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ABSTRACT Electroencephalography (EEG) signals have a major impact on how well assistive rehabilitation
devices work. These signals have become a common technique in recent studies to investigate human motion
functions and behaviors. However, incorporating EEG signals to investigate motor planning or movement
intention could benefit all patients who can plan motion but are unable to execute it. In this paper, the
movement planning of the lower limb was investigated using EEG signal and bilateral movements were
employed, including dorsiflexion and plantar flexion of the right and left ankle joint movements. The
proposed system uses Continuous Wavelet Transform (CWT) to generate a time—frequency (TF) map of
each EEG signal in the motor cortex and then uses the extracted images as input to a deep learning model for
classification. Deep Learning (DL) models are created based on vision transformer architecture (ViT) which
is the state-of-the-art of image classification and also the proposed models were compared with residual
neural network (ResNet). The proposed technique reveals a significant classification performance for the
multiclass problem (p < 0.0001) where the classification accuracy was 97.33 £ 1.86 % and the F score,
recall and precision were 97.32 £ 1.88 %, 97.30 & 1.90 % and 97.36 £ 1.81 % respectively. These results
show that DL is a promising technique that can be applied to investigate the user’s movements intention from
EEG signals and highlight the potential of the proposed model for the development of future brain-machine
interface (BMI) for neurorehabilitation purposes.

INDEX TERMS Continuous wavelet transform, deep learning, electroencephalography, motor-related
cortical potentials, vision transformers architecture.

I. INTRODUCTION

In the fields of neural rehabilitation and human-robot inter-
action HRI, electroencephalography (EEG) is one of the
most commonly used physiological signals [1]. EEG can
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propagate commands from the brain without involving poten-
tially weakened physical neural pathways (such as periph-
eral nerves and muscles), which is why both healthy and
disabled people can use it. Numerous methods for decod-
ing the motion intentions using EEG in a brain-machine
interface (BMI) have been investigated (actual, attempted,
or imagined) [2], [3], [4], [5]. To generate input for a closed
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loop device, the user’s movement intentions (real, attempted,
or imagined) must be detected from the cortical signals
within a short latency. Motion preparation detection is useful
whenever control of a device or avatar is desired, e.g., in a
rehabilitation program. Therefore, developing a model with
high movement recognition accuracy is crucial to ensure
smooth and effective control techniques depending on the
estimation of the user’s movement. Movement-related cor-
tical potentials (MRCPs) are associated with both executed
and imagined motor tasks and reflect the preparatory pro-
cesses directly related to motor execution [6], [7]. MRCPs
are slow EEG changes that occur between 1.5 to 2 sec-
onds before actual movement onset and are correlated with
movement planning and execution. Many researchers have
attempted to predict limb activity using MRCPs and senso-
rimotor rhythms (SMR). G. R. Muller-Putz et al. [8], studied
event-triggered EEG changes in paraplegic patients to deter-
mine the intention of foot movement. Researchers recently
discovered that noninvasive EEG could decode lower extrem-
ity movements. This study also demonstrated the feasibil-
ity of an EEG-based BMI that could help paralyzed people
regain mobility. To discriminate between different types of
brain activities, T. Noda et al. [9], devised a new classifica-
tion technique. They use the covariance matrices of the cap-
tured EEG signals as decoder inputs. In their study, EEG
signals were used to detect the subject’s walking intention
and allow them to control the movements of the exoskele-
ton. In addition, fatigue and effort levels were constantly
tracked. Finally, the gait motion state was decoded using a
classification paradigm based on Sparse Discriminant Anal-
ysis (SDA). The groups of healthy and disabled subjects
had decoding accuracies of 84.44 + 14.56 % and 77.61 +
14.72 %, respectively. Another approach based on Spiking
Neurons was applied to classify the motor imagery tasks (rest,
left hand, right hand, foot and tongue movements) from EEG
signals [10]. Besides, M. Antelis et al. [11], developed a
dendrite morphological neural network (DMNN) to classify
the voluntary movements during motor execution and motor
imagery tasks using the EEG signals. The results depicted that
the DMNN obtained 80% decoding accuracy for the motor
execution and 77% for imagery.On the other hand, EEG
signals can be integrated with other brain waves, such as func-
tion near infrared fNIRS, to enhance the recognition accu-
racy [12]. for instance, M. Khan et al. [13], proposed a model
based on EEG and fNIRS to classify the finger tipping task
and the mean accuracy of the proposed method was 86.0%.
DL models have recently achieved considerable success in
image, video, speech, and text recognition tasks, with numer-
ous studies demonstrating their potential applications [2],
[14], [15]. Moreover, in BMI applications, DL algorithms can
facilitate the creation of more sophisticated analytic systems
than conventional machine learning techniques. Over the
previous several years, numerous researchers have used deep
learning to create more sophisticated BMI systems and have
achieved impressive results [16], [17]. In addition, DL has
been used in standard EEG-based BMI systems such as
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P300, along with concepts such as steady-state visual evoked
potentials (SSVEP), motor imagery (MI), and passive BMI
applications such as workload and emotion recognition [18].

The motor areas responsible for lower limb movements
in an adult human are somatotopically located nearby (right
leg, left leg, and foot) [19]. The mesial surface of both brain
hemispheres generates ipsilateral potentials for foot move-
ment that overlap at the midline region and are usually deep
enough to be classified at the surface [20]. Therefore, the clas-
sification of different lower limb movements is challenging
with the current level of noninvasive technology [21]. Since
the motor regions that enable the foot and knee movements
are adjacent, the challenge is more remarkable for lower
limbs than for upper limbs. Finally, the foot area in the motor
cortex is located near the central area. Another factor that
should be considered is that most previous works using EEG
signals to decode lower and upper limb movements focused
on differentiating between the limbs, i.e., left and right arm
or leg. Only a limited number of studies have investigated
intra-limb movements based on EEG signals.

To this end, we use standard ViT architecture with a
custom configuration of hyper-parameters to fit our pur-
pose. Standard ViT represents an early implementation
of attention-based methods for visual tasks. It provided
irrefutable evidence that architectures of this type can suc-
cessfully process images with accuracy comparable to top
CNNs on the classification task. Starting from this foun-
dation, we enhance it by modifying the architecture and
adding a residual connection from the embedding layer so
that the model can capture more information about the
image. A vision Transformer was used to classify the image
obtained from the EEG signals. As far as we know, this
is the first study to deploy a Transformer model for such
a task. Finally, we used the so-called Twins model, which
contains two architectures. The first combines a Pyramid
Vision Transformer (PVT) and conditional positional embed-
ding. The second is the Twins-SVT model, which is based
on a spatially-separable Vision Transformer which can con-
sistently provide a good trade-off between computational
demands and the accuracy of predictions. This is a conse-
quence of the altered attention mechanism, which can better
suit the nature of visual tasks. In addition, we fine-tuned
an intense pre-trained model (ResNet150) and evaluated its
results against the two transformer models. Therefore, this
work developed an approach based on DL to decode the
user’s motor preparation for lower limb movements. The
models detect the intention of the ankle joint movements,
i.e. dorsiflexion and plantar flexion. These movements are
crucial for maintaining basic walking positions and postures,
so the correct detection of intent can be crucial to interpreting
signals acquired during lower limb motor preparation.

Il. RELATED WORK

Despite the use of DL in EEG-based BMI systems such as
(P300, steady-state visual evoked potentials (SSVEP), motor
imagery (MI), and passive BCI (for emotion and workload
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recognition)), motor preparatory EEG signals have rarely
been used in DL. Moreover, most of the related work on upper
limb movements focuses on lower limb movements. Rec-
ognizing motor preparation is helpful whenever the goal is
controlling peripheral devices such as assistive rehabilitation
robotics. The following paragraphs summarize state of the art
in the motor imagination and DL technique. The essential aim
of previous studies is to employ the different DL algorithms
to boost the detection and recognition of brain waves during
different tasks.

Y. R. Tabar et al. [22], Investigated a convolution neural
network (CNN) and stacked auto-encoders (SAE) to clas-
sify EEG motor imagery signals during left- and right-hand
movements. Combined features, including time, frequency
and spatial information, were extracted from the EEG signal.
The integrated features were classified using the combina-
tion of CNN and SA. The outcomes revealed the improved
performance of the classification accuracy. For the same task,
Z.Tangetal. [23], proposed a CNN model to perform feature
extraction and classification for a single trial motor imagery
EEG. Then the authors compared their outcomes with three
machine learning approaches with different feature extraction
methods, including; AR, CSP and power with SVM. The
result depicted that the combination of spatial-temporal with
CNN outperformed the other conventional techniques.

J. Yang et al. [24], presented a deep fusion feature
learning based on LSTM and CNN to overcome the prob-
lem of the conventional deep learning networks to gen-
erate Spatio-temporal representation concurrently and the
dynamic correlation for the motor imagery signal. Moreover,
they applied discrete wavelet transformation decomposi-
tion to obtain the spectral information of the EEG signals.
J. Xue et al. [25], proposed a feature extraction method by
implementing a multifrequency brain network with CSP from
the EEG signal during the motor imagery movements. Then
CNN model was developed to classify the MI task. On the
other hand, a study reported by 1. Majidov et al. [26] incor-
porates two feature extraction techniques, including CSP
and Riemannian geometry feature extraction to extract the
features from recorded EEG signal during the left- and
right-hand imagination movements. Furthermore, a feature
selection algorithm was employed to remove the redundant
feature based on the particle swarm optimization method.
Thereafter, the processed data were fed to the CNN to map
the two imagined movements.

The graph-based hierarchical attention model (G- HAM)
was introduced by D. Zhang et al. [27], and uses a graph
structure to characterize the spatial information of EEG sig-
nals and a hierarchical attention mechanism to focus on
both the most discriminative time periods and EEG chan-
nels. Using time series of EEG signal, G. Zhang et al. [28],
proposed LSTM with an attention mechanism to decode the
actual movements of the left and right hand. The authors
conducted two classification schemes, including intra-subject
and cross-subject. Few studies have attempted to iden-
tify EEG-based intentional movement before movement
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execution compared with the number of studies on EEG
obtained during movement execution or movement imagina-
tion. N. Mammone et al. [18], investigated the motor plan-
ning activity based on EEG signals to decode motor
preparation phases. Data were collected from 61 EEG
channels during unilateral arm movements such as elbow
flexion/extension, forearm pronation/supination, and hand
open/close. The authors implemented 21 binary classifica-
tions, 15 for pre-movements vs another pre-movements epoch
and 6 for those related to premovement vs rest epochs. The
proposed approach generates a time-frequency (TF) map of
each source signal in the motor cortex for each epoch using
beamforming and Continuous Wavelet Transform (CWT),
then embeds all maps in a volume and feeds them into a Deep
CNN. The suggested approach achieved an average accuracy
of 90.3 % in distinguishing pre-movement from resting and
62.47 % in distinguishing pre-movement vs pre-movement.
Although CNNs have been used widely in almost all pre-
vious work, Transformer models that rely on self-attention
to track long-distance relationships have been used in Nat-
ural Language Processing with impressive results. In recent
years, this architectural blueprint has been regarded as a
worthy replacement for convolution-based models even in
the field of computer vision, mainly for tasks like image
classification, image creation and enhancement, object detec-
tion, scene segmentation, video processing and 3D process-
ing [29], [30]. What makes the Transformer superior to other
architectures, such as CNN or LSTM, is that it doesn’t rely
on inductive bias and instead uses global attention to inter-
pret long-distance connections. Meanwhile, local weights
can be dynamically aggregated based on the relationships
discovered between tokens belonging to the same local win-
dow, which is the opposite approach to the one employed
by CNN, which relies on fixed weights for spatially proxi-
mate pixels. On the other hand, adaptive weight aggregation
allows the networks to perform better with tasks that require
recognition [31].

IIl. MATERIALS AND METHODS

Fig 1 demonstrates the general framework of this work, and
the pipeline started with data collection and experimental
setup using EEG signals. Then the signals underwent prepos-
sessing to remove the unwanted signals. MRCP was evaluated
from processed EEG signals to investigate and extract the
motor preparation period. The time-frequency was evaluated
using continuous wavelet transform CWT. Furthermore, the
movement onset detection was evaluated using an EMG sig-
nal. Next, the transformed EEG signal is passed to the deep
learning structure for recognition. A paired t-test was used in
this work to evaluate the significance level of the proposed
modalities.

A. EXPERIMENTAL SETUP

This study included twenty healthy right-handed participants
(aged 27.9 £ 2.9 years). This study was endorsed by Monash
University Human Research Ethics Committee (MUHREC).
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FIGURE 1. General framework of the proposed technique.

The experiment was carried out in compliance with the
Helsinki Declarations, and all volunteers provided written
informed consent. Before data collection, the procedure of
the experiment was explained to the participants. The focus
of this study was on two movements of the ankle joint.
These are dorsiflexion and plantarflexion (DF and PF). The
DF is a movement that minimizes the angle between the
foot and the shank. The PF, on the other hand, is a move-
ment that maximizes the angle between the shank and the
foot, as if the foot were pressing on the gas pedal of a car.
These movements were selected because they are essential
for maintaining proper walking position and posture [32].
The tibialis anterior and gastrocnemius lateralis muscles were
selected for this study because they play a dominant role in
the execution of dorsiflexion and plantar flexion. To ensure
maximum range of motion of the ankle joints, each subject
sat in a comfortable chair with the legs not touching the floor,
as described in Fig 2.

To provide visual guidance for the movement task, the
monitor was placed approximately 1 meter in front of the
patient. The task proceeded as follows: the subject was asked
to move the ankle joint dorsiflexion and maintain the con-
traction for three seconds, then repeat the same movements
until the number of trials, T = 30, was reached. Between
each trial, there was a time of rest, and the plantar flexion
movement of the ankle joint was performed in the same
way. This experiment was conducted for the right ankle
joint.
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FIGURE 2. Subject position during the data acquisition process.

B. EEG DATA ACQUISITION

EEG signals were recorded from 21 channels (Fz, FC3, FC1,
FCz, FC2, FC4, C5, C3, Cl, Cz, C2, C4, C6, Cp5, Cp3,
Cpl, Cpz, Cp2, Cp4, Cpb6, Pz) using Ag/AgCl electrodes and
MCScap; all channels were positioned according to the inter-
national 10-10 standard. The ground electrode was placed
between Fz and Fpz, and the reference electrode was placed
on the left and right earlobes. The signal was amplified and
sampled at 2 kHz using NVX52 (MKS cooperation Inc,
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Russia). Before recording the EEG signal, some measures
were taken, such as checking the placement of the EEG
cap and ensuring that the electrode impedance was less than
5K ohms, which can be achieved by placing a conductive
electrogel between the EEG electrode and the scalp. The EEG
signals were first filtered with a finite impulse response (FIR)
bandpass filter (0.05-40Hz). After that, a segmented data
stream was developed (with a duration of 7s: 4s prior and 3s
after the movement’s onset). Segmented data were subjected
to independent component analysis (ICA) to remove visible
artefacts such as eye movements, heart signals, and muscle
contractions. These artefacts were removed from the ICA
components. Next, the remaining components were projected
back to build EEG signal-free form artifacts. To detect the
movement’s onset, EMG signals were recorded from two
shank muscles, Tibialis Anterior TA and Gastrocnemius Lat-
eralis. Surface EMG for Non-Invasive Muscle Evaluation
(SENIAM, seniam.org) guidelines were used to position the
EMG electrodes. The muscle belly was palpated to determine
the best location for the electrode, which was then placed
along the main fibre course [33]; moreover, the subjects were
encouraged to perform maximal voluntary contractions to
validate the positioning. For more details on the data collec-
tion procedure, readers were invited to refer to our previous
work [34].

C. MOTOR RELATED CORTICAL POTENTIALS

MRCPs are defined as a slow negative potential recorded in
EEG prior to the movement execution. MRCPs have been cat-
egorized into two segments: the first segment is the readiness
potential (RP) begins 1.5 to 1 s before the movement onset
and was observed throughout the whole pre-supplementary
motor area. The second segment is the motor potential (MP)
associated with movement execution. To MRCP, the pro-
cessed EEG signals were filtered using a second-order But-
terworth filter at (0.5,4) Hz. The EEG signal was epoched into
a 6s long segment from —4 to 2 s concerning the movement
onset.

D. TIME FREQUENCY REPRESENTATION

The processed EEG signals were represented in the
time-frequency domain by evaluating the CWT. The Morelet
wavelet was employed as a wavelet mother function in
this work. The minimum and maximum frequencies for the
complex Morelet wavelet convolution were set to 0.5 Hz
and 40 Hz, respectively. The wavelet cycle was set to
5 cycles, and the number of frequencies was set to 30.
After evaluating the TF map using CWT, the TF maps were
converted to RGB images to feed them to the DL architec-
ture. The wavelet mother used allowed us to span the target
range under investigation (0.5-40 Hz) with high resolution.
This range contains the five primary brain waves of gen-
eral interest (delta, theta, alpha, beta, and gamma), includ-
ing MRCP and SMR, which are significant to movement
analysis.
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E. DEEP LEARNING MODEL ARCHITECTURE

Our proposed deep learning model is created based on vision
transformer architecture [35], which is the state-of-the-art
of image classification. Transformer architecture was first
introduced in the seminal work of Vaswani et al. [36], and
has since been applied to many different problems such as
EEG person identification [37], seizure prediction [38], hand
movement recognition based on Electromyography signals
(EMG) [39] and Visual stimulus classification [40], however,
it has been implemented mostly in the Natural Language
Processing field. Its main advantage is that relationships
between every two tokens in a sequence can be tracked
and analyzed. By analogy, in image recognition, the model
would have to track relationships between every two pixels
in an image, which is extremely computationally demanding.
In this section, three modified ViT, as described in Fig.3
were employed and the outcomes of these three models were
compared with the ResNet model.

1) VISION TRANSFORMER
A new deep learning tool takes a known model and adjusts it
to a different input, using visual information instead of text.
The original Transformer model was taken as the foundation
of the new solution in an almost identical form, which saved
a lot of effort on model design. However, the model was
altered to process two-dimensional sequences while retaining
its ability to analyze contextual relations. The new model was
named ViT (short for Visual Transformer), and its primary
purpose is to correctly classify visual images, similarly to
how language models can solve linguistic problems. The
transformation of input into a 2D sequence corresponding to
a patch of pixels from the image is performed by reshaping
the images as follows: for each image: x € R¥*WxC will
be in the shape of x, € RN *(P*-C) with the resolution of the
original image (H, W), the resolution of the isolated patch
(P, P), the number of channels C and the effective length of
the input sequence N = & }>)<2W taken into account. In order to
create linear projections that are suitable for model training,
all patches were flattened to D dimensions, where D is the
constant latent vector size, and in terms of language, the
model is 768 lengths. Patch embedding, which is formed in
this way, is fed into the algorithm during the training stage.
The Transformer model consists of a stack of layers with
attached multi-head attention mechanisms, with the output of
one layer serving as the input for the next one. Ultimately,
information is passed along with the attention weights to a
classification layer where the decision about the particular
patch is made. In our model, we did not use the original
idea mentioned in ViT as illustrated in Fig 3a. Still, instead,
we used another idea found in the field of Natural Language
Processing called “Residual Attention Layer Transformer”
or RealFormer in short form. This model is almost identical
to the original Transformer and consists of a stack of encoder-
decoder layers. The difference here is that it uses residual
multi-head instead of the standard multi-head, as shown in
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Fig 3b. Each layer contains a residual multi-head attention
mechanism and calculates attention scores that are passed
to the next layer. The output of all attention heads is con-
catenated and linearly projected into an attention matrix,
which includes raw attention scores for all patches. In the
standard Transformer, the multi-head self-attention (MSA)
can be calculated by the following Equation 1:

MSA(Q, K, V)

= concat ( head 1, head », ..., head ;) x W° (1)

where headi is calculated as
head ; = Attention (Q;, K;, V)

the Q, K and V are the three values that produce the attention
score. Both Q and K have the dimension d; whereas V has
a dimension d,. These three matrices can be gotten by the
following Equations 2,3,4.

0; = x; x W¢ )
K; = xi x WK (3)
Vi=xi x WY 4)

where W is the weighted matrix that projects the attention
parameters into new space to extract the essential features
from each patch. Next, the attention score of the Q and K
are normalized by the Softmax function and then passed to a
scaled dot-product operation along with the V' to produce the
final attention score as shown in the following Equation 5:

. QiK'
Attention (Q;, K;, V;) = Softmax < «/d_;( ) -V 5)
In our model, the normalization is performed before Layer
Norms are inserted, but with added skip edges that create
a connection between the attention mechanisms in layers
positioned next to each other as follows.

Residual Multi Head (Q, K, V, Prev)

= concat ( head 1, head », ..., head ;) x wO (6)

where head; is calculated as
head ; = ResidualAttention (Q;, K, V;, Prev ;)

This is accomplished by sending an additional piece of
data, the attention score before Softmax activation, to the
attention heads in the current layer. This input parameter
is described as residual attention, and its weighted sum is
calculated using the same formula as for the normal attention
scores with a slight differences as follows:

Residual Attention (Q;, K;, V;, Prev;)
= Softmax QiKiT +Prev; | - Vi (7)
Vi A
where Prev; takes the shape of (N, N). The point of this
procedure is to create a direct connection between attention
modules in separate layers, thus strengthening the predictive
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capacities of the entire model. The classification head that
serves for this purpose is added to a multilayer perceptron
(MLP) with a hidden layer in the pre-training stage and a
linear layer in the training stage. The MLP consists of two
layers and can be described as follows:

20 = [xclass ; X;E; xgE; R xll,vE]
x where E € R(P*-C)xD 8)
And by adding the positional embedding:

el 27 . N
70 = [xclass ,xpE,xpE, e X E]

+ Epos Where Ej,oq € RN+DxD

Z; = LN (ResidualMultiHead (z;—1)) + z—1 9)

where [ is the number of layers and it can be represented as
I =1...Land z_I is the output of layer /.

2 = LN (MLP (3)) + 7
y= LN (zg) (10)

The output y of the encoder works as image representation
such as a sentence contextualized embedding.

2) MODIFIED VISION TRANSFORMER (TWINS)

Vision transformers are highly effective tools for completing
many complex image analysis tasks, but they are inherently
computationally demanding and difficult to implement. The
main reason for the complexity is the way the self-attention
mechanism is constantly re-calculated and, in particular, how
the algorithm handles the spatial division of the image.
Improvement of this procedure would make the visual trans-
former architecture more cost-efficient, which can dramati-
cally impact the practical value of this type of deep learning
network. The authors are aware of the previous attempts to
simplify self-attention by introducing sub-sampling, and they
expand this idea by adding some innovative elements [30].
They propose a spatial redesign of the self-attention mecha-
nism where sub-samples are grouped, and positional encod-
ing is deployed. Depending on the grouping criterion, they
develop two algorithms — one with locally-grouped self-
attention and another with global grouping. The globally
based model was named Twins- Pyramid Vision transformer
based on condition position encoding (Twins-PCPVT), and
it inserts conditional positional encoding generators (PEG)
after the first encoder block as illustrated in Fig 3c. The
locally based model was named Twins-SVT, which aims to
reduce complexity by creating sub-samples that can be ana-
lyzed separately. The authors introduce the concept of spa-
tially separable self-attention attention, which is better suited
for visual tasks and consists of globally sub-sampled attention
and locally grouped attention. In other words, a 2D feature
map is first divided into several local windows in which
self-attention can be calculated easily but with low generality.
To address this issue, the sub-sampling function based on
separable convolutions is introduced, serving to summarize
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the information within windows and provide communication
across those windows. This reduces the complexity of the
model to the following:

O(mnHWd) = O(H2W2d)/k1kl + k1k1HWd)

Both described models are simple to implement and more
computationally friendly than alternative configurations of
visual transformer architecture. Their parameters, such as the
number of layers and hidden dimensions, number of heads,
expansion ratio etc. are intentionally different in order to
study the impact of such factors on model performance.

3) DEEP RESIDUAL LEARNING

The number of stacked layers within the network architec-
ture, often referred to as network depth, impacts the abil-
ity of machine learning systems to complete various tasks
(including image recognition) with a high level of accuracy,
with deeper networks producing better results in general.
However, training and optimization of deep networks are
associated with several problems, namely vanishing gra-
dients and decaying training efficiency. This significantly
reduces the practical applicability of such systems and
makes their pre-training more computationally expensive and
time-consuming.

In response to the common difficulties with the optimiza-
tion of deep architectures, the authors propose a solution
based on the inclusion of a shallower model within the deep
network. Thanks to the integration of features across the net-
work and residual learning, the efficiency of the deep network
can be increased in this scenario. To accomplish that, the
authors introduced shortcut connections, which can be used
for identity mapping. In this way, a building block consisting
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of several layers can be constructed using the formula:

Y =F (x,{Wi} +x) (In

where x and Y are the output vectors for the included layers,
and the function represents residual learning. This formula
provides a way to transfer inputs to additional layers through
residual learning without introducing new parameters that
could complicate training. If the dimensions of layers within
a building block are not identical, linear projection is used
to equalize them. In terms of architecture, the authors started
from a convolutional network design with a global pooling
layer and fully connected layer, then inserted the shortcuts
and attached them to filters to create the residual network.
The resulting network has fewer total filters and thus reduces
computational complexity to only a fraction of that of a plain
network with a comparable number of layers. Scale augmen-
tation and color augmentation procedures were performed
with the images before they were used for training, with batch
normalization implemented after every convolution. Identity
mapping doesn’t require input padding when the layer dimen-
sions are increased, contributing to its efficiency.

The hypothesis that identity mapping with shortcut con-
nections can reduce the size of training error was examined by
testing several different variations of deep learning networks
on publicly available data sets containing a large number
of images. The impact of the network depth was reversed
when residual learning was introduced, with training error
being lower for a deeper architecture rather than higher as
with a plain network. The same trend was observed when
looking at top-1 and top-5 image classification, with the pro-
posed method outperforming several state-of-the-art models.
Model accuracy was even higher when the number of layers
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inside each building block was increased from 2 to 3. This
configuration could reduce the top-5 error to 3.47% while
still requiring less computational power than the benchmark
models of the same depth. Those results confirm that residual
learning alleviates some known issues with deep learning
network training.

4) TRAINING STAGE

We trained our models on the large size of our dataset of
28 subjects. The settings of the hyperparameters are described
in Table 1. During the training stage, the visual informa-
tion from the images is transformed into linear embeddings
through a process that involves isolating patches and con-
necting a series of such patches into input sequences. Those
sequences are processed by the transformer model in the
same way as token sequences in NLP. After attention weights
are calculated for each patch, it becomes possible to calcu-
late the ‘attention distance’ between various image elements.
Meanwhile, low-level representations within each patch are
preserved. Thus, the model can effectively learn about the
global distribution of similarities within the sequence and
capture latent connections between distant tokens. Due to
the fact that all self-attention layers are global, the proposed
model displays far lower levels of image-specific inductive
bias than any other neural network model, such as CNN or
RNN. This occurs because the starting positions are blindly
chosen during initialization and all spatial relations have
to be learned based on input processing. The settings of
the hyper-parameters During the training stage of the twins
model are described in Table2.

TABLE 1. Visual transformer hyperparameters.

Parameter Value
Learning rate 3e~0
Dropout pro 1
Batch size 32
Number of epochs 50
Hidden layer size 128
No. heads 8
Depth 12
Gamma 0.7
Seed 42
Image size 224
Patch size 16
Num classes 4
Optimizer Adam
Loss Cross Entropy Loss
IV. RESULTS

A. RESULT OF MRCP ANALYSIS

Fig 4. shows the average MRCP from —4 to 2 s with respect
to the movement onset at the Cz area during the PF and DF
movements. In both movements, the negative deflection was
observed before the movement’s onset and peaked immedi-
ately after the onset of the movement where the actual move-
ment started. During the PF movement, the MRCP peaked
at 0.16 s after the onset of the movement with a maximum
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TABLE 2. Twins transformer hyper-parameters.

Parameter

Stage 1:

embedded dimension 6

patch size 4

local patch size 7
7
1

global attention key
depth

Stage 2:

embedded dimension 128
patch size 2
local patch size 7
global attention key 7
depth 1
Stage3:
embedded dimension 256
patch size 2
local patch size 7
global attention key 7
depth 5
Stage 3:
embedded dimension 512
patch size 2
local patch size 7
global attention key 7
depth 4

Time (s)

FIGURE 4. Average MRCPs at the Cz area during DF and PF movements.

peak (MP) —6.47 V. While during the DF movements, the
negative deflection peaked at 0.12 s with —4.68 'V MP. On
the other hand, Fig 5. illustrates the average MRCP for the
EEG electrodes at the supplementary motor area SMA and
dorsal primary motor area PMAdr during the DF movement
of the right ankle joint. The results show the large negative
deflection in the midline region (Cpz, Cz, and FCz). Since RP
could represent the motor preparation time, only this interval
was considered here. It can be seen that RP in Cz and Cl1
starts 2 seconds before the onset of the movement. However,
in other channels such as FCz and FCl1, it occurs later and
starts about 1.5 to 1 second before movement onset. There-
fore, the duration of 1.5s before the start of the motion was
chosen for the TF mapping and classification phase.

B. TIME FREQUENCY ANALYSIS RESULTS

The average TF plot of the EEG channels on the right and left
motor cortex areas during the movement of the right ankle
is shown in Fig 6. The yellow color represents an increase

109453



lEEEACC@SS M. S. A.-Quraishi et al.: Decoding the User's Movements Preparation From EEG Signals

Cp2 Cpz

Cp1

:
/
E
|
;

IS
L

-2 A 0 1 2 4 3 2
Time (s)
c2

0 1 2 4 3 -2 A 0 1 2
Time (s)
c1

}
z
7
/
[

IS
L

2 4 0 1 2 4 3 2 1
Time (s)
FC2

0 1 2 4 3 2 A 0 1 2
Time (s)

ny
=
Y
5
j :
Q
N

/ io/—\/—

IS
do

2 A 0 1 2
Time (s)

I
L

2 1

Time (s)

0

~
IS
L

2 A1 0 1 2
Time (s)

FIGURE 5. Average MRCPs for the EEG electrodes over the motor cortex area.

Frequency (Hz)
.g
Frequency (Hz)
- B B e s
o 3 3 B R B 8 3
o
E

Frequency (Hz)

H

800 600 400 200 800 600 400
Time (ms) Time (ms)

°
2
g

Frequency {Hz)
; P
. B
Frequency (Hz)
. Q

-
H
g

600 400 200

Time {ms) Time {ms)

FCz

FC3

Frequency (Hz)
PP

Frequency (Hz)
Frequency (Hz)

000 800 600 400 200
Time (ms) Time {ms)

=

-1000 800 600 400

800 400 400

-200

°
2
g8
&
g
2

500 400 200 [}
Time (ms)

2
5
g
£
H
£
£

200

=)

<000 800 600 400 -200 0
Time (ms)

FC4

-200

©

000 800 600 400 200
Time (ms)

°

FIGURE 6. Time-Frequency mapping for the motor cortex electrodes during the DF movement for

Subject 5.

of power in the delta and lower beta bands (1- 4)Hz and
(12 - 18) Hz respectively, which is known as event-related
synchronization ERS. Additionally, Fig 6. shows that the ERS
is most pronounced in the left primary motor cortex (Cp3, C3
and FC3) and central line represented by (Cpz, Cz and FCz).
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C. CLASSIFICATION RESULTS

In this stage the interval of 1s proceeding the movements
onset was extracted. This is because this duration reflects
the motor preparation. As investigated before using MRCP
signals the RP is more prominent at 1s prior the movements.
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TABLE 3. Classification performance results using ViT.

Subjects | F1_Score | Precision | Recall | Accuracy
1 0.8972 0.8963 0.8985 | 0.8988
2 0.9325 0.9327 0.9325 | 0.9328
4 0.8397 0.8391 0.8413 | 0.8416
5 0.9301 0.9306 0.9302 | 0.93

6 0.8476 0.8477 0.8483 | 0.8478
7 0.9329 0.9333 0.9330 | 0.932
8 0.9155 0.9157 0.9157 | 0.9169
9 0.6082 0.6146 0.6054 | 0.6031
10 0.9678 0.9689 0.9677 | 0.9683
11 09177 0.9189 09175 | 0.9179
12 0.9468 0.9473 0.9469 | 0.9470
13 0.9052 0.9054 0.9055 | 0.9047
14 0.9108 0.9130 0.9102 | 0.9100
15 0.9207 0.9213 0.9207 | 0.9206
16 0.9365 0.9375 0.9374 | 0.9365
17 0.8905 0.8899 0.8918 | 0.8904
18 0.9311 0.9320 0.9310 | 0.9312
19 0.9130 0.9136 0.9136 | 0.9126
20 0.9084 0.9101 0.9074 | 0.9076
21 0.9397 0.9397 0.9400 | 0.9401
22 0.9445 0.9445 0.9446 | 0.9444
23 0.9344 0.9330 0.9365 | 0.9345
24 0.8631 0.8632 0.8636 | 0.8654
25 0.9171 0.9185 0.9170 | 0.91838
26 0.9127 0.9134 0.9128 | 0.9126
27 0.8182 0.8183 0.8184 | 0.8205
28 0.9394 0.9413 0.9383 | 0.9393
Average | 0.8980 0.8988 0.8983 | 0.8982
Std 0.0669 0.0661 0.0673 | 0.0675

Therefore, the TF maps were evaluated over the motor cortex
area and the resultant scalogram diagram for each 1s epoch
was converted to RGB image. Then these converted images
were fed as an input to the proposed DL model. Furthermore,
Three ViT models were evaluated to assess the powerful of
the proposed deep learning method and the results of these
models also compared with ResNet model. Among the three
ViTs model, TWINS showed the highest classification per-
formance metrics. Moreover, the TWINS also outperforms
the ResNet model. Table 4 to Table 9 depicts the individual
classification performance measures for the proposed ViTs
models in addition to the ResNet technique. Amonge the DL
models, TWINS technique reveals a significant classification
performance measures for the multi-class problem including
RDF, LDF, RPF and LPF. Where the classification accuracy
15 97.33 &+ 1.86 % and the F-score 97.32 + 1.88 %.

To demonstrate the significant of the classification per-
formance measures improvements of the motor prepa-
ration during lower limb movement, paired t-test was
employed between ViT and other machine learning classi-
fiers, Table 3 illustrates the different p values. Where the
classification performance measures using the proposed ViT
method was compared with the other DL models as shown in
Fig 7 and Fig 8.

V. DISCUSSION
EEG signals are commonly used to interpret motoric actions
and predict movement, but they are poorly suited to facilitate
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TABLE 4. Classification performance results using ResViT.

Subject F1 precision | recall | accuracy
1 0.939 0.9403 0.9403 0.9387
2 0.968 0.9679 0.9679 0.9689
3 0.8811 0.8821 0.8821 0.8821
4 0.9284 0.9294 0.9294 0.93
5 0.913 0.9135 0.9135 0.9148
6 0.9509 0.9518 0.9518 0.9501
7 0.8958 0.8971 0.8971 0.8965
8 0.9445 0.9452 0.9452 0.9441
9 0.9728 0.9729 0.9729 0.9733
10 0.9421 0.9432 0.9432 0.9414
11 0.9631 0.9636 0.9636 0.9634
12 0.9128 0.9145 0.9145 0.9125
13 0.9638 0.9642 0.9642 0.9635
14 0.9333 0.9341 0.9341 0.933
15 0.9634 0.9636 0.9636 0.9637
16 0.9439 0.9433 0.9433 0.9447
17 0.9546 0.9552 0.9552 0.9548
18 0.9628 0.9631 0.9631 0.963
19 0.9176 0.9174 0.9174 0.9181

20 0.9685 0.9696 0.9696 0.9681
21 0.9552 0.9552 0.9552 0.9554
22 0.9171 0.9172 0.9172 0.9178
23 0.8811 0.883 0.883 0.8805
24 0.9335 0.9345 0.9345 0.9348
25 0.918 0.9233 0.9233 0.9193
26 0.8703 0.8705 0.8705 0.8706
27 0.9518 0.9522 0.9522 0.9518
28 0.8929 0.9022 0.9022 0.8939
Average | 0.9335 0.9346 0.9346 0.9339
Std 0.029 0.0284 0.0284 0.0289

TABLE 5. Classification performance results using ResNet.

Subject F1_Score | Precision | Recall | Accuracy
1 0.9685 0.9683 0.9687 | 0.9682
2 0.9768 0.9764 0.9763 | 0.9762
3 0.9484 0.9484 0.9484 | 0.9486
4 0.9407 0.9435 0.9408 | 0.942
5 0.9450 0.9476 0.9443 | 0.9446
6 0.9778 0.9774 0.9789 | 0.978
7 0.9523 0.9522 0.9525 | 0.9525
8 0.9622 0.9627 0.9628 | 0.9623
9 0.9960 0.9957 0.9963 | 0.9960
10 0.9726 0.9724 0.9729 | 0.9722
11 0.9891 0.9894 0.9889 | 0.9900
12 0.9506 0.9514 0.9503 | 0.9503
13 0.9467 0.9492 0.9460 | 0.9464
14 0.9397 0.9457 0.9389 | 0.9365
15 0.9922 0.9920 0.9925 | 0.9920
16 0.9772 0.9775 0.9770 | 0.9774
17 0.9801 0.9802 0.9803 | 0.9801
18 0.9487 0.9490 0.9491 | 0.9484
19 0.9661 0.9654 0.9673 | 0.9664
20 0.9901 0.9903 0.9901 | 0.9902
21 0.9879 0.9879 0.9881 | 0.9880
22 0.9702 0.9708 0.9699 | 0.9705
23 0.9341 0.9387 0.9337 | 0.9347
24 0.9507 0.9510 0.9521 | 0.9509
25 0.9342 0.9354 0.9339 | 0.9345
26 0.9297 0.9314 0.9300 | 0.9308
27 0.9818 0.9816 0.9825 | 0.9822
28 0.8804 0.8832 0.8798 | 0.8799
Average | 0.9603 0.9612 0.9604 | 0.9603
Std 0.0248 0.0238 0.0250 | 0.0249

recognition of lower limb movement. For this reason, this
study explored whether the inclusion of EMG data and fusion
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TABLE 6. Classification performance results using TWINS.

Subject F1_Score | Precision | Recall | Accuracy
1 0.9733 0.9732 0.9736 | 0.9735
2 0.9871 0.9863 0.9882 | 0.9868
3 0.9705 0.9714 0.9700 | 0.9709
4 0.9892 0.9888 0.9897 | 0.9893
5 0.9593 0.9598 0.9590 | 0.9604
6 0.9845 0.9846 0.9847 | 0.984
7 0.9811 0.9811 0.9812 | 0.9815
8 0.9712 0.9712 0.9713 | 0.9708
9 0.9975 0.9977 0.9972 | 0.9973
10 0.9737 0.9743 0.9733 | 0.9735
11 0.9972 0.9972 0.9972 | 0.9973
12 0.9683 0.9682 0.9686 | 0.9682
13 0.9788 0.9790 0.9787 | 0.9788
14 0.9600 0.9603 0.9600 | 0.9603
15 0.9923 0.9923 0.9923 | 0.9920
16 0.9786 0.9779 0.9779 | 0.9780
17 0.9788 0.9791 0.9786 | 0.9788
18 0.9603 0.9603 0.9608 | 0.9603
19 0.9766 0.9771 0.9764 | 0.9762
20 0.9947 0.9947 0.9949 | 0.9947
21 0.9844 0.9845 0.9844 | 0.9841
22 0.9787 0.9788 0.9787 | 0.9790
23 0.9251 0.9312 0.9230 | 0.9261
24 0.9510 0.9513 0.9513 | 0.9528
25 0.9788 0.9795 0.9784 | 0.9788
26 0.9579 0.9605 0.9561 | 0.9577
27 0.9843 0.9850 0.9837 | 0.9841
28 0.9161 0.9168 0.9159 | 0.9160
Average | 0.9732 0.9736 0.9730 | 0.9733
Std 0.0188 0.0181 0.0190 | 0.0186
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FIGURE 7. Comparison of the classification accuracy.
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1

DL Model

FIGURE 8. Comparison of the F1_Score.

of input from those two sources could improve the prediction
accuracy and make the construction of BCI devices for foot
rehabilitation possible. This work aims to recognize the motor
preparation of the user based on the EEG signal during the
movements of the ankle joint. MRCPs represent brain activity
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TABLE 7. p_value of the classification perfromance measures for the ViT
and ResNet models in comparison with TWINS model.

Classification performance measures
DL models F1_Score Precision Recall Accuracy
ViT 4.007E-07 | 3.572E-05 | 4.767E-07 | 4.917E-07
ResNet 4.227E-05 | 3.572E-05 | 6.584E-05 | 3.886E-05

changes associated with movement in the time domain [41].
The Bereitschaftspotential (BP) or readiness potential (RP)
represents the motor preparation stage of movement and is
thought to be produced by the supplementary motor area
(SMA) [42], motor cortex, and cingulate gyrus [43]. The anal-
ysis of MRCPs in this work is consistent with this approach,
where the negative deflection appeared around 2 s before
the movement’s onset on the SMA, and the large negative
deflection appeared in the Cz area. The motor potential (MP)
is a late subcomponent of the MRCPs that is thought to be
produced partly by afferents stimulated by movement and
by the under-lying motor cortex [2]. For both ankle joint
movements, MP during the PF movement is higher than
that during the DF, where the MRCP peaked at 0.16 s after
the movement’s onset with maximum peak (MP) —6.47 uV
during the PF. While during the DF movements, the negative
deflection peaked at 0.12 s with —4.68 «V MP. The MRCPs’
negativity amplitude can be related to the amount of energy
needed for the movement, whereas the MRCPs’ onset period
is defined as the time spent planning and preparing the move-
ment [44]. Also, it can be noted from the MRCP analysis
during the movement execution, the motor cortex area was
activated bilaterally. Although there is a negative deflection
at the ipsilateral area in C2 and contralateral area C1, the
MP of the C1 is higher than that in the C2 area. The MP in
the C1 area was —2.87 uV, while the MP value at the C2
was —1.27 uV; therefore, there is a significant difference in
the MP amplitude in both areas (p < 0.001). Several studies
utilized MRCPs for the movement’s intention detection and
recognition [45], [46], [47], [48], [49]. According to [50],
self-directed grasping movements of the upper limbs can be
detected with an accuracy of about 80% using MRCP corre-
lates before the movement. Furthermore, in a recent related
study, MRCP features were used to predict foot torque move-
ment on a single trial [50]. Depending on the wavelet and the
classification process, they achieve a classification accuracy
of about 84.2 %. Recent research, which focused at detecting
pre-movement states from MRCP correlations when execut-
ing ankle dorsiflexions, shows an 82.5% performance for
movement execution [51]. On the other hand, according to
the time-frequency mapping and alpha beta ERD data, there
is a bilateral control phenomenon in movement execution.
Alpha ERS was most pronounced during the movement inten-
tion or preparation phase, indicating that brain excitability
has a contralateral function in the pre-movement phase [1].
In the current study, alpha oscillations in the brain’s central
part represent the neural populations’ synchronous activities.
SMR in alpha and beta oscillation have been utilized in
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recent research to detect the movements intention and move-
ments execution, [52], [53], [54], [55]. However, studies that
used SMR for movement’s detection showed lower detection
accuracy compared to that studies used MRCPs as reported
in [56]. MRCP and ERD feature varied in lateralization
phenomena, but it was apparent that both contralateral and
ipsilateral motor cortices were engaged in motor preparation
tasks. Not only for bilateral but also unilateral movements,
neural networks within and between hemispheres are needed
to coordinate motor functions [47].

In addition, In this paper, we have developed some
enhancements to the standard ViT by introducing a Residual
connection. In addition, we have used ResNet and a recent
implementation of Transformer architecture called Twins,
where the models were found to deliver more astute pre-
dictions than the comparable Transformer variations and the
ResNet. The ability to consistently provide a favourable ratio
between computational demands and accuracy of predictions
confirms that the altered attention mechanism revealed that
both conditional positional encoding and the SSSA mecha-
nism could better suit the nature of visual tasks. This approach
brings tangible improvements over any existing alternative
forms of vision Transformer in model accuracy and train-
ing efficiency. All DL models were tested and compared
against each other on the image classification task. Our
proposed Residual ViT outperformed the standard ViT, with
almost 4% higher accuracy; however, its performance was
inferior to ResNet. For this reason, we used Twins, which
was even more accurate than ResNet on image classifica-
tion task, with accuracy margins reaching as high as 1.3%;
and outperforming standard ViT and Residual ViT by.5% and
3.9%, respectively. Overall, the results indicate that using
Twins retains excellent generalization ability and broad con-
textual awareness, and the number of parameters that must
be accounted for is significantly reduced. These encourag-
ing results also highlight the potential of the EEG signals
with a deep learning-based ViT approach for accelerating
the development of a BMI for movement rehabilitation in
the future. Additionally, the developed model might encour-
age the development of bio-robotics assistive devices that
enhance human movement and improve quality of life.

VI. CONCLUDING REMARKS

A. CONCLUSION

Movement recognition based on EEG signals today signifi-
cantly influences neuroscience research. This work investi-
gated and implemented the motor preparation phase based
on EEG signals for lower limb movement recognition. Four
movements of the right and left ankle joints were involved in
this study, including right and left dorsiflexion and plantar
flexion. The time-frequency (TF) map of each EEG sig-
nal in the motor cortex is generated using the Continuous
Wavelet Transform (CWT). The obtained images are then fed
into deep-learning models for classification. The proposed
deep learning models are based on the vision transformer
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architecture (ViT). The findings of this study demonstrate the
effectiveness of the deep learning approach based on EEG
signals for the development of future BMI for lower limb
rehabilitation.

B. FUTURE DIRECTIONS

The proposed approach successfully recognized the actual
ankle joint movements. Nevertheless, its real-time ability to
classify those movements remains to be tested. Furthermore,
more studies should be carried out to cover both actual and
imagined movements. Besides, more rigorous research needs
to be performed to incorporate the results of this study into
clinical practice.
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