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ABSTRACT The innovation and evolution of hackingmethodologies have led to a sharp rise in cyber attacks,
highlighting the need for enhanced network security approaches. Network intrusion detection systems based
on machine learning are playing a significant role in the domain of network security. However, designing an
optimal framework for a network intrusion detection system is an ongoing concern. In this study, an optimal
framework for a network intrusion detection system based on image processing is proposed. The framework
is a fusion of augmented feature selection flowwith an image transformation and enhancement methodology.
Initially, the proposed framework reduces the number of features to achieve overall efficiency. Later, the
non-image data is transformed into images. The transformed images are then enhanced for achieving
effective anomaly detection based on a deep-learning classifier. The proposed method is implemented
on three diverse benchmark datasets of intrusion detection. To illustrate the efficiency of the proposed
framework it is compared with some of the most recent publications on image-processing-based network
intrusion detection systems.

INDEX TERMS CNN, CSE-CIC-IDS 2018, CIC-IDS 2017, ISCX-IDS 2012, intrusion detection, network
intrusion detection system.

I. INTRODUCTION
The pervasive use of interconnected computer systems has
become an irreplaceable aspect of organizational and daily
life activities. Concurrently, it had led to concerns about the
online privacy and security of the users [1], [2]. As per recent
surveys, the reported cyberattacks in 2021 were approxi-
mately 5.1 billion [3], [4]. The reports also indicate a surge
in sophisticated and high-impact cyberattacks on critical
infrastructure globally [4], [5]. Understandably, such a high
number of cyberattacks indicate the need for enhancement in
network security approaches. Machine Learning (ML) based
Network Intrusion Detection Systems (NIDS) are considered
to be among the most effective approach to counter network
attacks. However, sustaining the efficiency and effectiveness
ofML-basedNIDS against ever-mutating network attacks is a
highly challenging task. Designing an optimal framework for
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ML-based NIDS is an ongoing struggle [6], [7], [8]. There is a
constant compromise between achieving high efficiency and
effectiveness. The ML-based NIDS with high efficiency may
not be highly effective, while the one with high effectiveness
may not be highly efficient [9], [10]. In efforts to optimize
ML-based NIDS, researchers have worked on multidimen-
sional approaches i.e. feature selection, data augmentation,
classification algorithms, and hybrid algorithms to optimize
the NIDS framework [11], [12]. Even with all the efforts, the
degree of successful malicious attacks is increasing rapidly.
Hence, a refined and scalable intrusion detection method
is essential to counter the cybersecurity concern. With the
advancements in Deep Learning (DL) and image processing,
security experts are exploring the possibilities of using DL
and image processing for NIDS [13], [14], [15], [16], [17].
DL is an improved form of the neural network (NN) as it
overcomes three significant training phase issues of NN i.e.
over-fitting, vanishing gradient, and computational load [18].
The convolutional neural network (CNN) is among the DL
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models that are designed predominantly for image data [19].
CNN is among the recent and highly accurate classifica-
tion approaches in image processing [20]. In the last few
decades, the use of image processing in the healthcare indus-
try has obligated researchers for achieving extreme precision
in image analysis, detection, and classification [21]. The
exploration of image processing for NIDS is intriguing due
to the high precision results achieved by CNN and image
processing methods. The fusion of image processing in NIDS
is relatively new and requires innovation. One of the major
concerns for image processing-based NIDS is the conver-
sion of non-image network traffic into images for visual
processing. A few of the prominent methods for convert-
ing the non-image data into images are by converting a
one-dimensional vector to a multi-dimensional matrix, using
the Fourier domain, and using spectrogram-based image
transformation [14], [15], [16]. The mentioned approaches
do have concerns regarding general application and image
transformation results, which are discussed in the related
work section. Such issues have opened doors for further
exploration of methods that can improve the conversion
of non-image data into images. In our earlier study [17],
we implemented the image processing-based NIDS with
CNN based classifier. In that study, we used all the features
of the implemented datasets. The inclusion of all features was
based on the notion that higher pixel images are conducive to
detecting anomalies [22]. In the prior study [17] the accuracy
of anomaly detection was above 90% on all the datasets. This
work is an enhancement to the earlier work by augmenting
the proposed framework through feature selection. This study
attempts to contribute to the two key areas of image-based
NIDS. First, the framework uses a reformed filter-based fea-
ture selection flow to achieve overall optimization of the
NIDS. The augmented feature selection approach increases
the overall efficiency of the NIDS. The second is an innova-
tive framework to transform non-image data into image for-
mat. The method of transforming non-image data into images
can further be divided into two steps. Initially, the framework
transforms non-image data into images. Later, the converted
images are enhanced to attain improved anomaly detection
using a CNN-based classifier. Even with the fewer pixels
of image representation, the proposed framework achieved a
detection rate of over 92% on CSE-CIC-IDS 2018 [23], CIC-
IDS 2017 [24], and ISCX-IDS 2012 [25] datasets.

The remaining of the paper is structured as follows:
Section II discusses the related studies onML, DL, and image
processing-based NIDS. Section III presents the proposed
methodology and elaborates on each step of the framework.
Section IV gives details on the implementation of the pro-
posed NIDS. Section V highlights the results and comparison
of the proposed and recent prominent image-based NIDS
approaches. Section VI discusses the outcomes of the pro-
posed methodology in contrast to the results of the imple-
mented comparative approaches. Section VII concludes the
study with a future direction of research.

II. RELATED WORK
The researchers have worked extensively to incorporate ML
in NIDS. Despite the extended research, the struggle to
achieve an optimal framework for ML-based NIDS is a
challenging and ongoing task. To optimize ML-based NIDS
researchers have explored hybrid and innovative approaches
for data pre-processing, feature selection, and prediction
algorithms. In recent developments, researchers are exploring
DL for NIDS solutions [26]. Among these DL models, CNN
is considered a highly effective and efficientmodel. Generally
due to its ability to reconstruct features and learn in-depth
patterns from images [27]. Table 1 represents a summary of
recent and prominent publications in the domain of image
processing-based NIDS.

As seen in Table 1, most of the papers use two main
approaches to convert non-image data into image format. One
is to simply transform one-dimensional data into a multi-
dimensional matrix. The second is to use the Fourier domain
for the transformation of non-image data into image for-
mat. Both of the mentioned methods have some advantages
and disadvantages. For instance, the first approach is highly
efficient but can compromise the correlation between fea-
tures [32]. Such a compromise can influence the NIDS’s
ability to detect sophisticated attacks. On the other hand,
image transformation by using Fourier domain-based may
have complexity issues when it comes to big data [33]. The
mentioned issues highlight the room for improvement in the
domain of converting non-image network traffic into image
format. The application of CNN in the domain of NIDS
brings high precision for classification. However, this high
precision relies heavily on the transformation of non-image
network data into images for a CNN-based classifier. For
example, Xiao et al. [28] use a fusion of principle com-
ponent analysis (PCA) and auto-encoder (AE) for feature
engineering, and then two-dimensional images were created
for a CNN-based classifier. The proposed hybrid approach
was not so successful in detecting minor attack labels in the
dataset. Similarly, Zhang et al. [34] proposed a highly com-
plex approach for converting non-image data into images.
The proposed approach used the P-Zigzag algorithm for cre-
ating two-dimensional greyscale images for CNN (gcForest)
classifier. Despite the high computational cost, the proposed
model was very effective in detecting anomalies. Further,
Jiang et al [35] proposed an effective but highly complex
IDS approach. The proposed framework initially balances the
dataset by using the one-side selection (OSS) to decrease a
large number of samples in the main category and Synthetic
Minority Over-sampling Technique (SMOTE) to upsurge the
samples of minority samples. After data balancing, the spa-
tial features are extracted using CNN, and temporal features
are extracted using a Bi-directional long short-term memory
(BiLSTM). The fusion of CNN and BiLSTM also creates
a deep layered network for classification. The discussed
research highlights two main concerns of image processing-
based NIDS. One is the continuous challenge of achieving
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TABLE 1. Summary of recent and prominent publications in the domain of image processing-based NIDS.

FIGURE 1. Overall flow of the proposed framework.

an optimized NIDS framework. Second is room for improve-
ment in the approach of converting non-image network data
into image format.

III. PROPOSED METHOD
The proposed framework is a fusion of two phases. In this
section, both fragments will be discussed separately to give
a clear idea of the proposed framework. First, the augmented
flow of feature selection and data transformation is discussed.
Second, the process of converting non-image data to image
format is elaborated. Figure 1 represents the overall flow of
the proposed NIDS framework.

A. DATASET PRE-PROCESSING
The datasets used for the implementation of the proposed
NIDS framework are CSE-CIC-IDS 2018 [23], CIC IDS
2017 [24], and ISCX IDS 2012 [25]. The mentioned datasets
are among the benchmarked and well-known datasets for
testing NIDS [36]. The datasets are generated by modeling
real-world traffic and attack patterns. To create the datasets
the attacks were generated for several days based on exist-
ing tools and profiles. Datasets also contain a large vol-
ume of both normal and attack traffic generated by various
operating systems. Due to the stated reasons, the datasets
present diverse and sophisticated attack approaches that are

highly suitable for testing the proposed NIDS framework.
The pre-processing steps applied to the datasets are the same
for all the conducted experiments. Primarily simple data
cleaning is used for the datasets. The basic cleaning resolved
the issues of, missing values, samples, duplicates, and infinite
symbol records from the datasets. Then negative time samples
in the datasets are also removed. In the datasets, CIC IDS
2017, and ISCX IDS 2012 the sample of labels ‘‘BENIGN’’
and ‘‘NORMAL’’ respectively are very high in quantity.
To evade bias, samples of the ‘‘BENIGN’’ and ‘‘NORMAL’’
classes are reduced. In the CIC IDS 2017 dataset, two
classes ‘‘Infiltration’’ and ‘‘Heartbleed’’ are removed as
they had insufficient samples. The three classes representing
web attacks in dataset CIC-IDS 2017 are merged into one
class of ‘‘Web attack’’. Further, SMOTE is applied with
Edited Nearest Neighbors (ENN) to clean the training sets
of each dataset. The SMOTEEN balances all the labels in the
datasets. Table 2 represents the details of the datasets after
pre-processing.

B. DATA TRANSFORMATION
Securing a network of diverse interconnected devices is
a challenging task for ML-based NIDS. To optimize and
facilitate ML-based NIDS, data normalization or transfor-
mation plays an integral part. The benchmarked datasets
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TABLE 2. Details of datasets ISCX IDS 2012, CIC IDS 2017, and CSE CIC IDS 2018.

Algorithm 1 Statistical Model for Identifying the Suitable Transformation/Normalization/Scaling Method
1: Output: Suitable transformation/normalization/scaling approach for the dataset.
2: Input: Dataset, ′′d ′′

3: Where;
4: d , (d1, d2, .., dk ), k(∈ N) : datasets.
5: ith data: di , (f i1, f

i
2, .., f

i
n),

6: n = Total features.
7: Nm = m-th normalization.
8: Step 1: Pre-Process the dataset.
9: d ′′← Pre− Processing(d)
10: Step 2: Apply transformation/normalization/scaling on dataset, (i.e. Nm).
11: d (m)← Nm(d ′′), where d

(m)
i , (f (m),i1 , .., f (m),in )

12: Step 3: Compute Median, Mean and, Skewness of each feature.
13: mean(m)j = mean(f

(m),1
j , .., f (m),kj )

14: median(m)j = median(f
(m),1
j , .., f (m),kj )

15: skewness(m)j = abs(skewness(f
(m),1)
j , .., f (m),k)j ))

16: Step 4: Calculate average Median, Mean and Skewness of the dataset.
17: mean(m) = mean(mean(m)1 , ..,mean(m)n )
18: median

(m)
= median(median(m)1 , ..,median(m)n )

19: skewness
(m)
= skewness(skewness(m)1 , . . . , skewness(m)n )

20: Step 5: Apply Rank(R) and percentile on median
(m)

, mean(m), and skenewss
(m)

of each Nm,∀m.
21: Step 6: Sum the R of median

(m)
, mean(m), and, skenewss

(m)
to know the appropriate normalization (Nm∗ ).

22: m∗ = argmaxm{R(mean(m)) +R(median
(m)

) +R(skenewss
(m)

)}

or real network traffic are not normally distributed and are
skewed [37]. ML algorithms have a tendency to perform
better when the data is normalized, as it tends to increase
the general structure and relation among features [38]. How-
ever, identifying the most appropriate normalization or data
transformation for the data or dataset is a dubious task.
In this study, the statistical approach proposed in the paper [8]
is implemented to recognize the most appropriate normal-
ization for the three datasets. As the proposed statistical
method is simple and efficient in terms of implementation and
computational requirements. The only difference between
Algorithm 1 in this study and the algorithm suggested in
the paper [8] is the flow of feature selection. In this study,
the algorithm is implemented before feature selection, while

in the research work [8] it was implemented after feature
selection. Subsequently, normalizing the dataset presents a
more prominent and suitable correlation between the features
for a feature selection based on correlation. Algorithm 1 rep-
resents the flow in which the algorithm is implemented in this
study.

For this study, five prominent normalization methods were
implemented on all three datasets. The methods implemented
are MinMax, Robust scaler, Standard Scaler, L2 standard-
ization, and Yeo-Johnson. The MinMax [39] approach can
mathematically be represented as (1).

xscaler =
x − xmin

xmax − xmin
(1)
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TABLE 3. Average median, mean, and skewness of each dataset based on different normalization methods.

Equation (2) represents the Robust scaler [40] method.
Where, ‘x’ denote the values while Q1 = 25th quantile and
Q3 = 75th quantile.

x =
xi − Q1(x)

Q3(x)− Q1(x)
(2)

Mathematically the Standard scaler [39] can be represented
as (3), where ‘s’ signifies the standard deviation and ‘µ’
indicate the mean.

xscaler =
x − µmean
sstddiv

(3)

Equation 4 represents the L2-standardization [41], where
‘x’ represents the attributes of dataset features.

||x||2 = (|x1|2 + . . . .+ |xn|2)1/2 (4)

Yeo-Johnson [38] can be denoted as (5). Where ‘j’ repre-
sents feature attributes, ‘λ’ can be a R, and λ = 1 gives the
identity conversion.

j(λ)i =



(
(j1 + 1)λ − 1

λ

)
if λ 6= 0, j ≥ 0

log(ji + 1) if λ = 0, j ≥ 0(
(−[(j1 + 1)2 − (λ)− 1]

2− λ

)
if λ 6= 2, j < 0

−log(−ji + 1) if λ = 2, j < 0

(5)

Based on Algorithm 1, the median, mean, and skewness of
each dataset are computed using (6), (7) and (8).

Mean =

∑n
i−1 x1
n

(6)

Median =


x
[n
2

]
if n is even(

x
[
n−1
2

]
+ x

[
n+1
2

])
2

if n is odd

(7)

Skewness =
n
∑n

i=1(xi − x̄)
3

(n− 1)(n− 2)s3
(8)

where ‘‘n’’ in (6), (7), and (8) represent the number of
attributes or values in the dataset, ‘‘x’’ denotes the attribute or
value in a dataset. Further in (8), ‘‘x̄’’ and ‘‘s’’ are the mean
and standard deviation respectively. For the suggested statis-
tical process, skewness is considered an absolute or positive
value. The median, mean, and skewness of the datasets can
be seen in Table 3.

After computing the matrices shown in Table 3, percentile
ranking is applied to find the most appropriate normalization

method. The formula for ranking and percentile can be rep-
resented as (9) and (10).

Percentile =
x
N
× 100 (9)

Rank =
Percentile
100(n+ 1)

(10)

where ‘‘x’’ is the number of values beneath the particular
value. The ‘‘N’’ signifies the total number of values, and ‘‘n’’
highlights the number of values. Ranks are allotted based
on descending order. Table 4 represents the ranking of each
normalization approach based on the Rank and Percentile
method.

Based on Table 4, it can be seen that the Yeo-Johnson
transformation was able to attain the highest rank among
all the normalization methods. Except for dataset CSE-CIC-
IDS 2018, where L2 Normalization achieved the same rank
as Yeo-Johnson. Later, based on our classification results
it is highlighted that the Yeo-Johnson was able to achieve
precision higher than L2 Normalization.

C. FEATURE SELECTION
In this age of big data, an immense amount of data is trans-
ferred every second. Such a high transaction rate makes
real-time incursion detection a problematic task. MLwhich is
the most suitable methodology for NIDS does tend to suffer
from a low anomaly detection rate with high-dimensional
data. Traditionally, features are selected after performing
basic pre-processing. In this study, we experimented by using
power transformation before filter-based FS, as normalizing
data before applying a statistical-based FS can improve the
probability of selecting relevant features. The feature selec-
tion flow is adopted as per the study [7] as represented in
Figure 2.

FIGURE 2. Feature selection flow for the proposed NIDS framework.

Based on the study in papers [7] and [11], Pearson cor-
relation (PC) is implemented to select the features from
the datasets. Equation (11) represents the mathematical
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TABLE 4. After applying the Rank and Percentile approach to Table 3 and computing the Ranks for each normalization.

representation of PC.

Pxy =

∑m
i=1(xi − x̄)(yi − ȳ)√∑m

i=1(xi − x̄)2
√∑m

i=1(yi − ȳ)2
(11)

where:
Pxy = PC coefficient value,
xi = Discrete sample values of each dependent attributes,
yi = Discrete sample values of the individual attribute,
x̄ = Average of all sample values of each dependent

attribute,
ȳ=Average of all sample values of the individual attribute.
m = Total attributes.
Table 5 represents the total number of features selected by

the PC approach.

TABLE 5. Number of original features in the dataset features and
features after PC feature selection.

D. CONVERTING DATASETS TO IMAGES
After feature selection, the datasets ISCX IDS 2012, CIC IDS
2017, and CSE CIC IDS 2018 are ready to be transformed
into images. As figure 1 highlights, the transformation of
non-image data into image format is based on two phases. Ini-
tially, the DeepInsight-based [42] approach is implemented.
The Kernel Principal Component Analysis (KPCA) [43] is
used to map the dataset features from a 1D space to a 2D
space. Due to the mapping by KPCA, the dataset features
are expected to be linearly discrete. The 2D space mapping
represents features as points in the Cartesian plane. The
plotted points only represent the position of features in 2D
space and not the attributes of those features. To facilitate
the CNN-based classifier, the convex hull algorithm is used
to create a small rectangular shape. This rectangular shape

contains all the mapped features of the dataset. The next step
is to transform the Cartesian coordinates into pixels. During
the transformation of Cartesian coordinates to pixels, some of
the features are averaged due to the limitation of pixels. The
limitation of pixels is due to the size of the image. As with
feature selection, the quantity of features is reduced resulting
in a limited pixel representation of images. The newly gener-
ated frame of pixels represents the positions of the dataset
features. The feature attributes are then mapped based on
the frame of the pixel representing features. The overlapping
pixels of features are averaged and assigned the same pixel
location. After this process, each sample of the label in a
dataset is converted into an image representing that sampled
label. Once all the datasets are converted from non-image data
to image format the Gabor filter [44], [45] is used to further
improve the generated images.

1) GABOR FILTER
Gabor filter plays a significant role in modifying, extracting,
improving, or representing digital graphical data. These fil-
ters have also shown remarkable localization properties in
both frequency and spatial domains. The Gabor filters can
be considered as special kinds of band-pass filters. Based on
the configuration, they allow a particular band of frequencies
to pass while stopping the others. The parameter settings for
the Gabor filter depend on the task at hand. To implement the
Gabor filter, two types of parameters are configured. First, the
parameters that define how the Gabor filter will be. Second,
which features will the Gabor filter react to. The parameters
used for the Gaber filter in the proposed framework can be
seen in Figure 3.

A two-dimensional Gabor filter can be considered as a
sinusoidal signal of a particular frequency and direction,
regulated by a Gaussian wave. To represent the orthogonal
direction, the Gabor filter has both imaginary and real com-
ponents. The complex, real and imaginary equations of the
Gabor filter can be represented as Equations (12), (13), and
(14) respectively. Both the real and imaginary components
can be used separately or can be shaped into a complex

VOLUME 10, 2022 108535



M. A. Siddiqi, W. Pak: Tier-Based Optimization for Synthesized Network Intrusion Detection System

FIGURE 3. Gabor filter parameters with sample images of DoS Hulk and Normal label generated by defined Gabor filter.

number component.

G(x, y; λ, θ, φ, γ ) = exp
(
−
x ′2 + γ 2y′2

2σ 2

)
× exp

(
i
(
2π

x ′

λ
+ φ

))
(12)

Re{G(x, y; λ, θ, φ, γ )} = exp
(
−
x ′2 + γ 2y′2

2σ 2

)
× cos

(
2π

x ′

λ
+ φ

)
(13)

Im{G(x, y; λ, θ, φ, γ )} = exp
(
−
x ′2 + γ 2y′2

2σ 2

)
× sin

(
2π

x ′

λ
+ φ

)
(14)

where:
x ′ = x cos θ + y sin θ,
y′ = −x sin θ + y cos θ.
λ =Wavelength of the sinusoidal part,
θ = Controls the positioning of the Gabor function,
γ = Spatial point ratio,
σ = The standard deviation(σ ) of the Gaussian covering,
φ = The phase offset/error of the sinusoidal function.
The parameters λ, θ , γ , σ , and φ define the form of the

Gabor function.
After the transformation of images with the Gabor filter,

the process of converting non-image data into image format
is completed. Figure 4 illustrates an overview of the proposed
procedure for converting non-image data into image format.

E. CNN-MODEL
The final block of the proposed framework is the CNN-based
classifier. The CNN-based classifier is implemented due to
its potential to achieve high accuracy and computational effi-
ciency. It is also among themost prominent classifier in recent
research publications. Implementing a CNN-based classifier
also provides ground for comparing the proposed framework
with recent prominent methods. The sequential CNN model
implemented for the experiments consists of 12 layers. The
layers consist of an input layer, three conv2D layers, four
dropout layers, flatten layer, and three dense layers including
an output layer. The kernel size for each convolutional layer
is three. The convolutional layers and the dense layers used
Relu as the activation function. Whereas, the output layer

TABLE 6. Summary of the CNN-model parameters.

TABLE 7. Implemented image processing-based NIDS for comparison.

used the softmax as an activation function. A dropout of 0.2 is
used for the dropout layers. For training, an Adam optimizer
with a 0.001 learning rate is implemented. The sparse cat-
egorical cross-entropy is used as a loss function. The CNN
model is implemented with the help of Keras (python library).
Table 6 represents the summary of the parameter settings for
the CNN model.

IV. IMPLEMENTATION
The implementation of the proposed framework is on python
(v 3.6) programming language with GPU-enabled Tensor-
Flow (v 2.3.1) on the Keras framework is used. The DeepIn-
sight tool based on python is publicly accessible [42]. The
tool was downloaded and fused with the proposed frame-
work. The Gabor kernel is created using the cv2 library.
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FIGURE 4. Illustration of converting non-image dataset into image format based on the proposed framework.

FIGURE 5. Implementation flow and components of the proposed framework.

TABLE 8. Assessment of the proposed method and comparative approaches of NIDS-based on image processing.

Then filter2D method is convolved with the Gabor filter
to extract the specific patterns from the images. To high-
light the general application of the proposed framework
three different NIDS benchmark datasets are implemented.
After converting the NIDS datasets to images, each image
dataset is classified using the CNN classifier. To estimate
the efficiency of the CNN classification precision, accu-
racy, F1-score, recall, Cohen’s kappa coefficient, and receiver
operating characteristics (ROC) are measured as performance
assessment metrics. The classification precision, accuracy,
F1-score, recall, and kappa coefficient are computed using
Equations (15) to (19).

Accuracy =
TP+ TN
Total

(15)

Precision =
TP

TP+ FP
(16)

Recall =
TP

TP+ FN
(17)

F1− Score = 2.
Precision.Recall
Precision+ Recall

(18)

Kappa(κ) =
p0 − pe
1− pe

(19)

The accuracy represents the correlation of correctly pre-
dicted events to the total number of events. Precision can be
defined as the percentage of properly classified attacks on all
the samples classified as attacks. The recall represents the
ratio of all the appropriately predicted attack samples to all
the actual attack samples. The F1 score is kind of an average
between precision and recall. An F1 score is used to examine
the correctness of a classification model. The TN(True Nega-
tive) and TP(True Positive) are the appropriately classified
attack and normal events respectively. Whereas, FP(False
Positive) and FN(False Negative) are incorrectly classified
events as normal and attack, respectively. The ROC curve is
a visual depiction of the classification model at all prediction
edges. In equation (19), ‘p0’ is the general precision of theML
model, and ‘pe’ signifies the balance between the ML model
estimates and the true class or label values as if occurring
by coincidence. The CNN- model is trained for 100 epochs
with an 80/20 ratio of train and test datasets respectively.
Figure 5, highlights the flow including the components of
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FIGURE 6. The confusion matrices of the proposed and comparative methods based on ISCX-IDS 2012 dataset.

FIGURE 7. The receiver operating characteristic curves of the suggested and comparative approaches on the ISCX-IDS
2012 dataset.

the proposed NIDS framework. The components highlighted
are the datasets used for the experimentation, normalization

approach, feature selection method, non-image to image con-
version, and image enhancement procedure.
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FIGURE 8. The confusion matrices of the proposed and comparative approaches on the CIC IDS 2017 dataset.

V. RESULTS AND COMPARISON
To highlight the capability of the suggested framework it is
compared with some of the recent notable approaches. The
five comparative NIDS approaches implemented for compar-
ison are shown in Table 7. Table 7 also presents a summary of

the method adopted by the study to transform the non-image
data into an image format.

To provide comparable grounds for evaluation, the pro-
posed framework and comparison methods are implemented
with the same parameter settings. Such as the datasets after
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FIGURE 9. The receiver operating characteristic curves of the comparative and proposed approach on CIC IDS
2017 dataset.

pre-processing, and the CNN model for classification. While
the approach for converting the non-image datasets to image
format was based on the method described in the published
work. The first comparative approach used FFT to create
images from non-image data. The FFT is an optimized and
fast algorithm of the discrete Fourier transformation (DFT).
The DFT can be represented as the equation(20). To generate
the FFT-based images, 5184 sampling points were taken as
per the process explained in the research paper.

X (k) =
N−1∑
n=0

x(n)e−j
2πkn
N k ∈ {0, 1, · · · ,N − 1} (20)

where X (N ) is the signal sampling in the time domain.To
implement the STFT-based spectrogram images, the STFT
of a discrete-time signal x[n] can be represented as the
equation (21).

x[n] = X (m, ω) =
∞∑

n=−∞

x[n]whn[n− m]e−jωn (21)

The x[n] = (f1, .., fn−1) represents the input data vector
with ‘f ’ as features of the dataset. While ‘m’ represents the
time and ‘Omega (ω)’ represents the angular frequency. The
mathematical representation of the Hanging window function
(whn[n]) can be seen as the equation (22).

whn[n] =
1
2

(
1− cos

(
2π

n
N

))
0 ≤ n ≤ N − 1 (22)

where ‘N ’ presents the length of observation time. The final
step of generating the spectrogram images is based on the

TABLE 9. Time (sec) consumed by proposed framework and comparative
algorithms for converting non-image data to image format.

equation (23).

Spectogram(m, ω) = |STFTx[n]|2 = |X (m, ω)|2 (23)

With the help of equations (21) to (23), the datasets were
converted into spectrogram-based image datasets. The paper
that implemented 2D-gray scale images, presented two differ-
ent methods of generating images from non-image datasets.
Method one presented an approach to generate a 3-channel
RGB (Red, Green, Blue) image. While method two presented
a 1 channel 2D gray-scale image. Both methods follow the
same process to generate the initial image for RGB and grey-
scale conversion. After the initial pre-processing, the features
of the dataset are re-scaled between the values of 0 to 255.
Then 2D images of 13*9 and 13*6 pixels are generated for the
CSE-CIC-IDS 2018 andNSL-KDD datasets respectively. For
comparison purposes, the 2D gray-scale images of datasets
were generated based on the process defined by the paper.
The fourth competitor is our earlier work, which followed
the same approach as in this paper. Except for the augmented
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FIGURE 10. Confusion matrix of the proposed and comparative approaches based on CSE-CIC-IDS 2018 dataset.

feature selection adopted in this study. The fifth approach
implemented is based on the DeepInsight methodology to
create images from non-image data. This implementation
highlights the image classification results without the fusion

of the Gabor filter. As compared to the relative approaches,
the proposed framework in this paper is implemented on
four different datasets. While the comparative work is imple-
mented on one of two datasets. This highlights the fact that the
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FIGURE 11. ROC of the proposed and comparative approaches based on CSE-CIC-IDS 2018 dataset.

proposed framework is generally applicable and can achieve
high precision results. Table 8 represents the results of the
proposed framework in contrast with the implemented com-
parative approaches.

The confusion matrix and ROC of the proposed and com-
parative approaches for the dataset ISCX-IDS 2012 can
be seen in Figures 6 and 7 correspondingly. In Figure 7
(i.e ROC), Class 0 represents BruteForceSSH, Class 1 rep-
resents DDoS and similarly, the remaining Class labels
in ROC are in sequence with the confusion matrix labels
(i.e Figure 5).

Figures 8 and 9 represent the respective confusion matrix
and ROC of the proposed and comparative approaches for
the dataset CIC-IDS 2017. The ‘Class’ labels in the ROC
(i.e. Figure 9) are in the same sequence as in Figure 8. That
is Class 0 represents BENIGN, Class 1 represents Bot, and
onwards.

The confusion matrix and ROC of the proposed and com-
parative approaches for the dataset CSE-CIC-IDS 2018 can
be seen in Figures 10 and 11 respectively. As mentioned
earlier the ‘Class’ labels in the ROC (i.e. Figure 11) are in
the same sequence as in Figure 10. That is Class 0 represents
Benign, Class 1 represents Bot, and onwards.

As the focus of this study is to achieve an optimized NIDS
framework. A comparison of the time consumed by each
competitive approach and the proposed framework is also
computed. The time contrast is only focused on the time con-
sumed by each method in transforming non-image data into
image format. As the rest of the steps by each comparative
methodology is the same. The python function ‘time’ [46] is

used for time computation. Table 9 shows the time used by
each implemented approach.

Understandably a time-based evaluation may not be a
standard approach to signify the efficiency of the proposed
framework. For instance, factors like hardware can influence
the time dynamic of implemented methodology. However,
for this study, all the approaches are implemented in the
same environment. Therefore the time-based comparison can
provide a rough intuition for the efficiency of the proposed
and compared frameworks.

VI. DISCUSSION
Based on the results highlighted in the earlier section, it can be
seen that the proposed NIDS framework was able to achieve
competitive results. In this section, the results achieved by
each dataset are discussed separately. Starting with the results
of the dataset CSE CIC IDS 2018. The proposed frame-
work was able to achieve a precision of almost 98% on
the dataset with only 72 features. In contrast to our ear-
lier work [17], which achieved a slightly higher precision
on the same dataset but with 79 features. While the other
competitors were not able to achieve a precision higher than
the suggested framework. Despite using all the 79 features
of the dataset. The results of the recommended framework
on the CIC-IDS 2017 dataset are the highest among the
comparative approaches. Even though the proposed method
used only 61 features as compared to the 79 features used
by all the comparative approaches. The dataset ISCX-IDS
2012 attained the highest precision as compared to the imple-
mented methodologies. The ISCX-IDS 2012 dataset was able
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to achieve the highest result with only 41 features. Whereas
the competitive methods used 82 features of the dataset.
As discussed earlier, in the era of big data a reduced number
of features can play a vital role in optimizing an ML-based
NIDS. The core purpose of this study was to attain an opti-
mized framework for image processing-based NIDS. The
implementation results highlight that the suggested system
can play a significant role in optimizing image processing-
based NIDS.

VII. CONCLUSION
The NIDS is among the most fundamental part of providing
network security. NIDS based on ML and DL is consid-
ered highly effective against illusive attacks on the network.
DL algorithms are considered highly efficient in understand-
ing the patterns of normal and ab-normal behaviors on a
network. Due to the advancements in the field of image
processing, security experts are exploring the possibilities of
building efficient NIDS based on image processing. In this
study, a new framework for NIDS based on image processing
is presented. The proposed framework follows a three-tier
approach to generate a refined and improved representation of
the non-image-based NIDS dataset. The framework reduces
the number of features to achieve low computational with
high precision. The feature selection process also normalizes
the data for better interpretation of features for DL-based
models. Although in image processing larger image means
higher precision. However, the proposed framework reduces
the number of features and employs a fusion of DeepIn-
sight with the Gabor filter to generate highly representative
images of the non-image-based dataset. Such representation
can assist a CNN in understanding deep and useful patterns
from the images. To evaluate the efficiency and general
application of the recommended framework, three different
network intrusion detection datasets were implemented. The
proposed framework achieved high accuracy on the imple-
mented datasets. For future work, it is planned to explore
methods that can assist in identifying appropriate parameters
for implementing the Gabor filter on network flow. Identify-
ing such an approach can avoid the need to implement a bank
of Gabor filters on the non-image datasets. Further, we plan
to evaluate the potential of the proposed framework with a
variety of other ML-based classifiers and inspect methods
that can identify attacks in live network traffic.
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