurement approach, deep learning-
based software error prediction, deep learning-based GCN,
and deep learning in software development.

A. COGNITIVE COMPLEXITY MEASUREMENT APPROACH
Various cognitive techniques were advanced to degree
the complexity of conventional object-orientated software

VOLUME 10, 2022 108871

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

program layout structures. Some of them are Cognitive
Function Size (CFS), Cognitive Information Complex-
ity Measurement (CICM), Modified Cognitive Complexity
Measurement (MCCM), Cognitive Program Complexity
Measurement (CPCM), Adamo Measurement, Shehab Mea-
surement,Weighted Class Complexity (WCC), and Cognitive
Code Complexity (CCC) [13], [20]. Adamo supplied a lay-
out of experiments and equipment to discover the cognitive
weight of BCS for a selected programming language. The
test become attended via way of means of 14 skilled college
students with enjoy in Java programming [5]. Some code
snippets are furnished to participants, and the time it takes
every player to recognize the snippet is recorded for each
accurate and wrong answers. Each size of cognitive complex-
ity has its very own blessings and limitations, and locating the
maximum suitable size for all varieties of software program
structures is not a clean task. All of the above complexity
measurements are from Wang et al. We used the cognitive
weights (Wc) of the Basic Control Structure (BCS) proposed
via way of means of [12]. This is a continuous process that
can accurately capture all aspects of the software system.
Pantsar et al. [21] presented human cognitive function using
heuristic and didactic tools in the cognitive process. They
accurately portray human cognitive tasks involved in solving
math problems, including aspects related to the algorithm
level.

B. DEEP LEARNING BASED SOFTWARE DEFECT
PREDICTION
Software defect prediction technology is wide utilized in
software system quality assurance and has the potential to
considerably cut back software development costs. Produce
a predictor mistreatment the recent defect knowledge and use
the established model to predict whether or not or not the new
code contains a defect. Ancient software defect predictions
may be imprecise today. It consists of 2 steps. The primary
step is to extract options. This will increase the potency of
defect illustration by manually planning some features or
combining existing features. The second technique is clas-
sification using machine learning. It specifically employs
learning algorithms to construct accurate models and make
higher predictions.

For defect prediction, several machine learning algo-
rithms are used, together with SVM [7], Bayesian Belief
Network [22], NB [8], DT [5,] Neural Network [23],
and Ensemble Learning [24]. For example, Kumar and
Singh [26] evaluated the capabilities of SVMs in predict-
ing defective code modules employing a combination of
various feature choice and extraction techniques and tested
them on 5 National Aeronautics and Space Administra-
tion (NASA) datasets. The author of [22] used the Thomas
Bayesian belief network to predict software quality. Arar
and Ayan [25] planned and tested a Feature-Dependent
Naive Bayes (FDNB) classification for predicting software
failures at the PROMISE repository. He et al [1] inves-
tigated the performance of tree-based machine learning

algorithms in terms of metric simplification in error predic-
tion. Li et al. [24] planned a brand-new Two Step Ensemble
Learning (TSEL) technique for predicting failure in hetero-
geneous data. They tested the proposed TSEL approach on
thirty public comes and located it to be superior to sev-
eral competitive methods. Mansi et al. [27] demonstrate the
importance of hyper-parameter standardization within the
development of effective deep neural network models for
predicting code module error condition and examination the
results to alternative machine learning algorithms. Within the
majority of cases, their proposed model outperforms other
algorithms.

Furthermore, several studies have projected the Cross-
Project Defect Prediction (CPDP) model to beat the insuf-
ficiency of training data. Turhan et al. [28] proposed mis-
treatment the closest neighbor filter for the target project
to pick out the training data to enhance the performance
of CPDP. TCA+ was proposed by Nam et al. [29], that
employs a contemporary technique referred to as Transfer
Component Analysis (TCA) and an optimized standardized
procedure. They tested TCA+ on eight ASCII text file
comes and discovered that it considerably improved CPDP.
Nam et al. [30] conjointly conferred incapacity prediction
ways cherish different measures in numerous projects so as
to address the matter of heterogeneous knowledge in CPDP.
Software defect prediction using a hybrid model (CBIL),
as proposed by Ahmed et al. [57], was tested using a sam-
ple of seven open-source Java projects from the PROMISE
dataset. Applying the following evaluation metrics, CBIL is
assessed: Area under the curve and F-measure (AUC). Their
results shows that the CBIL model outperforms CNN by 25%
in terms of average F-measure. In terms of average AUC,
the CBIL model outperforms the Recurrent Neural Network
(RNN), which achieves the best performance among the base-
line models chosen for their experiments. With the help of
recent research on deep learning fault prediction algorithms,
Safa et al [58] were able to bridge the gap between program’s
semantics and fault prediction features and produce accurate
predictions.

C. DEEP LEARNING BASED GRAPH CONVOLUTIONAL
NETWORK
Thomas et al. [31] presents an evolutionary approach for
semi-supervised learning of graph-structured data based on
the efficient transformation of convolutional neural networks
that act directly on the graph, and convolutions of spectral
data by local first-order approximation and use the archi-
tecture of complex graph. The model scales in proportion
to the number of edges in the graph and learns a hidden
class representation that encodes both the local graph struc-
ture and the node properties. Anhetal. [32] Demonstrated
in their work that they automatically learn error properties
using accurate graphs that represent program execution flows
and deep neural networks. In their article, they first create
a control flow graph from assembler instructions obtained
by compiling the source code, and then apply a multi-layer

108872 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

multi-view convolutional neural network (DGCNN) to learn
semantic features. They tested on four real-world datasets in
a way that transcends baseline, including several other deep
learning approaches.

Meilong et al. [33] presented a representational learn-
ing lever for generating semantic and structural features.
It extracts the symbol vector from the AST-based code file
and feeds the symbol vector to the built-in neural network
to automatically learn the semantic features. It also builds
complex network models based on the dependencies between
code files, the software network (SN). They applied the
network integration method to learn the structural features.
Finally, they built a new model for predicting software
errors based on the learned semantic and structural features
(SDP-S2S). They evaluated the method for six projects col-
lected in the PROMISE public repository. Their results show
that the contribution of structural features extracted from
the software network is important, and the results appear
to be better when combined with semantic features. Com-
paring their contribution to traditional manual functional-
ity, the SDP-S2S F readings have increased overall, with
a maximum growth rate of 99.5%. It also examines the
sensitivity of parameters in learning semantic and structural
features and provides guidance on predictive optimization.
Sharma et al. [34] used the PHEME Rumored Tweet dataset,
which includes five incidents: Charlie Hebdo, German Wing
Drop, Ottawa Shooting, the Siege of Sydney, and rumored
and non-rumored tweets about Ferguson. They converted the
rumored tweet dataset to a suspicious user dataset before
using a graph neural network (GNN) -based approach to
identify suspicious users. They examine GCN, a type of
GNN, to identify suspicious users, and use GCN results and
compared with basic approaches such as SVM, RF, and deep-
based long short-term memory (LSTM). Their experiments
were performed on real-world datasets and achieved values
of up to 0.864 for F1 scores and 0.720 for Area Under-Curve
(AUC) Receiver Operating Characteristics (ROC) for GNN-
based effectiveness to identify a user.

Banerjee et al. [35] examined knowledge-based entity-
relationship graphs and language-related dependency graphs
to calculate richer representations of words and entities.
They tested with four datasets: a modified DSTC2 dataset,
a mixed code version of the recently released four-language
DSTC2 dataset, a Wizard-style Oz CAM676 dataset, and a
Wizard-of-Oz-style multi-WOZ. For all four datasets, their
methods are in many ways superior to existing methods.
In order to process projects of various sizes with the same
level of detail, Lucija et al [56] created an end-to-end model
for defect prediction based on a convolutional graph neu-
ral network (GCNN) whose architecture can be customised
to the analysed software. Based on the processing of the
nodes and edges from the abstract syntax tree (AST) of
the source code of a software module, their model deter-
mines whether the module is defective or not. Their proposed
model outperforms conventional defect prediction models
in terms of AUC and F-score, according to experiments on

open-source Java projects. Their model has demonstrated
comparable predictive abilities for the studied projects when
compared to existing state-of-the-art models based on their
F-scores.

D. DEEP LEARNING IN SOFTWARE DEVELOPMENT
In addition to software defect prediction, deep learning mod-
els are used in areas such as software maintenance [36], code
clone detection [37], and error detection [38]. Guo et al. [36]
used a recurrent neural network (RNN)model to link software
maintenance requirements, designs, source code, test cases,
and other deliverables. Li et al. [37] proposed a clone detec-
tion method based on deep learning. In their treatise, AST
tokens were used to represent method-level code clones, and
non-clones were used to train classifiers that could recog-
nize code clones. Their method produced similar results in
a shorter amount of time. Nguyen et al. [38] found an error
in defect prediction using a deep neural network. The goal
of their model was to solve the lexical mismatch problem,
and they found that the terms used in bug reports differed
from the terms and code tokens used in the source files.
Their model achieved 70% accuracy with 5 recommended
files.

Deep learning has also influenced source code orga-
nization [39], runtime behavior analysis [40], feature
placement [41], vulnerability analysis [42], and coder
identification [43].

III. THEORIES AND APPROACHES
A. SOFTWARE DEFECT PREDICTION
Figure 1 represents the propose architecture for program level
defect prediction process based on deep learning concepts.
The first four steps (step-1, step-2, step-3 and step-4) of the
procedure is to gather programs and labelled them as clean
(no-defect) and buggy (defect), extract useful features (in
our study we extract seven features which will discuss next
in Section B) from the program and get the values of the
feature through cognitive complexity measures, built CGF
and assigned features value to the individual node in a graph
and same will be generated based on the node connectivity
in a graph through feature relationship and finally we built
node vector matrix for the entire graph. In the next three steps
(step-5, step-6 and step-7), a node vector matrix is passed to
GCN which generates fixed size features representation for
an individual node in a graph and finally we applied one-
way max polling approach to get fixed size vector of the
graph regardless its shape and size. We prepared our data sets
repository for simple, medium and complex programs from
the output of the GCN (shown in step-8). Step-11 is to form
training instances by extracting features from the categorized
program modules (shown in step-9 and step-10). Step 12 is
to create a classification model and train using a training
instance.

In our case, we chose four machine learning models (RF,
DT, NB, and SVM) to compare with the proposed DNN-DP

VOLUME 10, 2022 108873

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

FIGURE 1. Proposed architecture of program level defect prediction process.

and CNN-DP. Finally, new program function instances are
sent to a trained classifier to predict whether the source file
has flaws.

B. COGNITIVE APPROACH FOR EVALUATING NODE
FEATURES
The cognitive approach focuses on both the internal and
control structures of the software while calculating com-
plexity. Sequential, branched and iterative control structures
are usually identified in the software. Cognitive weights
were used by Wang et al. [12] assigned to all of the above
Basic Control Structures (BCS) depending on the difficulty
or relative amount of time and effort required to under-
stand a given software structure. Cognitive weights (Wc)
are assigned by many cognitive psychology experiments in
cognitive informatics, and the assigned weights are shown
in Table 1.

Our general approach for evaluating the node fea-
tures through cognitive complexity measures as (a) Extract
features from the source code (in our study we use seven
node features i.e., IN (input), OUT (output), IF-THEN-ELSE
(branch), WHILE (iteration), FOR (iteration), EXP (expres-
sion) and FC (function call) and represented as in the given
order [IN, OUT, IF-THEN-ELSE, WHILE, FOR, EXP, FC]
for a node in CFG. (b) Built CFGs for a program and gener-
ates node features value. (c) Finally, a node vector matrix is
created for the entire CFG and pass it to the GCN for auto-
matic learn features. The process for evaluation for cognitive
complexity measure values as well as node features value are
mentioned below:

TABLE 1. Cognitive weights (WC) of each BCS.

1. Evaluation of CCMs is composed of following
steps: -

a) Require: Program
b) Find out the BCS, its weights and existence of layers.
c) If there are no nested If-Then-Else conditions, for or

while loops, the cognitive weight is calculated by taking the
sum of all BCSs within the block.

d) In case of nesting, the cognitive weight is calculated by
multiplying the cognitive weight of inner BCS with cognitive
weight of outer BCS i.e., for a component with q-linear
blocks which consists of m-layers of nesting BCS with each
layer having n-linear BCS, the total cognitive weight may

108874 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

be define in [12] as

Wc =
∑q

j=1
[
∏m

k=1

∑n

i=1
Wc(j, k, i)] (1)

e) If q blocks do not contain any embedded BCS then the
step (c) formula can be simplified as follows:

Wc =
∑q

j=1

∑m

k=1
(j, k) (2)

f) Figure 2 shows an example of calculating the cognitive
weight (Wc) of a program. In this example, loop iterations
are not considered because iterations do not increase the
difficulty of the source code and require an understanding
of the program. The cognitive weights of BCS were taken
from Table 1. The overall cognitive complexity scale of the
program is 60.

FIGURE 2. Example to evaluate the cognitive weight of a program.

2. Evaluation of node features value is composed of follow-
ing steps: -

a) Require: CFG.
b) The example mentioned in the Figure 2, is taken for

consideration. Apart from the features mentioned in the
example (like FOR=24, WHILE=39, IF-THEN-ELSE=12,
FC=2), we assume other features value for the program have
i.e., IN=1, OUT=5 and EXP=2.

c) Fixed sized vector is created for a node in the CFG
i.e., [IN, OUT, IF-THEN-ELSE, WHILE, FOR, EXP, FC].

d) For a node connectivity in a graph if there exist a path
then we assigned an integer value otherwise we put zero for
others.

e) Figure 3 shows how nodes features value is created for
a node in a CFG.

C. BUILDING GCN FOR FEATURE REPRESENTATION
Machine learning graphs can be a daunting task due to their
very complex yet informative graph structure. This section
shows how to perform deep graph training using the Graph
Convolutional Network (GCN). GCN is a influential type of
neural network designed to manipulate graphs directly to take
advantage of structural information. Combining the impres-
sions from [31], it shows how the representation of informa-
tion moves through the hidden layers of his GCN. We will
use coding examples of how GCN previously aggregates

FIGURE 3. Process of evaluating nodes features value for a node in a CFG.

information from layers and how this mechanism creates a
useful representation of a node in the generated diagram.
Spatial Graph Convolutional Networks and Spectral Graph
Convolutional Networks are his twomain types of GCN algo-
rithms. The high-speed approximate spectrum-based graph
convolutional network of [31] is the focus of our research.

Before elaborating on the calculations performed by GCN,
let’s briefly explain the concept of forward propagation in
neural networks. To transfer the feature representation to
the next layer (forward path) of the neural network, use the
following equation:

H [i+1]
= σ (W [i]H [i]

+ b[i]) (3)

where H[i+1] is feature representation at layer i+1, σ is
that the activation function, W [i]H [i] is that the weight and
representation at layer i, b[i] bias at layer i. In simple regres-
sion, this is often approximately up to y = mx + b, where
m is the same because the weights. The input features are
represented by x. The bias is b. The step forward (3) above
from statistical regression is that neural networks apply non-
linear activation functions to represent the non-linear features
in latent dimension. So (3) for the primary hidden layer
i = 0) can be rewritten as follows:

H [1]
= σ (W [0]H [0]

+ b[0]) (4)

where the features represented at layer 0 are essentially the
input features (X).

In this method, Adjacency Matrix (A) will include within
the forward propagation equation together with the node
features (or so-called input features) within the forward prop-
agation equation, ‘A′ may be a matrix that represents the
perimeters or connections between the nodes. By including
‘A′ within the forward pass equation, the model is in a posi-
tion to find out feature representations supported node con-
nectivity. The bias b is omitted for clarity’s sake. The resulting
GCN is considered as a first-order approximation of the
spectral graph convolution within the diversity of a message-
forwarding network, within which information is propagated
along the graphs of neighboring nodes [31]. By including

VOLUME 10, 2022 108875

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

the adjacency matrix as an additional element, the continuity
equation becomes

H [i+1]
= σ (W [i]H [i]A∗) (5)

A∗ signifies the normalized version of A. We can better
understand why we need to normalize A and what happens
during forward pass in GCNs by building one. The following
are the steps for creating GCN for one graph example as
mentioned in Figure 2 and Figure 3:

a. Use NetworkX to create the graph (G). Node features
are assigned to each node in a graph. Define the graph’s
edges.

b. Insert A into the forward pass equation to get the
adjacency matrix (A) and the node feature matrix (X)
from graph G. As ‘A′ is inserted into the forward-pass
equation, the model’s feature representation becomes
richer.

c. Taking the dot product of A and X (i.e., AX) that repre-
sents the sum of neighbouring node features.

d. In step (c) AX sums up the features of adjacent nodes
but does not consider the node’s own features. Now,
inserting self-loops and normalizing A.

e. In step (d) the elements of AX are not normalized.
As with any neural network operation, to prevent
numerical instabilities and vanishing/exploding gradi-
ents, need to normalize the features in order for the
model to converge. For normalizing a data in GCNs
by computing the degree matrix (D) and performing
the dot product operation of the inverse of D with AX
(represented as DAX).

f. As suggested by [31], perform symmetric normaliza-
tion to obtain more active feature representation. Look-
ing back at (3) A∗, this is known as the renormalization
trick.

g. Create a 2-layer GCN by incorporating weights and an
activation function. As we had chosen 7 features and
RELU as the activation function, we placed 32 neurons
in the hidden layer and 7 neurons in the output layer for
our study.

h. Use one-way Max Pooling approach to generate a
fixed-sized vector of 7 features, which serves as the
data set for our proposed DNN-DP and CNN-DP mod-
els for defect prediction.

Figure 4 depicts the steps for creating a GCN for single
graph example, as well as the output for building a GCN
for features representation. From Figure 4 following obser-
vations have been made which are as follows:
• Step-a, provides the number of nodes, the number of

edges, and assigns a feature to each individual node in
the graph. In the given example, the total number of
nodes is 17, the number of edges is 16, and the average
degree per node is 1.824.

• Step-b, provides A and X fromG. In the given example,
the shape of A is (17, 17) and the shape of X is (17, 7).

• From the result of Step-c, we see that the second row
of the dot product of A and X is the sum of the

characteristics of the nodes connected to node 1, which
are nodes 0, 1, 2, 3, 4, 5 and 6. This explains how the
propagation mechanism works in the GCN and how
node connectivity affects the representation of hidden
objects seen by the GCN.

• Since Step-d does not take into account the characteris-
tics of the node itself, it inserts a self-looping mech-
anism to connect the node itself. Since each node is
connected to itself, all diagonal elements of A are 1.
Therefore, use a self-loop to rename A to A_Hat and
recalculate AX. This is the product of A_Hat and X .

• Because the element of AX is not normalized. So, from
Step-e the data will be normalized by computing D
which is nothing but the number of edges to which a
node is connected. When we compare AX with DAX
(D−1 dot AX), the higher the node degree, the lower the
weight of the node features in theDAX. In other words,
the lower the level of a node, the more likely it is to
belong to a particular group.

• In Step-f, perform symmetric normalization (using
DADX = D−1/2AD−1/2) to get a richer/active object
representation. The output of Step-f shows the repre-
sentation of the active features.

• From Step-g, we find that even without training, the
GCN can learn to represent features. The results clearly
show two main groups, on the left side with nodes
8, 10, 15, 3, 5 and 11 and six main groups on the
right side with nodes 1, 2, 4, 6, 7, 9, 12, 13, 14,
16 and 17. We can conclude that GCN can learn
to represent feature even without training or back
propagation.

• The output of Step-h represents a fixed-size vector rep-
resentation when the one-dimensional maximal aggre-
gation approach is applied.

D. CONVOLUTIONAL NEURAL NETWORK
CNN could be a form of neural network that processes
data with a lattice-like topology [44], such as 1D statis-
tical data and 2D image data. CNN has been extremely
successful in practice with speech recognition [45], image
classification [46] and linguistic communication process-
ing [47], [48]. We biased our proposed model for extract-
ing features from the software repository for defect
prediction.
A basic CNN architecture [49] is shown in Figure 7.

Convolutional layers, pooling layers and a simple fully con-
nected network, also as a dense network, structure the sys-
tem. The neuron units of each layer are also connected to
every other neuron unit. The convolution layer is sometimes
placed immediately after the input layer. It is fed from a
convolutional layer to a multi-layer feed forward (MLFF) or
fully connected network [50]. The convolution layer performs
convolution with other operations on the input. This can be
thought of as feature extraction, and MLFF is often thought
of as a choice block. So, determine the category of the input or
predict the value supported by the features extracted from the

108876 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

FIGURE 4. Steps (a-h) for creating and building a GCN for feature representation.

previous convolution layer. From Figure 7 it’s observed that
the ith neuron within the mth layer (convolutional layer), the

weights of the ith neuron within the (m −1)th layer asWm−1
i ,

the bias within the (m −1)th layer as bm−1 and in our work,

VOLUME 10, 2022 108877

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

we use rectified linear units (non-linear activation function)
which might be acts as follows:

hmi = ReLU (Wm−1
i ∗ Vm−1

i + bm−1) (6)

The SoftMax activation function, which can be a variety of
sigmoid functions, is used to obtain values from the output
layer. SoftMax reduces the output of each neuron to a spread
between 1 and 0. It is nonlinear by definition. It is typi-
cally used when overcoming an excessive number of classes.
The mathematical expression for the SoftMax activation
function is:

σ (zi) = ezi/(
∑K

j=1
ezj) (7)

Other operations are as follows:
a) Pooling:
Pooling can be a technique to reduce the dimensionality

of a given image while emphasizing the important features.
Pooling is typically used after the convolution layer to scale
back the dimensions of the convolution output. It also helps
reduce over-fitting. Max pooling is the most popular pooling
technique. After each pooling operation, the largest value in
exactly one window of size f is selected and shifted over the
input with a step of length s. In our experiment, we used max-
pooling with a pool size of ’2’ for CNN-DP.
b) Flatten:
The convolution layer output can have a depth greater than

one. Flatten concatenates the output of the convolution layers
into a flat structure, which is then fed as input to the MLFF
network. Figure 5 shows the flatten output.

FIGURE 5. Flatten output.

c) Dropouts:
Dropouts are used to preventing over-fitting, which could

be loosely defined due to the phenomenon of memoriz-
ing inputs rather than learning general properties of inputs.
Dropout is the process of removing a neuron’s output, result-
ing in a zero input to the subsequent layer [54]. There are also
multiple neurons during a shift and hence the dropout rate
P determines whether a neuron drops its output P(drop) or
not. If P(drop) = 0.8, each output selects a variance between
0 and 1 in each direction. If the number chosen is less than
0.8, the output is discarded. Figure 6 shows a representation

of this idea. For CNN-DP, we used dropouts between the
convolution and max pooling layers in our study.

FIGURE 6. Dropout.

d) Multilayer Feed Forward Network:
A fully connected layer, also known asMLFF, is a structure

in which neurons of one layer are connected to all neurons of
the next layer [50]. MLFF accepts the output of a smoothed
convolutional layer.
e) Efficacy:
The effectiveness of CNNs is essentially empirical, with

the researcher refining her models that supported the scope
and available data. As a result, parameter setting is criti-
cal to training a successful CNN. Discuss well how to set
these parameters in Section IV of our proposed CNN-DP and
DNN-DP models.

FIGURE 7. Basic Convolutional Neural Network Architecture.

E. DEEP NEURAL NETWORK
The Deep Neural Network is used to identify the most appro-
priate and acceptable model parameters in order to develop a
machine learningmodel that is structurally effective. Asmen-
tioned in [52] and [53], the deep neural network has the
power to tell complex relationships. They use the concept of
modularity to build a fancy network out of smaller functional
units. Some suggestions for combining and modifying these
individual entities to model more complex relationships are
as follows:
a) Layers:
Neurons in neural networks are usually organized in layers.

When linear units with a common set of inputs are grouped
together, a dense layer is formed. As shown in Figure 8, The
neural network’s layers are thought to carry out relatively
straightforward transformations, as wemight imagine. Neural
networks can transform inputs in increasingly complex ways
through a deep stack of layers. Each layer of a well-trained

108878 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

neural network is a transformation that brings us closer to
the solution. The DNN-DP study used a high-density 4-layer
stack to achieve the optimal solution.

FIGURE 8. A dense layer of two linear units.

b) Activation Functions:
Without the activation function, neural networks can only

learn linear relationships. To adjust the curve, we need to use
the activation function. Figure 9(a) shows a neural network
with a linear relationship. The activation function is a function
applied to each output (its activation) of a shift. The most
common is the maximum rectification function (0, x). The
rectifier function has a graph of a line segment whose negative
part is rectified to zero. Applying the function to a neuron’s
output creates a curve in the data that moves away from a
simple line. Figure 9(b) shows the rectification function. If we
connect the rectifier to a linear unit, we get a rectified linear
unit or RELU. If we apply the RELU trigger to a linear unit,
the output peak reaches (0, w ∗ x + b). Figure 9(c) shows a
normalized linear unit. The CNN-DP and DNN-DP studies
use the RELU activation function.
c) Stacking Dense Layers:
Figure 10 shows a fully connected network with a dense

stack of layers. This allows complex data transformations to
be performed. It is also known as the hidden layer because
the layer’s output never appears before the output layer. This
study uses binary classification to predict software defects,
so we may need an output activation function.

IV. PROPOSED WORK
As covered in Section III (Sub-Title C, Generating and build-
ing GCNs for feature Representation), the final fixed-size
vector representation when the one-dimensional maximal
aggregation approach is applied as shown in Figure 4 (Step-h)
for different categories of program, i.e., Simple, Medium and
Complex, will become the standard data set for our proposed
defect prediction models (DNN-DP and CNN-DP). In the
subsections, we first discussed the parameter tuning proce-
dure that helps in building efficient DNN-DP and CNN-DP
models because it contains important parameters such as
number of hidden layers, number of neurons in each layer
and training details such as learning rate, dropout rate, and

regularization methods, and then we discuss proposed defect
prediction models.

A. PARAMETER TUNING PROCEDURE
We used the theory from previous work for the parameter
tuning procedure for DNN-DP and CNN-DP as described
in [27]. Machine learning models are primarily empirical,
with the researcher customizing their model based on the
application domain and available data. However, here we
focus on tuning parameters like the number of hidden layers,
the number of neurons in each layer, and working on training
details like the learning rate and the regularization method.

For each data set, training starts with a small number of
hidden layers and a small number of neurons in each layer.
If the drawing accuracy is not good, more layers and nodes
will be added. The number of epochs will also increase.
This larger network strategy and longer training will continue
until the data on the train matches well enough, or at least
with the accuracy achieved by other classifiers. Then the
performance of the validator is tested. If the performance
is not good, it is because there is a high variance problem
and the network is overloaded with training data but cannot
generalize. To remedy this, a process of network regulation is
planned.
a) L2 Regularization:
A regularization parameter λ is set which is used as in the

Loss (or Cost) function J as follows:

J (W , b) =
[
1
m

∑m

n=1

(
yn log ŷn + (1− yn) log (1− ŷn)

)]
+
λ

2m
‖W‖22 (8)

Cross-entropy loss function, the first term in (8) right-hand
aspect, measures the effectiveness of a class version whose
output is a possibility between 0 and 1. in this, yn denotes the
real value, and ŷ_(n) the anticipated value. The L2 Regular-
ization time period, which has the squared norm (addition-
ally referred to as the Frobenius Norm) of the load matrix,
is the second time period on the right facet of (8). Here,
‘‘m’’ stands for the dataset’s sample rely. It is essential to
minimize each of the terms on the right-hand side so that you
can minimize the loss feature J. The weights are made to end
up smaller by using placing the value of to a high price (to
minimize J). Smaller weights make a network simpler and
prevent it from learning complicated functions. All weights
are driven to smaller values by penalizing the squared values
of the weights in the cost function since the cost would be
high at higher weights. In reality, some neurons either go to
sleep or are excluded from the model, simplifying it. Weight
decay regularization is another name for L2 regularization.
The values in the experiments range from 0.02 to 0.4.
b) Dropout Regularization:
Deep learning-specific regularizationmethods like dropout

are frequently used. In each iteration, some neurons are ran-
domly turned off. It means that randomly chosen neurons are
dropped-out at random. Every time we iterate, we actually

VOLUME 10, 2022 108879

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

FIGURE 9. Activation Function.

FIGURE 10. A Stack of dense layers makes a fully connected network.

train a new model using a different subset of neutrons when
some neurons are disabled. As a result, the model’s neurons
acquire features on their own, without being specifically
reliant on another neuron. This means that those neurons
that were dropped out were temporarily removed during the
forward pass and did not receive any weight updates during
the backward pass.

Regularization reduces the network’s capacity to overfit
the training set, which harms training set performance. The
fully connected layers typically experience dropout because
they have the most parameters and are therefore more likely
to over co-adapt, leading to over-fitting. Figure 11 depicts a
DNN with some dropout nodes and Figure 6 depicts a CNN
with some dropout nodes.

Consider the layer l node x and the layer l-1 nodes u1,u2,
u3, u4that are connected to x. Actually, dropout does nothing
more than distribute the weights. It distributes the weight
among all the nodes rather than giving any one node more
weight. The example that followswill show you how. Letw1x ,
w2x , w3x and w4x represent the weights of the connections
between node x and u1,u2, u3 and u4.

FIGURE 11. Deep Neural Network with some dropout nodes.

Squared Norm ||w||2 for this layer is

||w||2 = w2
1x + w

2
2x + w

2
3x + w

2
4x (9)

Let the sum of the weights be equal to k , i.e.,
∑

wix = k
Case 1: If all the weight at is with one connection say u1

to x

w1x = k,w2x = w3x = w4x = 0

||w||2 = k2 (10)

Case 2: When the weight is evenly distributed over two
links, u1 to x and u2 to x.

w1x =
k
2
;w2x =

k
2
;w3x = 0;w4x = 0

||w||2 =
k2

4
+
k2

4
=
k2

4
(11)

Case 3: When the weight is evenly distributed on all four
links.

w1x = w2x = w3x = w4x =
k
4

||w||2 =
k2

4
(12)

108880 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

If the weights are distributed, as in Cases 2 and 3, and
not concentrated with a single compound, as in Case 1, the
squared norm of the weights decreases in each of the cases.
For tiers with many nodes, the probability of failure should
be high, and for tiers with few nodes, the probability should
be low or even zero. The L2 regularization method reduces
over-fitting by changing the cost function, which summarizes
the situation. The dropout method, on the other hand, reduces
over-fitting by changing the network itself.

B. BUILDING DEEP AND CONVOLUTIONAL NEURAL
NETWORKS MODEL FOR DEFECT PREDICTION
The implementation details of the algorithms used and the
proposed model is presented in this section. We suggest a
deep learning-based architecture for a process that anticipates
program-level defects, as discussed in Section-III subtitle A.
Using the GCN output to create a data repository for simple,
medium, and complex level programs, we then move on
to developing our deep and convolutional neural network
models for defect prediction.

This section introduces CNN-DP and DNN-DP models.
CNN-DP is based on a one-dimensional (1D) CNN model.
Figure 12 and Figure 13 show the proposed overall architec-
ture of CNN-DP and DNN-DP for the created dataset reposi-
tory. We also discuss some of the keywords used in software
defect prediction. A test set is a set of examples used to test the
learned model, as opposed to a training set, which is a set of
examples used to train amodel.When using defect prediction,
the source file for the training and test datasets is the same.
The CNN-DP model has two convolution layers, a max-
pooling layer to extract global patterns, a dropout layer to
fix overfitting problems, a flattening layer, and a dense layer
with L2 regularization to generate deep features and better
support simplification, and a convolutional linear sequential
model classifier to predict whether a source file was defective
or not. The DNN-DP model consists of four dense layers
separated by two dropout layers to solve overfitting problems,
create deep features, and help simplify. Finally, to determine
whether a source file was defective or not, a deep neural linear
sequential model classifier was used. For more information
on the CNN-DP and DNN-DP architectures, some points are
mentioned below:

a) The proposed CNN-DP and DNN-DP models
are built using Python 3.5.2. The CNN-DP and
DNN-DP related results were generated using Keras-
Pre-Processing (version: 1.1.2), a Python-based neural
network library that can also be run on TensorFlow
(version: 2.3.1). The experiment was performed on
a computer equipped with a 64-bit operating system,
a x64 processor and 16 GB of RAM.

b) A convolutional linear sequential model classifier is
proposed and implemented in Keras to predict soft-
ware defects. After pre-processing the labeled source
files, we split the dataset into training and test sets
with a [70:30] split ratio. To get our prediction results,
we fed our training data into proposed CNN-DP and

DNN-DPmodels, which have fixedweights and biases,
and then we fed each file in the test set into pro-
posed defect prediction model. Based on the result
obtained, we predicted whether a source file was defec-
tive (buggy) or non-defective (clean). It was considered
defective if the result was greater than 0.5, otherwise it
was considered non-defective.

c) In CNN-DP, the model is designed with two convo-
lution layers, a max-pooling layer, a dropout layer,
a flattening layer, and a dense layer with L2 regulariza-
tion, and in DNN-DP, the model is designed with four
dense layers separated by two dropout layers with L2
regularization.

d) The RELU (Rectified Linear Units) activation function
was used in the input and hidden layers of both the
CNN-DP and DNN-DP models. The SoftMax function
was used in the last layer of CNN-DP for classification
and the Sigmoid function was used in the last layer of
DNN-DP for classification.

e) We used the Adam optimizer in CNN-DP with a learn-
ing rate of 0.001 and DNN-DP with a learning rate
of 0.001 as the optimization function to update the
networkweight after each iteration.We select the learn-
ing rate for proposed models following the parameter
tuning process discussed in Section V (Results and
Analysis). In CNN-DP we used a sparse categorical
cross-entropy as the loss function, and in DNN-DP we
used a binary cross-entropy.

f) Figure 12 shows that the first two CNN layers should
use filter sizes of 512 and 1024 with kernel sizes of 3
and the RELU activation function, while the third CNN
layer should use Max-pooling with pool size of 2 and
dropouts of 0.3. It employs 200 neurons in the dense
layer with RELU activation functions and 0.05 L2 reg-
ularization. It flattens the output between convolutional
and dense layer.

g) We began with a dense layer of 64 neurons in the input
layer, a dropout rate of (0.1), and a RELU activation
function from Figure 13. The following three hidden
dense layers use 64, 64, and 128 neurons with dropout
rates of 0.1 and L2 regularization of 0.03.

V. EXPERIMENTAL SETUP
A. DATA DESCRIPTION
Three hundred and twenty Python programs were written
by our talented UG and PG students for defect prediction
model analysis, and all experiments were performed during
lab classes. Together with three experienced lab program-
mers, they compiled and ran each individual program and
identified buggy/clean programs before dividing them into
three different classes, namely simple, medium and complex
programs. We used the GCN output to prepare our data sets
(simple, medium and complex). Simple level programs have
seven attributes or features with 100 instances, medium level
programs have seven attributes or features with 100 instances
and complex level programs have seven attributes or features

VOLUME 10, 2022 108881

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

FIGURE 12. Proposed architecture for CNN-DP model for the created data sets repository.

FIGURE 13. Proposed architecture for DNN-DP model for the created data sets repository.

with 120 instances. The dataset properties of programs at the
simple, medium, and complex levels are shown in Table 2.

WEKA (Waikato Environment for Knowledge Analysis)
was used to process the statistical output of datasets. WEKA
is open-source software that allows users to pre-process
data, implement well-known machine learning algorithms,
and conceptualize their data to develop and apply machine
learning techniques to real-world data problems. A variety
of classifiers including RF [6], DT [5], NB [8] and SVM [7]
have been used to calculate the accuracy of different data sets.

The output of these classifiers was compared to the output of
the proposed CNN-DP and DNN-DP models.

B. EVALUATION PARAMETERS USED FOR STUDY
The evaluation criteria for the proposed CNN-DP and DNN-
DP are briefly summarized in this section. In machine
learning, specifically in the statistical classification problem,
a confusion matrix, also referred to as an error matrix, is used.
A summary of the outcomes of classification problem pre-
diction is a confusion matrix. The number of accurate and

108882 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

TABLE 2. Characteristics of Data Sets for Simple, Medium and Complex
Level programs.

inaccurate predictions is added up and divided by class using
count values. A classification model may become confused
in a number of different ways when making predictions, as
shown by the confusion matrix. It reveals both the quantity
and the nature of classification errors. A description of the
confusion matrix is shown in Figure 14. Modules that are
not defective are labelled ‘‘negative,’’ while modules that are
defective are labelled ‘‘positive.’’ (a) The number of positive
cases correctly predicted by the classifier (true positive (TP)),
(b) The number of negative cases correctly predicted by
the classifier (true negative (TN)), (c) Modules that are not
defective but are predicted to be defective are classified as
(false positives (FP)) and (d) Modules that are defective but
are expected to be defect-free are classified as (false negatives
(FN)). This confusion matrix can be used to evaluate perfor-
mance metrics like accuracy, sensitivity, and specificity. The
following paragraphs describe these variables:

FIGURE 14. Description of confusion matrix.

a) Accuracy (ACC): Modules correctly identified by the
classification technique. The correctly predicted confusion
matrix values are TP and TN. Accuracy is defined as

ACC = (TP+ TN)/(TP+ TN + FP+ FN) (13)

b) Sensitivity or Probability of Detection (PD) or True
Positive Rate (TPR): It measures how well something can
be recognized. This is the percentage of defective modules
correctly predicted by the classifier, and it is calculated as

Sensitivity = TP/(TP+ FN) (14)

c) Specificity or True Negative Rate (TNR): It is calculated
from the proportion of defect-free modules correctly classi-
fied by the classifier

Specificity = TN/(TN + FP) (15)

d) Probability of false alarm (PF) or False Positive Rate
(FPR): The percentage of negative or non-failing cases that
are predicted to be positive or defective. This is calculated as

FPR = FP/(FP+ TN) (16)

e) Precision: The percentage of positive or failing cases that
are correct is determined as

Precision = TP/(TP+ FP) (17)

f) False Negative Rate (FNR): the percentage of erroneous
cases incorrectly classified as non-erroneous or negative, cal-
culated as

FNR = FN/(FN + TP) (18)

g) F-measure: F-measure is calculated by taking the har-
monic mean of the sensitivity and precision.

F −Measure =
2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

(19)

h) Receiver Operating Characteristics (ROC): This is a
critical metric for evaluating classifier performance. FPR is
plotted on the x-axis while TPR is plotted on the y-axis.
The ROC curve accurately reflects the performance of the
classifier. Because it is preferable to judge the classifier by
value, the Areas under the ROC Curve (AUC) was created.
The AUC value indicates how well the classifier outperforms
others.

C. RESULTS AND ANALYSIS
This section provides a performance measure for all clas-
sification techniques used in the study for the final analy-
sis, namely Precision, Recall, F-measure, Accuracy, ROC,
and AUC values. We divided our analysis into four sec-
tions: (a) ROC and AUC analysis, (b) error matrix analysis
which includes confusion rate analysis and confusion matrix
analysis, (c) model performance measures analysis, includ-
ing precision, recall, F1-measure, and accuracy, (d) Finally,
we presented an accuracy comparison of our proposedmodels
for various increasing dropout rates, as well as hyperparam-
eter tuning with various settings to achieve enhanced perfor-
mance and desired results. Because we used hyperparameter
tuning on all data sets, we presented one set of experiments
on the complex data set in the paper.

1) ROC AND AUC ANALYSIS
The AUC-ROC curve is a performance measure for classifi-
cation problems at different thresholds. AUC represents the
degree or measure of separability while ROC is a probabil-
ity curve. It indicates how well the model can distinguish
between classes. The larger the AUC, the better the model
predicts zero classes as zero and one classes as one. The
higher the AUC, the better the model distinguishes between
programs with and without the error [55]. The ROC curve is
plotted with TPR versus FPR, with TPR on the y-axis and
FPR on the x-axis (see Figure 15).

VOLUME 10, 2022 108883

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

TABLE 3. ROC-AUC Analysis for the created data sets (Simple, Medium and Complex Level).

An excellent model has an AUC close to one, indicating
that it has a high level of separability. A poor model will have
an AUC close to zero, indicating it has the worst measure of
separability. In fact, it means that the result is reciprocated.
It predicts that zeros are ones and ones are zeros. If the AUC is
0.5, the model has no class separation capacity at all. Table 3
shows the ROC-AUC analysis for the datasets constructed.
Figure 16, Figure 17, and Figure 18 present an AUC-ROC
plot of proposed models and existing classifiers for simple,
medium, and complex level datasets.

FIGURE 15. ROC-AUC Curve.

The following observations were made for the created data
set repositories based on Table 3, Figure 16, Figure 17, and
Figure 18:
� ROC plots show how different options affect classi-

fier performance. Figures 16, 17, and 18 show how pro-
posed classifiers (DNN-DP (with and without dropouts),
CNN-DP (with and without dropouts)), and some exist-
ing classifiers (NB. DT, RF, and SVM) plot on a ROC
curve. The black dotted line in proposed models and the
blue dotted line in existing classifiers represent a classi-
fier that performs no better than random guessing and will
plot as a diagonal line. Figure 16, Figure 17, Figure 18,
and Table 3 show some observations for proposed and
existing classifiers on ROC. Figure 16 and Table 3 show
that DNN-DP with dropout (ROC=0.82), without dropout
(ROC=0.85) represents a perfect classifier with TPR of
82 percent with dropout and FPR of 18 percent without

dropout than CNN-DP with dropout (ROC=0.73), without
dropout (ROC=0.75), NB (ROC=0.76), DT (ROC=0.73),
RF (ROC=0.75) and SVM (ROC=0.36). In one case,
NB outperforms CNN-DP, DT, SVM, and RF by 76 percent
TPR and 24 percent FPR. CNN-DP outperforms SVM, RF,
and DT for the same task. Figure 17 and Table 3 show
that DNN-DP without dropout (ROC=0.81) and CNN-DP
without dropout (ROC=0.81) represent a perfect classifier
with TPR of 81 percent and FPR of 19 percent in the case of
without dropout than CNN-DP with dropout (ROC=0.79),
DNN-DP (with dropout (ROC=0.80), NB (ROC=0.75),
DT (ROC=0.74), RF (ROC=0.80), and SVM (ROC=0.75).
Even in one case, DNN-DP with dropout and RF has the
same TPR of 80% and FPR of 20%. It is further observed
from Figure 18 and Table 3 for complex level data set,
DNN-DP without dropout (ROC=0.88) and CNN-DP with-
out dropout (ROC=0.86) represent perfect classifiers with
TPR of 88 percent and FPR of 12 percent for DNN-DP
without dropout (ROC=0.88) and TPR of 86 percent and
FPR of 14 percent for CNN-DPwithout dropout (ROC=0.86)
than DNN-DP (with dropout (ROC=0.85)), CNN-DP with
dropout (ROC=0.84), NB (ROC=0.85), DT (ROC=0.73),
RF (ROC=0.86) and SVM (ROC=0.80). RF even outper-
forms DNN-DP with dropout and CNN-DP with dropout
in one case. As a result of the proposed model’s high true
positive rate and low false positive rate, we conclude from
the ROC discussions that the proposed models DNN-DP
and CNN-DP provide more predictive power than existing
classifiers and outperform existing classifiers i.e., NB, SVM,
DT and RF.
� Since AUC is a measure of a classifier’s ability to

distinguish between classes, it is used as a summary of the
ROC curve. The greater the AUC, the better the model’s
performance in distinguishing between positive and nega-
tive classes. Table 3 shows that AUC of DNN-DP with
dropout=0.96 and without dropout=0.97 and CNN-DP with
dropout=0.84 and without dropout=0.97 for simple level
data set, AUC of DNN-DP with dropout=0.95 and without
dropout=0.86 and CNN-DP with dropout=0.88 and with-
out dropout=0.86 for medium level data set, DNN-DP with
dropout= 0.92 and without dropout=0.91 and CNN-DP with
drop with dropout=0.85 and without dropout=0.89 for com-
plex level data set, which is between 0.5<AUC< 1 indicates

108884 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

FIGURE 16. AUC-ROC graph of proposed models (CNN-DP, DNN-DP) and existing models (RF, DT, SVM and NB) for Simple Data Set.

FIGURE 17. AUC-ROC graph of proposed models (CNN-DP, DNN-DP) and existing models (RF, DT, SVM and NB) for Medium Data Set.

that the classifier has a high likelihood of distinguishing
between positive and negative class values. This is because
the classifier detects more true positives and true negatives
than false negatives and false positives than the existing

classifiers (NB, SVM, DT, and RF), with the exception of
one case where RF (AUC=0.92) distinguishes positive class
value from negative class value is the same as DNN-DP clas-
sifier with dropout. Since the higher a classifier’s AUC value,

VOLUME 10, 2022 108885

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

FIGURE 18. AUC-ROC graph of proposed models (CNN-DP, DNN-DP) and existing models (RF, DT, SVM and NB) for Complex Data Set.

the better it is at distinguishing between positive and negative
classes. As a result of the discussion, we conclude that the
proposed models (DNN-DP and CNN-DP) distinguish more
positive classes than negative classes as compared with NB,
SVM, RF and DT.

2) ERROR MATRIX ANALYSIS
The confusion matrix or error matrix is an indicator of
machine learning classification performance. To improve
classifier performance, TPR and TNR should be high and
FPR and FNR should be low. Table 4, Table 5, Figure 19 and
Figure 20 represents the confusion rate analysis and confu-
sion matrix analysis for the simple, medium and complex
level data sets.

Table 4, Table 5, Figure 19 and Figure 20 suggests a
few exciting findings for confusion matrix evaluation and
confusion rate evaluation. The subsequent observations have
been made that is as follows:
� Table 4 shows that ({TPR}, {TNR}) of {DNN-DP (with

dropout), DNN-DP (without dropout)} and of {CNN-DP
(with dropout), CNN-DP (without dropout)} for the set of
simple data is ({0.96, 0.98}, {0.97, 0.97}) and ({0.95, 0.95},
{0.54, 0.72} predict a higher frequency true positive and true
negative compared to NB, SVM, DT and RF except at a
point where SVM is greater than the rate of true negative
(0.68) than predicted by CNN-DP (with dropout) is 0.54.
Also, for a simple level dataset, Table 4 shows that ({FPR},
{FNR}) from{DNN-DP (with dropout), DNN-DP (with-
out dropout)} and from {CNN-DP (with dropout), CNN-
DP (without dropout)} is ({0.03, 0.03}, {0.05, 0.02}) and

({0.46, 0.28}, {0.05, 0.05} predict a lower frequency of false
positives and false negatives than NB, SVM, DT and RF
except at one point where SVM is less than the false positive
rate (0.29) than predicted by CNN-DP (with dropout) is 0.46.
For medium level data set, Table 4 shows that that ({TPR},
{TNR}) of {DNN-DP (with dropout), DNN-DP (without
dropout)} and of {CNN-DP (with dropout), CNN-DP (with-
out dropout)} is ({0.92, 0.96}, {0.80, 0.95}) and ({0.98,
0.94}, {0.73, 0.84} predict a higher frequency true posi-
tive and true negative compared to NB, SVM, DT and RF
except at a point where SVM and DNN-DP (with_dropout)
predict the same frequency of true positives and the true
negative class {0.8, 0.75} of {NB, SVM} than 0.73 of
CNN-DP (with dropout). Similarly, for a medium level
data set ({FPR}, {FNR}) from{DNN-DP (with dropout),
DNN-DP (without dropout)} and from {CNN-DP (with
dropout), CNN-DP (without dropout)} is ({0.2, 0.05}, {0.08,
0.04}) and ({0.26, 0.15}, {0.02, 0.06} predict a lower fre-
quency of false positives and false negatives than NB, SVM,
DT and RF except at one point where {NB, SVM} predict
a lower frequency{0.19, 0.25} of false positives than 0.26 of
CNN-DP (with dropout). Table 4 shows that (TPR, TNR) of
DNN-DP (with dropout), DNN-DP (without dropout), and
CNN-DP (with dropout), CNN-DP (without dropout) are
({0.94, 0.95}, {0.87, 0.86}) and ({0.96, 0.96}, {0.79, 0.81})
predict a higher frequency true positive and true negative
compared to NB, SVM, DT, and RF. Furthermore, (FPR,
FNR) from DNN-DP (with dropout), DNN-DP (without
dropout), and CNN-DP (with dropout), CNN-DP (without
dropout) are ({0.12, 0.14}, {0.06, 0.05}) and ({0.19, 0.19},

108886 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

TABLE 4. Confusion Rate Analysis for the created data sets (Simple, Medium and Complex Level Data Sets).

TABLE 5. Confusion Matrix Analysis for the created data sets (Simple, Medium and Complex Level Data Sets).

FIGURE 19. Confusion matrix analysis of proposed model with existing classifiers for simple, medium and complex level data sets.

{0.04, 0.04}), respectively, predict a lower frequency of false
positives and false negatives than NB, SVM, DT, and RF.
Figure 20 depicts the same data for confusion rate analysis,

comparing DNN-DP and CNN-DP with NB, SVM, DT, and
RF. Based on the discussions, we can conclude that the sug-
gested models for software defect prediction, DNN-DP and

VOLUME 10, 2022 108887

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

FIGURE 20. Confusion rate analysis of proposed model with existing classifiers for simple, medium and complex level datasets.

CNN-DP, are not underfit or overfit, and that they outperform
NB, SVM, DT, and RF in terms of TPR, TNR, FPR, and FNR
for the created data set repository.
� Table 5 demonstrates that for simple level data set,

(DNN-DP with dropout (40), DNN-DP without dropout
(44), CNN-DP with dropout (56) and CNN-DP without
dropout (57)), (DNN-DP with dropout (46), DNN-DP with-
out dropout (42), CNN-DP with dropout (54) and CNN-DP
without dropout (44) for medium level data set), and (DNN-
DP with dropout (30), DNN-DP without dropout (34), CNN-
DP with dropout (67) and CNN-DP without dropout (68)
for complex level data set) predicts more defects than NB,
SVM, DT and RF. Table 5 also shows that the proposed
models DNN-DP and CNN-DP have good correlations with
one another for defect prediction. Figure 19 compares CNN-
DP, DNN-DP, NB, SVM, DT, and RF with the same data
for confusion matrix or error matrix analysis. Based on the
discussion, we draw the conclusion that the proposed mod-
els CNN-DP and DNN-DP predict more faults and perform
better in predicting software defects than state-of-the-art clas-
sifiers (NB, SVM, DT, and RF).

3) MODEL PERFORMANCE MEASURE ANALYSIS
Precision and recall were used to assess the accuracy of the
F-measure (or F1 score). In most cases, precision and recall
are adjusted. For example, if all test files are predicted to be

wrong, this results in a recall value of 1 and a precision of 0.
Thus, the best representation of prediction performance is the
F-measure, which is a combination of precision and recall.
and is between [0,1]. Table 6 contains the information about
performancemetrics in terms of precision, recall, F1-measure
and accuracy for simple, medium and complex level data set.
Figure 21 presents the comparison of F1-measure and accu-
racy of proposed models (DNN-DP, CNN-DP) with existing
models (NB, SVM, DT and RF) for the simple, medium and
complex level data set.

The following observations were made based on Table 6
and Figure 21:
� For simple level data sets, the (precision, recall,

F-measure, and accuracy) for DNN-DP (with dropout): (0.98,
0.96, 0.96 0.97), DNN-DP (without dropout): (0.98, 0.98,
0.99, 0.98), CNN-DP (with dropout): (0.90, 0.94, 0.88, 0.87),
and CNN-DP (without dropout): (0.90, 0.95, 0.89, 0.89) are
higher than NB, SVM, DT, and RF except for one point
where RF recall (0.96) measures the same as DNN-DP (with
dropout) and slightly higher than CNN-DP (with dropout).
� F-measure and accuracy for DNN-DP (with dropout):

(0.90, 0.88), DNN-DP (without dropout): (0.96, 0.95), CNN-
DP (with dropout): (0.94, 0.88) and CNN-DP (without
dropout): (0.88, 0.89) measures higher than existing clas-
sifiers NB, SVM, DT, and RF for medium level data set.
For the same data set, SVM precision (0.91) outperforms

108888 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

CNN-DP (with dropout) and CNN-DP (without dropout),
as does DT recall (0.97), which outperforms DNN-DP
(without dropout) and CNN-DP (without dropout) (without
dropout). For the complex level data set, the proposed models
DNN-DP (with dropout), DNN-DP (without dropout), CNN-
DP (with dropout), and CNN-DP (without dropout) correlate
well or outperform the existing classifiers NB, SVM, DT, and
RF. It is also observed from complex level data sets that the
proposed models, DNN-DP (with and without dropout) and
CNN-DP (with and without dropout), outperformed the exist-
ing classifiers, NB, SVM, DT, and RF in terms of F-measure
and accuracy.
� We draw the conclusion that precision quantifies the

number of positive class predictions that actually belong to
the positive class based on the discussion of the performance
measure presented above. Recall measures how many correct
class predictions were made using all of the successful exam-
ples in the dataset. Precision and recall issues are balanced in
a single score by F-Measure, and accuracy offers more true
positives and true negatives in prediction.

4) HYPERPARAMETER TUNING PROCESS AND ITS ANALYSIS
Hyperparameter tuning is the process of finding the ideal
model construction by adjusting the parameters that define
the model building, or hyperparameters. Experiments with
multiple parameters tuning process were performed on all
three data sets i.e., simple, medium and complex level. Our
analysis is broken down into two sections: first, we take
dropout into account when evaluating models, and then we
present one set of experiments with multiple parameters tun-
ing to suggested models i.e., DNN-DP and CNN-DP on the
complex level data set.
� Dropout and its evaluation
As is common knowledge, dropout is a technique for pre-

venting model over-fitting. Dropout operates by probabilis-
tically removing, or dropping out, inputs to a layer. These
inputs could be input variables in the data sample or activa-
tions from a previous layer. Because many different networks
with very different network structures are simulated, nodes in
the network become generally more resistant to inputs. With
dropout, the accuracy will gradually increase while the loss
will gradually decrease. After a certain amount of dropout,
the model can no longer accurately fit the data It makes sense
that a higher dropout rate would lead to an increase in some
of the layers’ variance, which would make training more dif-
ficult. Table 7 compares the proposed models’ accuracy with
rising dropout rates for the newly created data repository. For
our DNN-DP and CNN-DP models, we compare accuracy
and loss with rising dropout values in order to obtain the
optimal dropout value. To examine the impact of accuracy
and loss while implementing dropout regularizations, we start
with 0.1 and increase to 0.7. According to Table 7, accuracy
increases steadily as dropout rates rise from 0.1 to 0.5 for
DNN-DP and CNN-DP, but there is a point for the complex
level data set for ACC_CNN-DP where accuracy starts at
0.94 for dropout rates of 0.1 and 0.2 but increases by 1% for

dropout rates of 0.3. After certain points, like 0.6, the dropout
rate starts to decline.

Based on the results and discussion, we chose a dropout
rate of 0.1 for DNN-DP and 0.3 for CNN-DP for our study
on DNN-DP and CNN-DP.
� Experiment with several parameter tunings
By adjusting the parameters, such as learning rate (LR),

which is taken as: 0.01, 0.001, 0.0001, and 0.00001, number
of epochs (NEP), which is taken as: 100, 200, 300, 400, 500,
1000, alongwith number of layers and dropout, we performed
experiments on DNN-DP and CNN-DP for complex level
data set. For DNN-DP, we employ 4 layers with 64, 64, 64,
and 128 neurons each and a 0.1 dropout rate between the first
and second hidden layers and L2 regularization with 0.03.
In the CNN-DP model, we employ two convolutional layers
with 512 and 1024 neurons each, one max-pooling layer with
a pool size of 2, one dropout layer with a rate of 0.3, one
flattening layer, one dense layer with 200 neurons and L2
regularization with 0.05. The main goal of this experiment is
to find the optimal learning rate and epoch for our proposed
DNN-DP andCNN-DPmodels for defect prediction. The loss
and accuracy of the proposed models (DNN-DP and CNN-
DP) with LR = 0.01, 0.001, 0.0001 and 0.00001 and NEP =
100, 200, 300, 400, 500 and 1000 are represented in Table 8,
IX, X, and XI on a complex level data set, Figure 22 shows
the loss and accuracy analysis of DNN-DP and CNN-DP
for LR=0.01, 0.001, 0.0001 and 0.00001. With respect to
the learning rates and number of epochs, we reduce the loss
function as we iteratively learn the proposed models.

Since we configure LR hyper-parameters into DNN-DP
and CNN-DP models to examine the impact on model per-
formance. In order to find the ideal range of learning rates,
we tune the LR on DNN-DP and CNN-DP with 0.01 then
0.001 and then go up to 0.00001. Table 8, Table 9, Table 10,
and Table 11 show the loss and accuracy for DNN-DP and
CNN-DP after each iteration of optimization with respect to
learning rate and NEP. we also plot a loss/accuracy graph
with respect to various LR and NEP for DNN-DP and CNN-
DP, which are depicted in Figure 22. For computing loss or
minimizing the value of loss, we use binary cross entropy
for DNN-DP and sparse categorical cross entropy for CNN-
DP. Only Table 9 shows consistent loss and accuracy behav-
ior for DNN-DP and CNN-DP, according to Figure 22 and
Tables 8, 9, 10, and 11. The other tables do not show con-
sistent loss and accuracy behavior, even though the model’s
prediction can be roughly compared to the actual data, loss
values still behave unpredictably after each optimization iter-
ation. Thus, based on Figure 22 and Table 9 for CNN-DP
and DNN-DP with various LR=0.01, 0.001, 0.0001 and
0.00001 and NPE=100, 200, 300, 400, 500, and 1000, the
following observations were made:
� FromTable 9 and Figure 22 for DNN-DP for NEP values

of 100, 200, 300, 400, 500, and 1000, accuracy is 0.86, 0.86,
0.89, 0.90, 0.92, and 0.97, while loss is 0.380, 0.3387, 0.2561,
0.2345, 0.2292, and 0.1555. The accuracy is typically around
90% (0.90), and the loss is typically around 0.2656. So,

VOLUME 10, 2022 108889

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

TABLE 6. Performance Comparison in terms of precision, recall, F-measure and accuracy for the created data sets (Simple, Medium and Complex Level
Data Sets).

FIGURE 21. Comparison of F-Measure and Accuracy of proposed models with existing classifiers for simple, medium and complex level data sets.

based on the discussion, we determined that LR=0.001 and
NEP=1000 were the optimal values for DNN-DP.
� From Table 9 and Figure 22 for CNN-DP or NEP

values of 100, 200, 300, 400, 500, and 1000, accuracy is
0.79, 0.82, 0.89, 0.89, 0.94 and 0.95, while loss is 0.501,

0.412, 0.395, 0.324, 0.307 and 0.2195. The accuracy is typ-
ically around 88% (0.88), and the loss is typically around
0.3717. So, based on the discussion, we determined that
LR=0.001 and NEP=1000 were the optimal values for
CNN-DP.

108890 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

TABLE 7. Accuracy Comparison of proposed model with increasing dropout rates for Simple, Medium and Complex level data set.

TABLE 8. Loss and Accuracy of DNN-DP and CNN-DP for LR=0.01 with NEP= 100, 200, 300, 400, 500 and 1000 on complex level data set.

TABLE 9. Loss and Accuracy of DNN-DP and CNN-DP for LR=0.001 with NEP= 100, 200, 300, 400, 500 and 1000 on complex level data set.

TABLE 10. Loss and Accuracy of DNN-DP and CNN-DP for LR=0.0001 with NEP= 100, 200, 300, 400, 500 and 1000 on complex level data set.

VI. THREATS TO VALIDITY
As we will see later, the research described in this article
has flaws that could affect the validity of our conclusions.
We begin by describing the external risk to potency. Insider
threats are then reviewed. Finally, we examine the validity of
the conclusion and threats to structural validity.

A. EXTERNAL VALIDITY
Threats to external validity are conditions that limit our ability
to generalize the results of our work [51]. In our study, the

threat to the external validity of our study was related to the
limited number of programs that we analyzed. In addition, all
programs are linked to the Python programming language.
Therefore, the results may not be generalizable to other plat-
form programs, especially if developed in other programming
languages. Furthermore, our results depend on errors in the
programming context. Therefore, we cannot draw any con-
clusions about cross-platform programming errors.

In the next steps of this article, we want to apply the
model selection approach to different scenarios. In addition,

VOLUME 10, 2022 108891

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

TABLE 11. Loss and Accuracy of DNN-DP and CNN-DP for LR=0.00001 with NEP= 100, 200, 300, 400, 500 and 1000 on complex level data set.

FIGURE 22. Loss and Accuracy analysis of DNN-DP and CNN-DP for LR=0.01, 0.001, 0.0001 and 0.00001 on complex level data set.

we have applied a limited number of core algorithms to
classify software modules as bugs. Therefore, we cannot
guarantee that the results can be generalized to all currently
available classification algorithms. Therefore, we can explore
other classification algorithms in later stages of this article.

B. INTERNAL VALIDITY
Since the program was developed by experienced UG / PG
students in lab classes, all programs were run and compiled
by three experienced lab programmers and divided into three
different program categories i.e., simple, medium, complex.
We were unable to validate / test the program received
from them. Just follow machine learning and graph convo-
lutional network techniques to mitigate the impact of our

data. For this reason, future steps in this paper will consider/
apply pre-testing, post-testing, and cross-platform program-
ming approaches.

C. CONSTRUCT VALIDITY
Constructive validity involves inference of empirical results
about concepts and theories [51]. This article creates a data
warehouse from the output of GCN and proposes two deep
learning models CNN-DP and DNN-DP for defect predic-
tion. The results predict that DNN-DP and CNN-DP perform
better thanmodernML classifiers for defect prediction. How-
ever, they are comparable in terms of prediction accuracy and
represent variability of defect prediction models. However,
we cannot guarantee that the functionality extracted from the

108892 VOLUME 10, 2022

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

program is sufficient to impact the performance of the defect
model. Again, this theory will be used in future work in this
paper.

D. CONCLUSION VALIDITY
Threats to outcome problems affect the ability to draw precise
associations between course of treatment and outcomes that
are related to efficacy [51]. In our study, we revealed that the
results and analysis of Section V discussed depended on the
defect labels of the generated dataset.

VII. CONCLUSION AND FUTURE SCOPE
In this paper an attempt has been made to extracted seven
unique features from the program, and each unique feature
was assigned an integer value that we evaluated through Cog-
nitive Complexity Measures (CCMs). We then incorporated
CCMs’ results as a node feature value in CFGs and generated
the same based on the node connectivity for a graph. In order
to obtain the feature representation of the graph, a node
vector matrix is then created for the graph and passed to the
Graph Convolutional Network (GCN). We prepared our data
sets using GCN output and then built Deep Neural Network
Defect Prediction (DNN-DP) and Convolutional Neural Net-
work Defect Prediction (CNN-DP) models to predict soft-
ware defects. The proposed models DNN-DP and CNN-DP
outperformed state-of-the-art techniques such as NB, SVM,
DT, and RF in terms of ROC, AUC, Accuracy, F-measure,
Precision, Recall, and experiments with various parameters,
according to Section V (Experimental Setup), Subsection-C
(Result and Analysis).

We concentrate on a few fundamental issues, which are as
follows, with regard to future scope:
X Due to the fact that our programs are connected to the

Python programming language, and because the outcomes
might not apply to other flat-form programs. In order to
categorize software modules and programs as bugs or defects,
we want to apply the model selection approach to various
scenarios and also explore other classification algorithms.
X Since the programs were created by skilled UG/PG

students during laboratory classes, and those classes did not
validate or test the programs we received. So will also take
future scope into account for pre-testing, post-testing, and
cross flat-form programming approaches.
X The program’s functionality can be used to determine

whether or not the defect model performs well. This theory is
also considered for a later time frame.

ACKNOWLEDGMENT
The authors would like to thank the valuable suggestions
provided by the anonymous reviewers which greatly helped
in preparing the paper in its present form.

REFERENCES
[1] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, ‘‘An empirical study on software

defect prediction with a simplified metric set,’’ Inf. Softw. Technol., vol. 59,
pp. 170–190, Mar. 2015.

[2] M. H. Halstead,Elements of Software Science, vol. 7. NewYork, NY, USA:
Elsevier, 1977.

[3] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[4] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-4, pp. 308–320, 1976.

[5] T. Gyimothy, R. Ferenc, and I. Siket, ‘‘Empirical validation of object-
orientedmetrics on open source software for fault prediction,’’ IEEE Trans.
Softw. Eng., vol. 31, no. 10, pp. 897–910, Oct. 2005.

[6] Y. Zhou and H. Leung, ‘‘Empirical analysis of object-oriented design
metrics for predicting high and low severity faults,’’ IEEE Trans. Softw.
Eng., vol. 32, no. 10, pp. 771–789, Oct. 2006.

[7] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, ‘‘Dictionary
learning based software defect prediction,’’ in Proc. 36th Int. Conf. Softw.
Eng., May 2014, pp. 414–423.

[8] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[9] S. Wang, T. Liu, and L. Tan, ‘‘Automatically learning semantic features
for defect prediction,’’ in Proc. Int. Conf. Softw. Eng., Austin, TX, USA,
May 2016, pp. 297–308.

[10] J. Li, P. He, J. Zhu, and M. R. Lyu, ‘‘Software defect prediction via
convolutional neural network,’’ in Proc. IEEE Int. Conf. Softw. Quality,
Rel. Secur. (QRS), Prague, Czech Republic, Jul. 2017, pp. 318–328.

[11] D. Zhang, J. Yin, X. Zhu, and C. Zhang, ‘‘Network representation learning:
A survey,’’ IEEE Trans. Big Data, vol. 6, no. 1, pp. 3–28, Mar. 2020.

[12] Y. Wang, ‘‘On cognitive informatics,’’ in Proc. 1st IEEE Int. Conf.,
Sep. 2002, pp. 34–42.

[13] Y.Wang and J. Shao, ‘‘Measurement of the cognitive functional complexity
of software,’’ in Proc. 2nd IEEE Int. Conf. Cognit. Informat., Dec. 2003,
pp. 67–74.

[14] D. S. Kushwaha and A. K. Misra, ‘‘Robustness analysis of cognitive
information complexity measure using Weyuker properties,’’ ACM SIG
Soft. Eng. Notes, vol. 31, no. 1, pp. 1–6, 2006.

[15] S. Misra, ‘‘Modified cognitive complexity measure,’’ in Proc. Comput. Inf.
Sci., 2006, pp. 1050–1059.

[16] S. Misra, ‘‘Cognitive program complexity measure,’’ in Proc. 6th IEEE Int.
Conf. Cognit. Informat., Aug. 2007, pp. 120–125.

[17] D. Adamo, Jr., ‘‘An experiment to measure the cognitive weights
of code control structures,’’ Tech. Rep., 2014. [Online]. Available:
http://www.research.net/publication/284186632, doi: 10.13140/RG.2.1.
2877.8960.

[18] A.M.M.Y.W.A. Shehab Tashtoush,M.N.Alandoli, andY. Jararweh, ‘‘An
accumulated cognitive approach to measure software complexity,’’ J. Adv.
Inf. Technol., vol. 6, no. 1, pp. 145–161, 2015.

[19] S. Misra and I. Akman, ‘‘Weighted class complexity: A measure of
complexity for object-oriented system,’’ J. Inf. Sci. Eng., vol. 24,
pp. 1689–1708, Sep. 2008.

[20] S. Misra, I. Akman, and M. Koyuncu, ‘‘An inheritance complexity metric
for object-oriented code: A cognitive approach,’’ Sadhana, vol. 36, no. 3,
pp. 317–337, Jun. 2011.

[21] M. Pansar, ‘‘Cognitive and computational complexity: Considerations
from mathematical problem solving,’’ Erkenntnis, vol. 86, pp. 961–997,
Jun. 2019.

[22] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, and P. Krause,
‘‘On the effectiveness of early life cycle defect prediction with Bayesian
nets,’’ Empirical Softw. Eng., vol. 13, no. 5, pp. 499–537, Oct. 2008.

[23] Q. Cao, Q. Sun, Q. Cao, and H. Tan, ‘‘Software defect prediction via
transfer learning based neural network,’’ in Proc. 1st Int. Conf. Rel. Syst.
Eng. (ICRSE), Oct. 2015, pp. 1–10.

[24] Z. Q. Li, X. Y. Jing, X. K. Zhu, H. Y. Zhang, B. W. Xu, and S. Ying,
‘‘Heterogeneous defect prediction with two-stage ensemble learning,’’
Automated Softw. Eng., vol. 26, no. 3, pp. 599–651, Jun. 2019.

[25] Ö. F. Arar and K. Ayan, ‘‘A feature dependent naive Bayes approach and its
application to the software defect prediction problem,’’Appl. Soft Comput.,
vol. 59, pp. 197–209, Oct. 2017.

[26] R. Kumar and K. P. Singh, ‘‘SVM with feature selection and extrac-
tion techniques for defect-prone software module prediction,’’ in Proc.
6th Int. Conf. Soft Comput. Problem Solving. Singapore: Springer, 2017,
pp. 279–289.

[27] M. Gupta, K. Rajnish, and V. Bhattacharjee, ‘‘Impact of parameter tuning
for optimizing deep neural network models for predicting software faults,’’
Sci. Program., vol. 2021, pp. 1–17, Jun. 2021.

[28] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, ‘‘On the relative
value of cross-company and within-company data for defect prediction,’’
Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, 2009.

VOLUME 10, 2022 108893

http://dx.doi.org/10.13140/RG.2.1.2877.8960
http://dx.doi.org/10.13140/RG.2.1.2877.8960

M. Gupta et al.: Cognitive Complexity and Graph Convolutional Approach Over CFG

[29] J. Nam, S. J. Pan, and S. Kim, ‘‘Transfer defect learning,’’ in Proc. IEEE
Int. Conf. Softw. Eng., San Francisco, CA, USA, May 2013, pp. 382–391.

[30] J. Nam,W. Fu, S. Kim, T.Menzies, and L. Tan, ‘‘Heterogeneous defect pre-
diction,’’ IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874–896, Sep. 2018.

[31] T. N. Kiff and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. ICLR, Feb. 2017, pp. 1–14.

[32] A. V. Phan, M. L. Nguyen, and L. T. Bui, ‘‘Convolutional neural networks
over control flow graphs for software defect prediction,’’ in Proc. IEEE
29th Int. Conf. Tools with Artif. Intell. (ICTAI), Nov. 2017, pp. 45–52.

[33] S. Meilong, P. He, H. Xiao, H. Li, and C. Zeng, ‘‘An approach to semantic
and structural features learning for software defect prediction,’’ Math.
Problems Eng., vol. 2020, pp. 1–13, Apr. 2020.

[34] S. Sharma and R. Sharma, ‘‘A graph neural network based approach for
detecting suspicious users on online social media,’’ Inst. Comput. Sci.,
London, U.K., Tech. Rep., Oct. 2020.

[35] S. Banerjee and M. Khapra, ‘‘Graph convolutional network with sequen-
tial attention for goal-oriented dialogue systems,’’ Trans. Assoc. Comput.
Linguistics, vol. 7, pp. 485–500, Dec. 2019.

[36] J. Guo, J. Cheng, and J. Cleland-Huang, ‘‘Semantically enhanced software
traceability using deep learning techniques,’’ in Proc. IEEE/ACM 39th Int.
Conf. Softw. Eng. (ICSE), Buenos Aires, AR, USA, May 2017, pp. 3–14.

[37] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, ‘‘CC learner: A deep
learning-based clone detection approach,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Shangai, China, Sep. 2017, pp. 249–260.

[38] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Bug
localization with combination of deep learning and information retrieval,’’
in Proc. IEEE/ACM 25th Int. Conf. Program Comprehension (ICPC),
Buenos Aires, AZ, USA, May 2017, pp. 218–229.

[39] J. Reyes, D. Ramirez, and J. Paciello, ‘‘Automatic classification of source
code archives by programming language: A deep learning approach,’’ in
Proc. Int. Conf. Comput. Sci. Comput. Intell. (CSCI), Las Vegas, NV, USA,
Dec. 2016, pp. 514–519.

[40] S. Zekany, D. Rings, N. Harada, M. A. Laurenzano, L. Tang, and J. Mars,
‘‘CrystalBall: Statically analyzing runtime behavior via deep sequence
learning,’’ in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Taipei, Taiwan, Oct. 2016, pp. 1–12.

[41] C. S. Corley, K. Damevski, and N. A. Kraft, ‘‘Exploring the use of deep
learning for feature location,’’ in Proc. IEEE Int. Conf. Softw. Maintenance
Evol. (ICSME), Bremen, Germany, Sep. 2015, pp. 556–560.

[42] Y. Pang, X. Xue, and H. Wang, ‘‘Predicting vulnerable software com-
ponents through deep neural network,’’ in Proc. Int. Conf. Deep Learn.
Technol. (ICDLT), Chengdu China, 2017, pp. 6–10.

[43] U. Bandara and G. Wijayarathna, ‘‘Deep neural networks for source code
author identification,’’ in Proc. 20th Int. Conf., Daegu, South Korea,
Nov. 2013, pp. 368–375.

[44] I. Goodfellow, Y. Bengio, and A. Courville, ‘‘Deep learning,’’ Nature,
vol. 21, pp. 436–444, Dec. 2015.

[45] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, and G. Penn, ‘‘Applying
convolutional neural networks concepts to hybrid NN-HMM model for
speech recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Kyoto, Japan, Mar. 2012, pp. 4277–4280.

[46] A. Krizhevsky, I. Sutskever, and E. G. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., Lake Tahoe, NV, USA, Dec. 2012, pp. 1097–1105.

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Dec. 1998.

[48] X. Zhang, J. Zhao, and Y. LeCun, ‘‘Character-level convolutional networks
for text classification,’’ in Proc. Adv. Neural Inf. Process. Syst., Montreal,
QC, Canada, Dec. 2015, pp. 7–12.

[49] H. Gu, Y. wang, S. Hong, and G. Gui, ‘‘Blind channel identification aided
generalized automatic modulation recognition based on deep learning,’’
IEEE Access, vol. 7, pp. 110722–110729, 2019.

[50] R. J. Schalkoff, Artificial Neural Networks, 1st ed. New York, NY, USA:
McGraw-Hill, 1997.

[51] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln,
Experimentation in Software Engineering. Berlin, Germany: Springer,
2012.

[52] K. Rajnish and V. Bhattacharjee, ‘‘A cognitive and neural network
approach for software defect prediction,’’ J. Intell. Fuzzy Syst., vol. 43,
no. 5, pp. 6477–6503, Sep. 2022.

[53] Accessed: Jul. 14, 2022. [Online]. Available: https://www.kaggle.
com/code/ryanholbrook/deep-neural-networks

[54] N. Srivastav, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
‘‘Dropouts: A simple way to prevent neural networks from overfitting,’’
J. Mach. Learn. Res., vol. 15, pp. 1929–1958, Sep. 2014.

[55] Accessed: Aug. 5, 2022. [Online]. Available: https://towardsdatascience.
com/understanding-the-roc-curve-and-auc-dd4f9a192ecb

[56] L. Sikic, A. S. Kurdija, K. Vladimir, and M. Silic, ‘‘Graph neural
network for source code defect prediction,’’ IEEE Access, vol. 10,
pp. 10402–10415, 2022.

[57] A. B. Farid, E. M. Fathy, A. S. Eldin, and L. A. Elmegid, ‘‘Software defect
prediction using hybrid model (CBIL) of convolutional neural network
(CNN) and bidirectional long short-term memory (Bi-LSTM),’’ Peer J.
Comput. Sci., vol. 7, pp. 1–22, Nov. 2021.

[58] S. Omri and C. Sinz, ‘‘Deep learning for software defect prediction:
A survey,’’ in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng. Workshops,
Jun. 2020, pp. 209–214, doi: 10.1145/3387940.3391463.

MANSI GUPTA received the B.Tech. degree in
computer science and engineering from Jayoti
Vidyapeeth Women’s University, Jaipur, in 2013,
and the M.Tech. degree in computer science
from Gautam Buddha University, Greater Noida,
Uttar Pradesh, in 2016. She is currently pursuing
the Ph.D. degree in computer science with the
Birla Institute of Technology, Mesra, Ranchi. Her
research interests include software metrics, soft-
ware fault prediction, machine learning, and neural
networks.

KUMAR RAJNISH was born in Ranchi,
Jharkhand, India, in 1974. He received the B.Sc.
degree in mathematics from the Ranchi Col-
lege, Ranchi, in 1998, the Master of Com-
puter Application (M.C.A.) degree from the
Madan Mohan Malaviya Engineering College
(MMMEC), Gorakhpur, India, in 2001, and the
Ph.D. degree in computer science and engineering
from the Birla Institute of Technology, Mesra,
Ranchi, in 2009. From 2002 to 2015, he was an

Assistant Professor (Senior Grade) with the Department of CSE, Birla
Institute of Technology, where he has been continuing as an Associate
Professor with the Department of CSE, since 2016. He is the author of
one book and more than 60 articles. His research interests include software
metrics, object-oriented software engineering, software quality, and machine
learning.

VANDANA BHATTACHARJEE received the B.E.
degree in CSE from the Birla Institute of Tech-
nology (BIT), Mesra, in 1989, and the M.Tech.
and Ph.D. degrees in computer science from Jawa-
harlal Nehru University, New Delhi, in 1991 and
1995, respectively. She is currently working as a
Professor with the Department of Computer Sci-
ence and Engineering, BIT. She is also the Director
In-Charge at BIT Lalpur Campus. She has several
national and international publications in journals

and conference proceedings. She has coauthored a book on data analysis.
She is also working on deep learning techniques applied to the domains
of software fault prediction, classification of images, disease prediction,
analysis of remote sensing images, and sentiment analysis. Her research
interest includes machine learning and its applications. She is a Life Member
of Computer Society of India.

108894 VOLUME 10, 2022

http://dx.doi.org/10.1145/3387940.3391463

