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ABSTRACT This paper proposes design and implementation of a battery management system (BMS) for
the industrial internet of things (IIoT) enabled applications. The hardware and software development of
this BMS is briefly presented in this paper. In terms of hardware development, the presented BMS have
modular topology and has 1) high fault tolerance and 2) has exceptionally flexible deployment owing to its
topology having multiple local management units (LMUs) connected to a central management unit (CMU).
This hardware design approach aims to address the overall design efficiency and cost trade-off of BMS
deployment. The hardware design efficiency is tested using actual deployment. In terms of fault tolerance
using 1 – 3 LMUs at fault, the voltage monitoring accuracy is maintained for each LMUs. An average of
0.00017 V, 0.0008 V and 0.001 V voltage difference is yielded for 1, 2, and 3 modules at fault respectively.
Additionally, core BMS sub-circuit is tested to verify hardware design efficiency such as the DC-to-DC
converter which yielded 92.74%. Furthermore, the CMU is integrated with a wireless communication
circuit that enables IIoT-based applications such as the emerging edge-based, and a plethora of intelligent
deployment. In terms of software, the presented BMS aims to realize state-of-the-art processing through
IIoT based approach. For software testing and verification, the BMS is deployed to an unmanned ground
vehicle (UGV). The signal stability is tested for UGV based application at a 3500s deployment time whereas
an average of 0.0010V voltage difference is yielded. This is verified using time markers which is further
analyzed using software-based signal processing and acquisition simulation. Concisely, the proposed BMS
aims to converge IIoT applications to its actual deployment. The proposed BMS is designed, implemented,
and successfully deployed to test its viability both in the simulation platform and actual deployment.

INDEX TERMS Battery management system, edge processing, industrial IoT, lithium-ion, modular
architecture.

I. INTRODUCTION
The demand for battery management systems (BMSs) is
forecasted to have a compound annual growth rate of 10%
from 2021 to 2026, as reported in 2020. This is in line with the
estimated global demand for batteries, specifically lithium-
ion batteries. The rapidly increasing battery utilization and
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innovation play a key role toward a better economic and
environmental future [1], [2]. It is estimated that between
2020 and 2030, the global demand for batteries, specifically
lithium-ion batteries, will increase elevenfold from 185 GWh
to 2,000 GWh. This global demand corresponds to 91.9 bil-
lion US dollars of market growth projected for 2030 from
40.5 billion dollars in 2020. The majority of this demand
will be from the transportation sector, which, as of 2021,
is worth 725 billion USD. It is estimated that 8 out of 10 cars
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TABLE 1. BMS topologies and design approach.

in the market would be electric vehicles (EVs) by 2050.
The growth of the electric transportation sector [3] and this
increasing demand gear toward the development of industrial
Internet-of-Things (IIoT)-based vehicles known as Internet-
of-Vehicles (IoV) [4]. The European Patent Office (EPO)
and International Energy Agency (IEA) have emphasized that
aside from mitigating the effects of climate change, batteries
are a source of renewable energy. This rapidly growing global
battery market is a sustainable way to recover the economy,
whichwas impacted as a result of the COVID-19 crisis. In line
with this, the World Health Organization (WHO) considers
extended batteries as an innovative key technology for saving
lives in connection with the pandemic. Additionally, with the
inevitable global economic recession due to the COVID-19
pandemic, batteries will play a major role in the green energy
and renewables sector, which is projected to have one of
the highest investments returns in the future owing to the
rapid shift in renewable energy resources and energy conser-
vation in both commercial and industrial applications. This
proves the research relevance and consequently highlights the
urgency for the rapid development of BMSs, considering that
battery life efficiency is directly proportional to the efficiency
of its management system.

A. RELATED WORK
The majority of existing BMSs are designed for lithium-ion
batteries (LIBs), also known as Li-ion batteries, because of
their notable merits, such as high energy density and power
with comparatively long-life spans [5], [6], [7]. However,
LIBs have performance inconsistencies, which lead to per-
formance instability caused by the extrinsic and intrinsic fac-
tors of the LIB. These factors result in an early aging effect
or cell degradation. All BMSs aim to monitor, control, and
protect cells in a pack for efficient, state-of-the-art, and safe
applications, as highlighted in our previous paper [8]. There
are three topologies for conventional BMS: 1) centralized,

2) distributed, and 3) modular; these topologies can be used
in combination as hybrid topology. Currently, the majority
of conventional BMSs utilize centralized topology because,
it is the most economical though also, least expandable and
requires numerous wiring connections [9], [10], [11], [12],
[13], [14], [15], [16]. Distributed BMS [17], [18], [19], [20],
however, is considered to be the most expensive; it is expand-
able and requires the least number of wiring connections. The
modular topology compromises both the centralized and dis-
tributed topologies. This is becausemodular topology enables
controller-to-controller communication among all local man-
agement modules and central management modules [21],
[22], [23]. A hybrid topology is any combination of these
three topologies for a specific application. Table 1 lists the
related works on BMS with their corresponding topologies.
It can be observed that all the topologies have various bal-
ancing approaches and design considerations. The design
approaches vary on the basis of the target application.

The rapidly increasing demand for the BMS is constrained
by the trade-off between the design cost and its functionality.
It is a well-known problem in this field, particularly for EV
applications, whichmostly uses LIBs. However, an optimized
structure design can minimize the cost and operational losses
of a BMS [24]. Many researchers have focused on improv-
ing the existing BMSs when considering their overall cost
[11], [20], [25], [26], [27], [28]. While the average price of a
BMS ranges from 300 USD to 10,000 USD, the price itself is
directly proportional to the application, such as the nominal
voltage of the battery stack.

Conventional BMS has the economic advantage of extend-
ing the battery life, thereby increasing the overall accuracy of
the BMS, and lowering its design and implementation cost.
BMS performs various key functions in batteries, such as
monitoring, protection, charging/discharging management,
communication, diagnosis, and data management [29]. These
conventional functions are widely applied in current BMS
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design approaches; however, the majority of the existing
BMSs do not consider the hardware required for software
implementation of intelligent applications. In [30], an adap-
tive switching algorithm deployed to an energy management
system (EMS) is highlighted, which makes the EMS intel-
ligent. In [31], an intelligent BMS was proposed, wherein
intelligent control was used. Another logical approach for
energy management in battery applications is the use of fuzzy
logic [32]. This paper also presents an intelligent software
approach. In [33], a predictive intelligent BMS was proposed
for accurate and state-of-the-art state-of-charge (SoC) esti-
mation. In [34], authors proposed an intelligent BMS which
could transmit data through the Internet in coordination with
the algorithm. This approach is communication dependent for
its application efficiency and reliability. In summary, there
are various studies that aim to make conventional BMS intel-
ligent for reliable and state-of-the-art applications. However,
the majority of the existing studies mainly focus on the opti-
mized software algorithm to enhance the current BMS by
deploying intelligent algorithms to demonstration and evalu-
ation boards. Despite these developments to improve the effi-
ciency and deployment capability of existing BMS, there is
still a research gap in addressing issues such as its 1) flexible
deployment, 2) fault tolerance, and 3) intelligent and 4) state-
of-the-art BMS deployment.

B. MOTIVATION AND CONTRIBUTION
The trend of using the modular BMS topology is gain-
ing attention because of its advantages such as deployment
flexibility and scalability [21], [22], [23]. Using modu-
lar BMS topology enhances the performance efficiency
of battery-based applications because of its flexibility and
scalability whereas it can be reconfigured to meet the
system demand and can be easily modified to address
evolving deployment requirements. In battery-based appli-
cations, deployment flexibility, efficiency, and maintenance,
fault tolerance is already a crucial concern. Furthermore, inte-
grating a BMS for intelligent and state-of-the-art deployment
is another crucial factor to consider to address the technolog-
ical advancement; especially in this industry 4.0 era which is
lacking [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23].

Driven by the preceding study and as the BMS deployment
advances towards state-of-the-art deployment, we proposed
a design, implementation, and deployment of Modular BMS
for IIoT-based applications. The following are the principal
contributions of this paper:

• Design of a modular BMSwhich realizes a fault-tolerant
deployment via the isolation channel designed for the
CMU to LMU communication.

• A modular BMS capable of intelligent and state-of-the-
art deployment.

• Detailed hardware and software design analysis which
includes design standards, considerations, and actual
application parameters.

• Actual implementation and deployment for the proposed
modular BMS which includes performance metrics, i.e.,
deployment flexibility and fault tolerance, voltage, cur-
rent, temperature monitoring accuracy for local process-
ing and IIoT-based processing.

IIoT-based BMS deployment is the motivation of this
paper. This approach is the design advancement of the circuit
design approach we presented in [8].

II. PROPOSED MODULAR BMS
An overview of the proposed methodology to achieve the
proposed modular BMS is presented in Fig. 1. The actual
developed modular BMS prototype is presented in Fig. 1(a).
The software part is used for the deployment of the algorithm
to the proposed BMS hardware for actual deployment. The
software part and actual implementation testing is presented
in Fig. 1(b); it is composed of: 1) algorithm deployment,
2) BMS software platform and 3) real-time results validation
which adheres to the BMS hardware and software devel-
opment. The hardware section highlights actual deployment
which is also presented in Fig. 1(c) includes the 1) modular
BMS application for the design approach, 2) battery pack
rating and battery type, and 3) hardware testing, all of which
are for the actual circuit design of the modular BMS. The
implementation of the battery packs for the deployment of
BMS is the common node for Fig. 1(a), Fig. 1(b) and Fig 1(c).
The proposed modular BMS is designed for up to four local
management units (LMUs) connected to a central manage-
ment unit (CMU). The LMU independently monitors, con-
trols and protect all the lithium-ion cells in each module. The
CMU is the common node for all LMUs; it receives data for
monitoring, control, and protection of the whole LIB pack.
The CMU also have the battery current measurement IC.

Fig. 2 shows an overview of the proposed modular BMS.
This BMS is capable of local processing and wireless
real-time data processing and acquisition which realizes
intelligent and state-of-the-art deployment. Furthermore, The
proposed modular BMS enables the application of a cloud-
computing platform through an integrated wireless communi-
cationmodule. The communicationmodule paves the way for
a plethora of intelligent applications for the designedmodular
BMS. The proposed modular BMS is also designed to with-
stand faulty modules through module isolation, thus realizing
a fault-tolerant system that is adaptive to faulty situations.
Overall, the designed modular BMS realizes a framework for
a fault tolerant deployment with convergence to intelligent
and state-of-the-art applications; which is the core focus of
this BMS prototype version. In cases of faulty and degraded
or depleted battery cells, it would result to a degraded battery
pack which BMS aims to address in advance. The degraded
battery cells can be monitored and detected by each of the
LMUs connected to the CMU. This monitoring can help
reduce further damage to the battery pack through the pro-
tection algorithm. As for the balancing, this would end the
balancing cycle and would trigger the signal to activate the
protection algorithm for each LMUs independently.
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FIGURE 1. Overview of the proposed methodology modular BMS (a) actual LMU and CMU prototype design, (b) implementation testing
(c) deployment.

FIGURE 2. Overview of the proposed modular BMS structure.

A. HARDWARE DESIGN CONSIDERATION
The design of the modular BMS hardware is based on simu-
lation, theoretical, and prototype analysis. In this section, the
principle theoretical analysis of the proposed BMS is briefly
discussed. The development of the hardware adheres to the
specifications of the designated BMS application, such as
deployment application. Battery is one of the core aspects of
BMS deployment, and theoretical analysis is the first step in
the design.

An equivalent circuit model (ECM) to analyze the dynamic
behavior of the battery pack integrated into the hardware is
shown in Fig. 3, which is the battery cell equivalent circuit
model.

Fig. 3. shows the ECM used for the battery cell which
is crucial for the BMS design. The ECM is divided into

FIGURE 3. Overview of the proposed modular BMS structure.

three parts consisting of passive components: 1) the equiv-
alent internal resistance in ohms (�), represented by Rs,
2) the parallel resistor-capacitor (RC) circuit Cp//Rp, where
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FIGURE 4. Proposed BMS voltage monitoring circuit.

Rp represents the polarization equivalent resistance and Cp
represents the polarization equivalent capacitance; this RC
circuit is used for the simulation of transient response of the
battery cells during charging or discharging; and 3) the open-
circuit voltage (OCV), Voc(h(t)), is a nonlinear function of
SoCh(t). The threshold value of Rs can be calculated using
ohms law. The calculation in terms of ohms law is with
respect to the load voltage (VL) and the load resistance (RL)
value. The nominal value of the reference current (Iref) is
calculated using VL and RL. Going further, Iref is used to cal-
culate the voltage across the internal resistor. The OCV and
the VL is then used to derive the voltage across the internal
resistor (Vir). The value of the OCV is the summation of VL
and the Vir. Finally, the Rs of the battery cell is calculated
by dividing the Vir and the Iref. For the Rs threshold value,
the implementation and hardware design considered varies
from 120 m� to 320 m�which is dependent on the operating
parameters which includes VL, RL, Iref and Vir. This value is
considered for each lithium-ion battery cell. The equivalent
circuit model (ECM) considers current as the control input
and the measured terminal voltage as the output.

Voc(h (t)) = Vb(t)− Ib (t)Rs (1)

Based on Fig. 3, the transient and steady state behavior of a
battery cell is simulated. In Eq. (1), Voc is the input voltage of
the battery in volts (V), Vb is the output voltage of the battery
in volts (V), Ib (t) is the internal dynamic current of the bat-
tery in amperes (A) and Rs is the dynamic ohmic resistance
in ohms (�). This analysis enabled the design consideration
and theoretical analysis of the circuit for both hardware and
software development.

� Local Management Unit (LMU) – In this section, the
development and theoretical discussion of the LMU module
is briefly discussed.

The voltage-monitoring-circuit block diagram of the LMU
is shown in Fig. 4. A set of two different circuits, specif-
ically, a discharge field-effect transistor (FET) circuit and
an RC filtering circuit are directly connected to the cells
of the module of the battery pack. The discharge FET dis-
charges the cells with a higher voltage compared with other
cells. The discharge FET is integrated with a high-impedance
discrete p-type metal-oxide semiconductor field-effect tran-
sistor (P-MOSFET) device with a discharge resistor. The RC
filtering, filters out transient voltages and unwanted signal
distortions, which leads to reduced error in the analog to

digital conversion process. In this circuit design for the RC
filtering circuit, a 16 kHz RC filtering is the optimal design
consideration for the current BMS design approach, which
consists of a 100 � resistance and a 0.1 µF capacitance.
The integrated resistance is 100 �, adhering to the overall
operating temperature of the BMS and its overall operational
power loss due to impedance and heat dissipation. This com-
plete battery monitoring integrated circuit (IC) of the pro-
posed modular BMS implements a sampling system for the
execution of analog to digital conversion. An average 0.5 ms
conversion window is yielded, provided that all signals are
distinguishable, adhering to the sigma-delta modulator rate
of 512 kHz. An internal 8 parts-per-million per degree Cel-
sius (ppm/◦C) voltage reference combined with the analog
to digital converter (ADC) gives LTC6803 its outstanding
measurement accuracy. LTC6803 is the battery monitoring
IC of LMUs. The sigma-delta ADC in this design outputs a
12-bit code with an offset of 0×200 (512 in decimal system).
The input voltage is expressed in Eq. (2) as

VINPUT = (DOUT −−512)× VLSB. (2)

DOUT is the digital output with a decimal integer value.
VLSB is the least significant bit voltage of 1.5 mV. The RC
filtering circuit is composed of a series resistor and a shunt
capacitor with 30 dB attenuation.

The RC filtering circuit design considerations led to the
use of the Si2351DS cell balancingMOSFET. The Si2351DS
cell balancing MOSFET or the discharge FET has a small
transient during the switch-on-and-off condition, which is
the basis for the RC filter circuit design, which is optimal
for this specific application. Setting the cut-off frequency of
these RC filters reasonably high permits adequate settling
before analog-to-digital conversion. The ADC timing delay
is 0.5 ms; thus, a 16 kHz RC filter is optimal.

In terms of the RC filter power loss, heat dissipation is
the key metric to be considered for the RC filter circuit. The
maximum power loss of the RC filtering is limited by the heat
that the battery monitoring IC LTC6803 can withstand. The
100 � resistor used in this design has an operating tempera-
ture of−55 to 155 ◦C, which adheres to the maximum overall
operating temperature of the LTC6803, which is 125 ◦C. This
100 � resistor was specifically chosen for this application.
The balancing approach used for this BMS circuit is pas-

sive balancing. Passive balancing is cost-efficient compared
to active balancing. This cost is inline with the components
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FIGURE 5. Theoretical analysis for the passive balancing circuit of the proposed modular BMS.

needed to realize an active cell balancing approach whereas
passive balancing requires only a filter circuit and a bleeder
also known as discharge resistor to actuate cell balancing
as highlighted in [8]. The proposed approach in [8] which
is the extension of this paper proves that passive balanc-
ing has high implementation viability and have high balanc-
ing implementation accuracy. Moreover, it can correct the
long-term discrepancy of self-discharge current on a cell-to-
cell basis. Fig. 5 shows the actual theoretical circuit analy-
sis for passive balancing of the designed BMS. Cell 1 (C1)
can be discharged through resistor DR1 and switch 1 (Sw1).
Cell 2 (C2) can be discharged through resistorDR2 and switch
(Sw2), and so on. Should the cell-voltage measurements
determine that a cell is in need of being discharged, each cell
has a corresponding discharge resistor DR1,DR2 . . . ,DRN .
Switches Sw1, Sw2. . . are implemented using a transistor,
specifically an N-type MOSFET, but they could also be
implemented using other types ofMOSFETs, bipolar or other
types of transistors, a relay, a mechanical switch, or other
type of switch. Control voltages, illustrated as Enable 1–2
(En1, En2 . . . ) signals, for the N type MOSFET switches
should have appropriate levels to turn the switches on and
off. Control signals for other types of switches are readily
devised. The charge equalization currents could be of the
same order of magnitude. In this balancing approach, heat
is generated. The power dissipated as heat is expressed in
Eq. (3) as follows:

p ≈ VNOM × Ibalance. (3)

where VNOM is the nominal voltage and Ibalance is the bal-
ancing current. For fast dissipative balancing, more heat is
generated than for slower balancing. This generally imposes
a high-wattage requirement on the balancing resistors. This
high-wattage requirement is the design consideration on the
approach used for the discharge FET of this proposed modu-
lar BMS. A 33�, 1 W bleeder resistor is used for the passive
balancing circuit as highlighted in Figure 4 discharge FET
figure. This bleeder resistor value considers the parameter of
the connected battery cell which have a minimum, nominal

and maximum voltage range of +3.2V, +3.6V and +4.2V
respectively. The bleeder resistor is used to limit the power
dissipated to the normal operating voltage of the LTC6803.
The specific resistor integrated in the proposed modular BMS
can handle up to –40◦C to+ 125◦C which directly adheres to
the temperature parameters of the passive balancing circuit
IC (LTC6803). The bleeder resistor limits the power dissi-
pated by the Si2351DS MOSFETs with respect to the con-
nected UC cells and the pre-defined threshold voltage. The
MOSFETS connected to the bleeder resistor is also dependent
on the heat tolerance of the LTC6803 which is –40◦C to
+ 125◦C. With this configuration of addressing the passive
balancing circuit heat tolerance, fast and slower balancing
such as 20 mV can be accommodated by the proposed BMS
passive balancing circuit. Concisely, the passive cell balanc-
ing threshold, regardless of its iteration and value is limited by
the operating temperature of the discharge FET. The 20mV is
the used cased scenario for the implementation in this paper.

The heat generated by balancing can be similar to that
generated by normal cell operation. Therefore, dissipative
balancing may increase the cooling requirements for the
battery-pack thermal-management system, which is a signif-
icant expense. A Zener diode is placed in parallel to the mea-
suring resistor to protect the following measurement circuits
against overvoltage. Because the voltage divider is designed
to be highly resistive to keep the losses low, the voltage tap
of the measuring resistor should have a significantly high
resistance so as not to load the voltage divider. For this reason,
an impedance converter that is followed by the filter circuit
and the ADC should be used to tap the voltage. Fig. 3 and
Eq. (1) enabled the theoretical analysis calculation for the
circuit simulations.

In addition to the voltage of the cells in the module, the
battery monitoring IC also measures the module temperature
using a 12-bit delta-sigma ADC. The ADC outputs a digi-
tal (decimal) value of the measured analog temperature and
stores it in the temperature register group as a digital (binary)
value. The battery-monitoring IC has two temperature chan-
nels for the circuit design approach. Both the channels can
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FIGURE 6. Proposed BMS LMU DC-DC converter circuit design approach
(a) internal circuit (b) external circuit.

measure the temperature at one point of the battery module.
The digital (decimal) is converted to an analog equivalent
voltage using Eq. (4).

VT−a = ETMPx10×1.5mV (4)

where VT−a is the analog equivalent voltage of the temper-
ature, and ETMPx10 is the digital (decimal) temperature at
channel x. The analog voltage equivalent is converted to the
analog temperature (◦C) using Eq. (5).(

C◦
)
=

298.15× 3988

−298.15 ln ln
(
3.0585
VT−a

− 1
)
+ 3988

− 273.15 (5)

The LMU monitoring, balancing, and losses, such as the
heat dissipation of the LMUmodule are considered in the pro-
posed BMS circuit design and development. To maintain the
overall efficiency and accuracy of the BMS, another pivotal
sub-circuit is the integrated DC-to-DC buck converter. The
design considerations include the losses, actual implemen-
tation, and deployment. The proposed DC-to-DC converter
(buck; step-down) is presented in Fig. 6, which is directly
connected to the battery pack positive (Pack (+)) and nega-
tive (Pack (−)) terminals. Fig. 6(a) and Fig. 6(b) depict the
internal and external circuits of the DC-to-DC converter. The
efficiency of the DC-to-DC converter is directly proportional
to the efficiency and losses of the battery pack, which makes
it a sub-circuit of the proposed BMS circuit design approach.
Another factor that makes this sub-circuit pivotal is that it is a
power source for the BMS system that enables an independent
supply of power when connected to a battery pack.

The DC-to-DC converter integrated into the LMU module
has a +1 V voltage reference (Vref ), which is used as a refer-
ence to precisely regulate the output voltage considering the
operating temperature range, such as the losses similar to the
concept of Eq. (3). The output voltage (Vout ) is regulated by a
resistor divider circuit toward the bidirectional feedback (FB)
pin of the DC-to-DC converter. In the resistor divider circuit,
the tolerance of the resistor is 1%, and it has a minimal tem-
perature coefficient. The lower resistance value of the divider
circuit is RFBB, which represents the lower-side resistor. The
divider current adheres to the value of RFBB. After calculat-
ing the divider current (Idiv) value for the DC-to-DC con-
verter application, the value of the top-side resistor, denoted

as RFBT , for circuit design application is computed using
Eq. (6).

RFBT =
Vout − Vref

Vref
× RFBB. (6)

For this application, as shown in Fig. 7, the value of RFBB and
RFBT were 22.1 k� and 88.7 k�, respectively, which adheres
to the specific recommended value of RFBT in an efficient
range of 10–100 k�. A lower value of RFBT reduces the over-
all efficiency of the DC-to-DC converter under a light load
(high output resistance; low current). However, under a heavy
load (low output resistance and high current), a higher value
of RFBT leads to a minimal static current, which is also an
optimized factor to be considered when light-load efficiency
is critical. Although this is the case, a higher value of RFBT
(RFBT ≥ 1M�) leads to a noisy feedback signal. Overall, the
tolerance and temperature variation of the applied resistor in
the divider circuit directly affect the output voltage regulation
of the external DC-to-DC converter of the LMU module.

The internal logic circuit of the DC-to-DC converter uti-
lizes an internal soft start (INT ss) approach, where the amount
of voltage and current passing towards the converter is regu-
lated, such as the internal soft start current (IINT ) itself. This
is a protection approach for the LMU-module circuit. This
protection approach of the DC-to-DC converter is the core
protection circuit for the LMU module with respect to its
direct connection to the battery pack.

The internal logic circuit of the DC-to-DC converter uti-
lizes an internal soft start (INT ss) approach, where the amount
of voltage and current passing towards the converter is regu-
lated, such as the internal soft start current (IINT ) itself. This
is a protection approach for the LMU-module circuit. This
protection approach of the DC-to-DC converter is the core
protection circuit for the LMU module with respect to its
direct connection to the battery pack.

Fig. 7 shows the actual-LMU DC-to-DC converter, which
incorporates a peak and valley inductor current limitation
as a means of protection. The DC-to-DC converter design
approach protects the LMU from overloading and short cir-
cuits and limits the maximum output current (Iout ), as shown
in Fig. 6b. The formula for overcurrent protection and short-
circuits protection for the LMU is shown in Eq. (7):

Iout|max =
ILSLIM + IHSMAX

2
(7)

where Iout|max is the maximum current threshold with respect
to the valley (ILSLIM ) and peak (IHSMAX ) currents of the
DC-to-DC converter. ILSLIM is the low-side current limit,
while IHSMAX is the high-side maximum (peak) current.
The feedback voltage is then calculated with respect to the
Iout|max , and if the yielded voltage value is lower than 40%
of the actual Vref , the DC-to-DC converter activates the hic-
cup mode. The hiccup mode is activated for 256 consecu-
tive cycles via the trigger switch of the ILSLIM . This shuts
the converter down for a period of hiccup time (THICCUP).
In the cases where overcurrent and short-circuit faults are still
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FIGURE 7. Actual LMU DC-DC converter circuit design.

evident in the LMU system, THICCUP simultaneously occurs
until the fault condition is not evident on the DC-to-DC con-
verter circuit. Hiccup have the advantage of reducing losses
through power dissipation in faulty conditions, whereas the
overall accumulated heat of the LMU is managed which leads
its deployment safety.

� Central Management Unit (CMU) – The central man-
agement unit acquires and processes the data from the con-
nected LMU. In this section, a brief hardware design for
IIoT-based development and consideration is highlighted,
which paved the way for intelligent and state-of-the-art
deployment such as for IIoT capable BMS. The overall bat-
tery pack monitoring is performed by the CMU. It includes:
1) pack voltage monitoring, and 2) pack current measure-
ment. In the hardware discussion of this paper, presented
in section II overview, the CMU consists of battery current
measurement IC and central MCU. The battery-pack voltage
is monitored by summing all the module voltages from the
LMU. The battery-pack current is measured using the battery
current measurement IC. The current measurement IC con-
verts the current to an equivalent voltage reading. The voltage
reading is sent to the CMU by directly connecting the voltage
output from the current measurement IC to the 12-bit ADC of
the central MCU. Two steps are necessary to obtain the actual
current measurement: 1) convert digital to analog equivalent
voltage, 2) convert analog equivalent voltage to current value.
The digital equivalent voltage is converter to its equivalent
analog value using Eq. (8).

Va =
Vref

2n − 1
Vd (8)

whereVa is the equivalent analog voltage;Vd is the equivalent
digital voltage; Vref is the reference voltage, which is equal
to 2.5 V; and n is the resolution of the central MCU, which
is equal to 12. For example, an equivalent digital voltage
of 4259 is converted to its equivalent analog voltage using
Eq. (8) as 2.6 V. The analog equivalent voltage is converted

to the current value using Eq. (9).

I (A) =
Va−2.5
100mV

(9)

where I(A) is the pack current and Va is the equivalent ana-
log voltage. The equivalent analog voltage in the above-
mentioned example is converted to a pack current value of 1A
using Eq. (9).

Fig. 8 shows the wireless communication channel of the
proposed modular BMS. The wireless communication chan-
nel is directly connected to the MCU of the CMUs, which is
TMS28379D. The wireless communication channel is con-
nected to the CMU via SPI GPIO pins, including CS, SCLK,
MOSI, andMISO, for communication. This realizes an edge-
efficient and IIoT-based modular BMS.

The antenna has a frequency synthesizer that generated
varying output frequencies as diversified values of the ref-
erence frequency. X1 and X2 represent the crystal oscillators
of the wireless communication channel. The equivalent cir-
cuit model (ECM) of the crystal oscillators is emphasized,
where C0 is the shunt capacitance, LM is the motional induc-
tance, RM is the motional resistance, and CM is the motional
capacitance. These passive components (LM ,RM , and CM )
represent the equivalent impedance of the subjectedX1 andX2
oscillators at the natural resonant frequency. The parameter
for selecting an oscillator tolerance for the wireless commu-
nication circuit module is presented in Eq. (10) in ppm units
as under:

Tol total = Tol initial + Tol temp + Tolage + Tolpull . (10)

Tol total is the total tolerance, Tol initial is the production tol-
erance basis from the technical documentation, Tol temp is the
temperature tolerance, Tolage is the component aging effect
and Tolpull is the frequency pulling pertaining to the mis-
matched loading capacitance. The unit of ppm stands for the
accuracy of a frequency. Specifically, for this BMS design
consideration, ppm stands for the part of a whole number in
units of 100 ppm= 0.01% from 1/1000000. For this applica-
tion, the wireless communication channel circuit integrated
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FIGURE 8. Actual communication channel circuit design.

to the BMS utilizes a crystal oscillator with a corresponding
value of 32.768 kHz and 40.0 MHz frequency with a specific
accuracy of ±150 and ±25 ppm accordingly.
All these theoretical analyses of the wireless communica-

tion channels pertain to the crystal oscillator tuning. For this
specific application, two clocks are used for the actual opera-
tion. The slow clock, which is used as a real-time clock (RTC)
with a frequency of 32.768 kHz. A fast clock is used for inter-
nal processing and wireless local area network (WLAN) with
a frequency of 40 MHz. The standard error for 802.11 b/g
requires the error to be in the range of±25 ppm; if the design
does not adhere to this requirement, the BMS wireless com-
munication interface may have access difficulty and interrup-
tion owing to multiple access points. The frequency error for
the 40 MHz clock should adhere to the standard or minimum
at all costs or should be centered at an average frequency error
of 0 ppm.

In the realization of this circuit integrated with the
proposedmodular BMS,CL1−CL4 represents the load capac-
itance, which is the net capacitance of the oscillator feed-
back loop. This capacitance is pivotal for maintaining the
frequency range of the oscillator. For the theoretical analysis
and computation of the total load capacitance, Eq. (11) is
used.

CL =
CL1 × CL2
CL1 + CL2

+ CPIN + CSTRAY (11)

where CL is the total load capacitance, CL1&CL2 are discrete
load capacitances, CPIN is the capacitance of the device pin,
andCSTRAY is the stray capacitance of the board. Fig. 8 shows
the actual capacitance values used in the feedback loop of the
circuit oscillators.

� LMU to CMU communication channel – The commu-
nication channel between the LMU and CMU circuit mod-
ule is designed with a fault-tolerant integration approach.

The LMU has a digital isolator, whereas the CMU has level
shifters to process input logic signals with varying reference
voltages, known as voltage differences.

Fig. 9 shows the actual isolated LMU to CMU communi-
cation channel. The highlighted circuit in red shows the com-
mon node for this communication channel. This particular
communication channel is isolated with respect to the CMU
and LMUcommunication. The isolation keeps the system sta-
ble even when one LMU fails. This approach keeps the BMS
performance stable despite having faulty modules. On the
other hand, the CMU has a communication architecture that
allows bidirectional communication without the need for a
direction-control signal. This means that the LMU output to
the CMU input and LMU input to the CMU output simulta-
neously communicates throughout the entire processing time.
This communication continues even if one of the LMUs fails.

In the direct current (DC) state, the output of the CMU
can manage to operate at a high or low state, but this output
can vary to allow an external driver to override its data flow
when the LMU sends in a return. The circuit logic for this
implementation includes two PMOS transistors (represented
‘‘P’’ on the circuit) and two NMOS transistors (represented
‘‘N’’ on the circuit) per channel. The transistors adhere to the
monoflap in this circuit, by which it controls the transition
speed of the MOSFET. The conditions for this monoflap
are as follows. During the low-to-high signal transition, the
PMOS transistors are switched on. On the other hand, dur-
ing high-to-low signal transitions, the NMOS transistors are
switched on.

B. SOFTWARE DESIGN CONSIDERATION
The development of the software for this IIoT-based modu-
lar BMS hardware design adheres to the theoretical analysis
of the hardware design. As shown in Fig. 3, the software
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FIGURE 9. LMU to CMU isolated communication channel.

FIGURE 10. LMU to CMU isolated communication channel (a) local
processing (b) IIoT – based application processing.

design approach considers the dynamic characteristics of a
lithium-ion battery cell in a pack.

� Deployed Monitoring Algorithm – Fig. 10 depicts the
monitoring algorithm of the proposed modular BMS. Figure
10(a) shows the LMU monitoring locally paving way for
intelligent processing at the edge, whereas the LTC6803man-
ages the connected battery pack via the uploaded algorithm
on the local MCU of the LMU which is the ATMEGA. Fig-
ure 10(b) shows the monitoring and data transmission from
the local processing in LMU to cloud processing via the CMU
module. This realizes the proposed IIoT – based BMS appli-
cations. The LMU locally processes the data transmitted to
the CMU via the LMU to the CMU isolated communication
channel. The CMU wireless communication module allows
the wireless data transmission of the locally processed data.
The co-processing of data can thus occur locally, at the edge,
and with the cloud which in turn facilitates the critical devel-
opment of the proposed modular BMS for soft real-time and
hard real-time applications.

� Deployed Balancing Algorithm – The cell balancing
of the BMS adheres to passive cell balancing; it actuates

Algorithm A Cell Balancing
1 Measure all cell voltages Vcell1,Vcell2,Vcell3, and Vcell4
2 Get minimum voltage,
Vmin = min (Vcell1,Vcell2,Vcell3, and Vcell4)
3 Get difference of each cell voltage with Vmin,

Vdiff−n = Vcelln − Vmin, n = 1, 2, 3, 4
4 if Vdiff−n > 20 mV:
5 set DCCn to 1
6 Back to 1

through a bleeder resistor that dissipates excess cell charge
in the form of heat. The cell balancing algorithm is pre-
sented as Algorithm A. First, all cell voltages are measured.
Then, the minimum voltage among all the cell voltages is
obtained. Subsequently, all the cell voltages are subtracted
from this minimum voltage. If the difference between the
cell voltage and the minimum voltage is greater than 20 mV,
the discharge resistor that cell is connected by setting DCCn
bit to 1, where n is the number of cells. The DCC bits
are set to zero by default. Vdiff−n represents the Vreference
which is the threshold value for the passive balancing circuit
actuation.

Fig. 11 shows the summary of the cell balancing for all the
cells in a module of the battery pack. This figure summarizes
the theoretical analysis of the implemented cell-balancing
algorithm. VB(1,2,3,4) = Vreference corresponds to the set volt-
age reference or threshold for the voltage of batteries 1, 2,
3 and 4. PBOn corresponds to the passive balancing actuation
based on the conditions of each battery cell pertaining to their
voltage. If the voltage of VB(1,2,3,4) 6= Vreference with the con-
ditions of VB(1,2,3,4) > Vreference and VB(1,2,3,4) < Vreference,
the passive balancing actuation is turned on. On the other
hand, ifVB(1,2,3,4) = Vreference, the passive balancing achieves
its final goal, and the process terminates.

� Deployed Protection Algorithm – The protection algo-
rithm of all the LMUs connected to the CMU is controlled by
the central MCU. Fig. 12 shows the overall protection algo-
rithm deployed to the BMS. VBPack = Vthreshold indicates that
the voltage threshold is set with respect to the equivalent volt-
age of the battery pack. VMonitoring is the voltage monitoring
function of the BMS. The monitoring function pertains to the
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FIGURE 11. Deployed BMS balancing algorithm flowchart.

FIGURE 12. Deployed BMS protection algorithm flowchart.

VBPack that is the summation of the voltage from modules 1,
2, 3, and 4 represented by VMV (1,2,3,4). The condition is set to
hold a threshold for undervoltage and overvoltage protection
of the BMS IfVBPack 6= V threshold the BMSwill actuate to stop
the process, thereby stopping the voltage input to the system.
VBPack 6= V threshold have two specific conditions which are as
follows:

� VBPack> V threshold stands for overvoltage state which
will trigger the VBPack voltage flow stoppage of the
BMS.

� VBPack< V threshold stands for the undervoltage which
state which will trigger the VBPack voltage flow stoppage
of the BMS.

VBPack = Vthreshold is the normal state of the BMS whereas
the nominal operation voltage of the BMS is flowing to the
system. This condition enables the flow of the VBPack voltage
to the system.

� Deployed Algorithm for IIoT Applications – Fig. 13
highlights the IIoT-based processing capability of the pro-
posed modular BMS realizing intelligent and state-of-the-
art processing. In deploying an algorithm, the computing
power of the MCU should be considered. This is due to the
constraints between the algorithm size and the computing
capability or power of the MCU. For this implementation,
the computing power of the TMS28379D. The BMS sig-
nal acquisition sensors for both the LMUs and CMU are
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FIGURE 13. BMS for IIoT based applications processing flowchart.

represented by the BMS sensor signal block. The CMUMCU
processes the signal acquired from the LMU sensors and
CMU sensors. This BMS is capable of IIoT-based processing,
wherein a machine-learning model for edge AI applications
is deployed on the CMU MCU for battery state estimation
and processing. TheWi-Fi module of the CMU enables wire-
less network processing. When wireless communication is
available, the proposed BMS transmits and processes data
to the cloud for processing. This paves the way for the
co-processing capability of the BMS. The edge processing of
the BMS is independent of the co-processing; this capability
paves the way for a plethora of intelligent applications, such
as for IIoT-based modular BMS deployment.

III. RESULTS AND DISCUSSIONS
Fig. 14(a) shows the actual battery pack for deploy-
ment, and Fig. 14(b) shows the battery modules with the
actual cell. Fig. 14 shows the actual modular BMS, which
was theoretically discussed in the methodology section.
Fig. 15(a) and 15(b) show the actual LMU and CMU mod-
ules of the BMS, respectively. As measured, the actual sizes
of the LMU and CMU are 100× 150mm and 120× 150mm,
respectively. Fig. 14(a) and Fig. 14(b) shows the actual bat-
tery pack used for testing the proposed BMS. The battery
cells were manufactured and provided by BEXEL Co. Ltd.
South Korea. The battery cell is LIB34600 with a 6.55 Ah rat-
ing. Each cell has a minimum, nominal, and maximum rated
voltage of 3.2 V, 3.6 V, and 4.2 V, respectively. Each LMU
module has aminimum, nominal, andmaximum rated voltage
of 12.8 V, 14.4 V, and 16.8 V, respectively. One battery pack
with 4 modules has a minimum, nominal and maximum rated
voltage of 51.2 V, 57.6 V, and 67.2 V, respectively. In our
previous study [8], the proposed BMS was tested using a DC
power supply. Fig. 16 shows the comparative advantage of the
proposed modular BMS monitoring accuracy compared with

TABLE 2. Average relative error comparison of the BMS voltage
monitoring.

other studies, as presented in Table 2. In summary for the DC
power supply-based testing, the total simulated terminal volt-
age values for this modular BMS are 51.2V (total minimum),
57.6V (total nominal), 59.2V, and 67.2V (total maximum).
Cells 1-4 of the battery module connected to LMUs 1-4 have
yielded an impressive result in terms of accuracy. Table 2
presents the actual voltage applied to the proposed modular
BMS and LMUs 1-4 average voltage measurement for each
cell with respect to the simulation time.

The RMSE voltage measured for each cell 1-4 in LMUs
1-4 module is 0.0013, 0.0018, 0.00282 and 0.001625 respec-
tively. This yields a mean RMSE of 0.0018895. The voltages
of each LMUs’ cells 1, 2, 3, and 4 are stable throughout the
test, as plotted in Fig. 16. Fig. 16 plots the actual voltage with
respect to the BMS measured voltage results. The deploy-
ment of the proposed modular BMS circuit to the simula-
tion platform proves the successful integration of the BMS
hardware to the simulation platform for real-time practical
applications. In Fig. 16, the rectangular box highlights the
transition of measured cell voltage from 3.7 V to 4.2 V. The
figure depicts a magnified view of the voltage measurement
of LMUs 1–4 for each cell at simulation time of 1340–1415 s.
The measured voltage yielded a stable relation with the actual
voltage in each cell, indicating high voltage measurement
accuracy.

Table 3 shows the LMU voltage measurement cross-
performance analysis using a DC power supply as the source.
This cross-performance analysis demonstrates the advantage
of this modular BMS design, that is, fault tolerance. This
analysis highlights real-time cell voltage measurement with
faulty LMUs in the system. The designed modular BMS
showed a comparable advantage to the existing implementa-
tions in terms of voltage measurement accuracy. This accu-
racy is maintained even when a faulty LMU is introduced
to the system. Table 3 presents the modular BMS cross-
performance analysis. This table demonstrates the advantage
of the proposed BMS by presenting the simulation results
with faulty LMU modules. For this simulation analysis, the
3.6 V nominal voltage for each lithium-ion cell was used as
the reference voltage. This gives a total of 14.4 V, which is
the nominal voltage for each LMU. Fig. 17 shows the actual
CMU and LMUs of the modular BMS, wherein the fault con-
dition is highlighted. The isolated communication channel
of the proposed modular BMS utilizes a serial communica-
tion interface (SCI). This isolation approach is highlighted
in Fig. 9; this fault tolerance makes the system adaptive to
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FIGURE 14. Actual modular battery management system PCB (a) LMU and (b) CMU module.

TABLE 3. LMU voltage cross-performance fault analysis. (DC power supply.)

faulty situations. Fault adaptivity increases not only the over-
all BMS-deployment safety, but also minimizes the main-
tenance cost and the overall operational cost. In terms of
fault, the faulty LMU does not affect the performance of
other LMUs; hence, the system operation is not interrupted.
Maintenance andBMS failure are costly, which directly affect
the trade-off between the design cost and functionality. The
proposedmodular BMS design approach and isolation realize
cost-effective and operationally efficient BMS deployment.
This isolation approach adheres to the ISO26262 design stan-
dards for ‘‘Road vehicles – Functional safety’’ emphasizing
the safety standards of deploying BMS to the rapidly grow-
ing electric-based transportation industry. After simulating
with a controlled DC power supply, the proposed modular

BMS was deployed with an actual battery pack. This inte-
grates the dynamic characteristics of battery cells to the
proposed modular BMS. Table 4 lists the average RMSE
of each module when subjected to battery pack monitor-
ing. For this test, two modules were tested with cells 1–8.
Cells 1–4 were the subjects for the voltage monitoring for
LMU 1 and LMU 3; for LMU 2 and LMU 4, cells 5–8
were used for voltage monitoring. Overall, the accuracy
of the average voltage monitoring has a negligible RMSE
for a total voltage monitoring time of 1800 s. LMUs 1 – 4
have an average RMSE of 0.00083, 0.00178, 0.00083 and
0.00085 respectively. This shows the voltage measurement
accuracy of the designed modular BMS, which is compara-
tively lower compared with the test using a DC power supply.

109020 VOLUME 10, 2022



H. M. O. Canilang et al.: Design, Implementation, and Deployment of Modular Battery Management System

FIGURE 15. Actual and (a) battery pack enclosure (b) battery modules.

FIGURE 16. BMS test with power supply as a source.

This proves the monitoring accuracy of the proposed modular
BMS considering the dynamic behavior of the battery, which
is pivotal to the battery state estimation such as state-of-
health (SoH), state-of-charge (SoC) and remaining useful life
(RuL).

TABLE 4. Average RMSE (%) of each LMU module. (Battery pack source.)

Table 5 lists the voltage monitoring accuracy test results
of multiple LMUs connected to the CMU when subjected
to a fault and a battery pack as the source. To simplify the
tables, each LMU is connected to a battery module operating
at the nominal voltage of 14.4 V. The sum of individual cell
voltages is the module voltage, which is the reference voltage
for this test and is named as the actual module voltage in
Table 5. In this test, the BMS system is subjected to faulty
LMUs whereas it started with 4 LMUs with 1 at fault until
all 4 LMUs is at fault. Throughout the test, the voltage mon-
itoring accuracy was stable, and the process of the modular
BMS was not interrupted even when the LMU module or
modules were at fault. As shown in Table 5, when onemodule
was at fault, the voltage differences yielded were 0.0008,
0.003, 0.001, and 0.002, respectively, with an average volt-
age difference of 0.00017 V. When two LMU modules were
at fault, the voltage differences yielded were 0.001, 0.002,
0.00018, and 0.00011, respectively, with an average voltage
difference of 0.0008 V. Lastly, when three LMUs were at
fault, the voltage differences yielded were 0.00011, 0.002,
0.002, and 0.00012, respectively, with an average voltage
difference of 0.001 V. All of these errors are minimum and
could be caused by the initial voltage reading and the dynamic
behavior of the battery itself from the time the voltage was
first measured to the time it was monitored by the BMS. This
modular BMS topology with fault isolation communication
realizes an adaptable architecture that is flexible and expand-
able in terms of actual deployment.
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FIGURE 17. Modular BMS fault tolerance analysis (a) 1 LMU at fault (b) 2 LMUs at fault (c) 3 LMUs at fault and (d) 4 LMUs at fault.

FIGURE 18. Actual modular BMS IIoT-based capability using actual battery for deployment.

The main aim of this modular BMS is to efficiently
deploy IIoT-based applications such as shown in Fig. 18.
To prove the implementation viability of the proposed mod-
ular BMS in this study, it is deployed to an unmanned
ground vehicle (UGV) for military applications, which is
controlled wirelessly via a 2.4 GHz ISM band control

signal. This is to test the proposed BMS in actual appli-
cations with its IoT capability for industrial-scale applica-
tions. The UGV has a battery pack of maximum voltage
rating of 67.2 V and a maximum speed of 10 km/h with
30 kg load. The average running time of this UGV is
600 min.
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FIGURE 19. Proposed modular BMS (a) Actual modular BMS UGV
deployment overview (b) Magnified view of the proposed and deployed
BMS (c) Detailed overview of the modular BMS IIoT -based application.

Fig. 18 shows the implementation of local processing
(edge-based), IIoT based processing using the BEXEL
rechargeable battery pack in the UGV with LIB34600 cells.
In Fig. 18(a), the acquired battery parameters from the
LTC6803 of the LMUs, such as the voltage and current are
pre-processed through a locally deployed model. The locally
deployed model for battery parameter acquisition is realized
through the LMU MCU which is the ATMEGA. These pro-
cessed parameters are then acquired by the CMU from all

the LMUs which the CMU is capable of processing locally.
The capability of the CMU to process the parameters locally
through a deployed model realizes edge efficient deployment
and design approach.

The acquired pre-processed parameters would also be the
input for cloud-based processing of the CMU. This cloud-
based processing also takes place at the CMUMCU which is
the TMS28379D. By integrating a wireless external commu-
nication sub-circuit to the CMUMCU, as shown in Fig. 8, the
proposed modular BMS realizes BMS co-processing capabil-
ity. This makes the CMU capable of co-processing the data
locally at the edge and using the cloud computing paradigm
with the integration of wireless communication, such as for
battery state prediction or estimation, as shown in Fig. 18(b).
Fig. 19 depicts the actual deployment and testing for the pro-
posed modular BMS. Fig. 19(a) depicts the UGV deployment
of the BMS. The proposed BMS is deployed to the battery-
pack power source of the UGV via the battery dock compart-
ment. For emphasis, the battery dock compartment is opened,
and the battery pack and the BMS is taken outside, as shown
in Fig. 19(b). Devices are used to measure the raw signal and
the actual signal processed by the BMS to verify its efficiency
and implementation accuracy as shown in Fig. 19(a). Detailed
deployment of the proposed BMS is shown in Fig. 19(c). Tek-
tronics MDDO3034 mixed-domain oscilloscope (350 MHz,
2.5 GS/s) and Tektronix TPP0500B 500 MHz Probe (300V
CAT II, 3.9 pF/10 M�) were used to test and analyze the
stability of the sensor input signals being processed by the
BMS. The raw signal data were acquired byOpreXGP10 data
acquisition (DAQ) module with the universal analog input
GX90XA for real-time signal visualization and storage for
the analysis of the results. Two local connections directly
communicate with the deployed BMS. The local PC is used
to deploy the machine learning algorithm to the applied BMS
IIoT applications. The overall algorithm with the machine
learning block for the battery state estimation is presented
in Fig. 20. The figure demonstrates the importance of the
measured battery-cell parameter accuracy. Fig. 20(a) depicts
the battery cell data acquisition, which is locally processed by
the LMU and then monitored by the CMUmodule. Fig. 20(b)
shows the acquired battery cell parameters. Fig. 20(c) shows
the processing of the acquired battery cell data for state esti-
mation via the SOC estimation block. This state estimation,
as shown in Fig. 20(d), relies on the acquired battery cell
parameters by which the proposed modular BMS is capable
of transmitting wirelessly to the cloud using the CMUmodule
via the CC3220SF block. The local PC also enables real-time
signal analysis and visual representation via the simulation
platform in MATLAB- Simulink. The local PC, similar to
the wireless access interface, can access the proposed GUI,
as presented in Fig. 21 for this modular BMS; however, the
wireless access interface is a device particularly enabled by
the IIoT-based application capability of the BMS. This wire-
less access interface can access the deployed BMS wirelessly
in real time with and without the Internet. This is made
possible by the co – processing capability of the proposed
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FIGURE 20. Overall overview and actual results of the intelligent data processing (a) battery cell data acquisition (b) acquired battery
cell parameters (c) local processing for the battery(d) IIoT processing capability of the proposed BMS.

FIGURE 21. Proposed GUI for the BMS access nodes (a) local PC
(b) wireless access interface.

modular BMS. The edge device can locally process data when
the internet communication is not accessible. This allows
soft and hard real-time deployment of the proposed modular
BMS.

Fig. 22 shows the monitoring voltage at a 3500 s deploy-
ment time or almost an hour using a battery pack with mod-
ules that represent the minimum, nominal and maximum
value of each cell. The measurement validates the voltage
monitoring of the BMS at minimum (3.2 V), nominal (3.6 V),
and maximum (4.2 V) voltage values of the battery pack.
It can be seen in the figure that although there are minimal
fluctuations in the voltage monitoring, the overall monitoring
accuracy is stable. This is proved by the cell average ref-
erence voltage coinciding with the actual measured voltage.

Furthermore, to concretely analyze these results, the acquired
voltage signal of the oscilloscope on the BMS local pro-
cessing remains stable for both the temperature and temper-
ature measurement capability of the BMS. Fig. 23(a) and
Fig. 23(b) shows the analog-to-digital conversion of the volt-
age monitoring. Fig. 24 shows the analog reading of the BMS
prototype deployed to the UGV on an oscilloscope, which
is visualized as a digital signal in a local PC, as shown in
Fig. 23(b). It is known that in any prototype hardware devel-
opment, the signal acquisition is pivotal to the performance
efficiency of the proposed design approach. The voltagemon-
itoring signal stability of cells 1–4 of module 1 is highlighted
using Tektronics MDDO3034 mixed-domain oscilloscope.
As highlighted in Fig. 23(a), the analog signals are the actual
voltages for cells 1– 4. The stable signal is analyzed at a
time interval of zoom factor 4kX at a specified zoom posi-
tion with respect to the set time reference. Between time
(a) and time (b) for all oscilloscope signal results, which is
at –18.40 µs to 18.36 µs, the signal yielded is stable and
accurate. The electrical signal reading for the voltage is accu-
rate, considering the signal fluctuation. At time points (a) and
(b) with respect to the reference at 4.00 µs, the signal reading
for each of the cells is as follows:

Cell 1: Time (a) = 3.600 V; Time (b) = 3.640 V.
Cell 2: Time (a) = 3.560 V; Time (b) = 3.560 V.
Cell 3: Time (a) = 3.560 V; Time (b) = 3.560 V.
Cell 4: Time (a) = 3.600 V; Time (b) = 3.600 V.
These values represent accurate electrical signal measure-

ments owing to the time interval set to highlight this result.
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FIGURE 22. Edge and IIoT based actual co – processing capability of the proposed BMS.

TABLE 5. LMU voltage cross-performance fault analysis. (Battery pack source.)

The signal stability of cells 1-4 between Time (a) and Time (b)
yielded an average difference of 0.0010V. To further verify
this result, these analog signals are subsequently converted to
their equivalent digital signals in the LMU module, as shown
in Fig. 23(b). The same test is performed to validate the
temperaturemeasurement accuracy of the proposed BMS; the

results show a stable signal acquisition, as shown in Fig. 24.
The acquired signal from the temperature monitoring pins
and the temperature analog signal being transmitted by the
LMU to the CMU when deployed to the UGV is presented in
Fig. 24. As shown in the figure, in channel 3 of the oscillo-
scope at zoom position 8.48 µs, the sinusoidal wave is stable,
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FIGURE 23. Proposed BMS input signal stability test (a) voltage
monitoring analog signal (b) voltage monitoring digital signal equivalent.

FIGURE 24. Proposed BMS input signal stability test temperature
monitoring.

FIGURE 25. GERI south korea certification test for the proposed modular
BMS.

which validates the temperature measurement accuracy of the
proposed BMS.

Fig. 25 shows the actual test setup of the proposed BMS
for the certification test conducted at Gumi Electronics

FIGURE 26. Deployed BMS DC-DC converter loop response analysis.

TABLE 6. Deployed BMS DC-DC converter loop response analysis table
summary.

and Information Technology Research Institute (GERI),
South Korea. The results were more efficient compared to
those of other BMS approaches, as shown in Table 2. In terms
of voltage difference, an average of 0.001–0.007 V and
0.004 V were obtained for monitoring and balancing, respec-
tively. In terms of the overall current demand and balanc-
ing, the average current difference was 0.102 mA, which is
negligible. In terms of protection, this certification test has
10 consecutive protection tests for over-voltage and under-
voltage protection, wherein the proposed BMS achieved a
100% success rate.

For the BMS deployment, the efficiency of the
DC–to–DC converter is directly proportional to the efficiency
of the BMS because it is directly connected to the battery
pack. In our previous paper [8], it was mentioned that the total
efficiency ofDC–to–DC converter is 92.74%; further analysis
was conducted to verify this in this study. The BMS deployed
to the UGV was comprehensively analyzed. Fig. 26 shows
the actual results for the DC-to-DC converter considering the
rating of the battery BEXEL pack modules with minimum,
nominal, and maximum voltage of 12.8, 14.4 and 16.8 V,
respectively. The graphical results of loop response of the
LMUwith the integrated isolated supply at operating voltages
of 12.8 –16.8 V is presented in Fig. 26. The loop response
and its parameters is listed in Table 6. The LMU DC-to-
DC converter implementation response yielded a crossover
frequency of 41876.97 Hz at which the control loop gain
was unity (0 dB). At 180 ◦ lagging, the frequency yielded
is 338833.358 Hz, which leads to a 75.601◦ phase mar-
gin and 21.898 dB gain margin. The ideal phase margin of
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TABLE 7. LTC6803 temperature range.

the conventionally designed supply regulators adheres to is
45◦ < 315◦, while the ideal gain margin is above 10 dB.
This validates the effectiveness and optimized design of the
applied DC-to-DC converter in the LMU designed for the
proposed BMS hardware prototype.

IV. CONCLUSION
In this paper, the development of IIoT-based modular BMS
which can pave the way to a plethora of intelligent deploy-
ment, was briefly discussed. We implemented and evalu-
ated our own designed modular BMS, wherein an algorithm
was deployed to evaluate the deployment viability of the
BMS. The deployment of the designed algorithm presented
in this paper realizes design, implementation, and deployment
of modular BMS for IIoT-based applications. The proposed
hardware design has an integrated wireless communication
sub–circuit to the central management module, by which all
LMU data are collected, processed, and transmitted wire-
lessly. The hardware design demonstrates a comparative
advantage in terms of its hardware design consideration and
monitoring accuracy, as presented in Tables 1 and 2, respec-
tively. For the hardware safety design standard, a circuit iso-
lation approach was implemented on the modular (LMUs to
CMU) communication for fault adaptivity. Furthermore, this
hardware design approach realizes co-processing capability
at the edge and through the IIoT computing paradigm for
industrial-scale applications. This study was aimed to empha-
size the design considerations for an edge-capable modular
BMS, particularly its hardware and software design approach
to gear towards 1) fault tolerant, 2) adaptable architecture
topology, and 3) IIoT-based BMS deployment.

For future works, the hybrid integration of passive and
active cell balancing in one BMS module could be explored
to pave the way for a more robust and adaptive cell balanc-
ing deployment. This approach has a potential to realize a
plethora of multi-configurable BMS deployment in terms of
its load and cell input parameters.

APPENDIX A
LTC6803 is the battery monitoring IC used and deployed
on this proposed modular battery management system. One
crucial parameter is the operating temperature of the bat-
tery monitoring IC which is needed to be considered by
the sub-circuits such as the RC filtering as discussed in the
local management unit in the hardware design consideration
section. Appendix A Table 7 shows the family of LTC6803

and the equivalent operating temperature. This information is
available at the opensource datasheet of the LTC6803.
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