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ABSTRACT We are interested in a scalable, flexible, and modular methodology, for modeling and perfor-
mance analysis of stochastic discrete-event systems (SDES). In this sense, we propose a modular approach
for timing non-markovian SDES expressed as a parallel composition ofmodules that interacts with each other
through events. We show how general distribution for event lifetimes can be implemented systematically by
coupling timing modules to the system model. As a result, this coupling mechanism preserves modularity,
leading to a compact markovian model expressed in terms of flexible modules. Therefore the methodology
allows us to write the whole SDES model as a composition of the system model and the timing one, giving
flexibility and scalability in modeling design, as we can modify the modules individually according to the
designer’s interests. In addition, from the whole markovian SDES model, we show how to perform the
model analysis through the analytic approach, as well as through Monte Carlo computer simulation. As an
application, we present a numerical example of computing the abandonment rate for a service network with
general service time employing both analytical and computer-simulation models.

INDEX TERMS Stochastic discrete-event systems, modular models, Markovianization techniques, analytic
models, Monte Carlo computer simulation.

I. INTRODUCTION
Deterministic Timed Discrete-Event Systems (DTDES)
applies well in situations where the uncertainties associated
with the description of the variables involved are negligible,
in other words, from a probabilistic point of view, the variance
is very small compared to the expected value. Deterministic
models can be used, for example, in the modeling and control
of automated manufacturing systems [10], [14], [26], [27],
transportation networks [17], diagnosing [5], learning [2], [9]
and real-time scheduling of tasks on processors [6], [7].

In the present paper, we are concerned with Stochastic
Discrete-Event Systems [4], which are used for modeling,
controlling, diagnosing, and analyzing the performance of
uncertain systems whose dynamics are driven by the occur-
rence of random events [1], [16], [24]. Applications include
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industry and intelligent systems, networked systems, service
networks, material handling systems [15], [22], [23] and
maintenance [21]. In particular, we are interested in taking
into account explicitly time in themodel construction, leading
to what we denote as a Stochastic Timed Discrete-Event
Systems (STDES).

An important point to be highlighted is that the models in
STDES are in, general, complex due to the discrete nature
of the entities, with the number of states that grow in a
combinatorial way as more information about the studied
process is added to the models. In this sense, the construction
of models in a modular way simplifies and systematizes the
task of modeling complex systems since the whole model is
obtained by composing simpler sub-models.

The utilization of Modular Models is a kind of ‘‘divide-
and-conquer’’ strategy used to solve problems in Discrete-
Event Systems in different ways. In this context, we can cite,
for instance: developments in analysis of untimed models
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[11], [18], [28], [12], and [13]; approaches for reducing
the computational complexity of synthesizing controllers in
the supervisory control theory for timed models [25] and for
simulation purposes of complex systems [8].

Unlike previous papers found so far in the literature, we are
interested in the study of a modular approach for timing
non-markovian STDES expressed as a parallel composition
of modules that interacts with each other through events.
We show how the general distribution for event lifetimes
can be implemented by coupling timing modules to the sys-
tem model. As a result, this coupling leads to a compact
markovian system expressed in terms of flexible modules.
This modularity is interesting for modeling purposes since
it divides the whole model into system sub-models and the
timing sub-models for events that have a non-markovian
lifetime, giving flexibility and scalability in modeling design,
since the modules can be modified individually according
to the designer’s interests. In the paper, we show how to
use the resulting modular markovian STDES methodology to
perform the model analysis through analytic andMonte Carlo
computer simulation approaches.

Paper Contributions: The model construction for a
Stochastic Timed Discrete Event -System (STDES) is done
through the parallel composition of modules based on
Stochastic Timed Automaton (STA). STA is a very compact
structure with few entities allowing solid mathematical devel-
opments. As a result, the approach simplifies and reduces
the errors in the modeling task, since the whole model is
constructed through the composition of simpler sub-models.
Moreover, it allows us to incorporate timing mechanism as
modules described in terms of STA’s, as well. Therefore,
we have a complete modular description for the STDES
in terms of STA’s. Besides the flexibility in changing the
modules, or parameters, according to the designer’s interests,
the approach gives us flexibility in developing equivalent
analytical orMonte Carlo computer simulation models, as we
show in the paper.

The sequence of this paper is organized as follows: in
Section II, we define the basic elements of STDES that
we are interested in, as well as the operation of parallel
composition of sub-models. We also discuss how to analyze
the dynamics of a STDES using analytic and Monte Carlo
computer simulation approaches. In section III, we show how
to construct and couple markovian timing modules to marko-
vianize a STDES model, in particular, we develop timing
modules for hypoexponential and hyperexponential distribu-
tions. In Section IV we discuss the space complexity for the
model representation, as well as time complexity for Analytic
and Computer Simulation approaches. In Section V, we show
a numerical-application example for a service network with
customers’ abandonment. The conclusion and perspectives
for this work are presented in Section VI.

II. STOCHASTIC TIMED AUTOMATA MODELS
It is known that the stochastic automaton is a very general
structure to represent STDES, and it can even be used for

simulation via discrete computing. In this paper, we are inter-
ested in STDES that can be modeled through the stochastic
timed automaton defined as follows:
Definition 1: A Stochastic Timed Automaton (STA) is a

quintuple G = (X , E, f , x0, V), whose:
X is a finite set of states;
E is a finite set of events;
f is a transition function, f : X × E → X ;
x0 is an initial state, x0 ∈ X ;
V = {Vi : i ∈ E} is a stochastic set of clock structure

for generating lifetime of events, being Vi a non-
negative random variable.

In this work, the transition function is not total, that is, quite
often some events are not allowed, or not feasible in a given
state. This fact leads to the Definition 2.
Definition 2: For a STA G = (X , E, f , x0, V), we define

by 0 the function of feasible events:

0(x) = {e ∈ E |f (x, e) 6= ∅}. (1)

As a result, we can observe that 0 : X → 2E , being 2E the
power set, that is, the set of all sub-set of E .
To computer simulate the behavior of a STA, we need a
numerical representation for the transition function f . To this
end, the transition functions f of an automaton is represented
by matrix according to Definition 3, in a general way, assum-
ing that E is a subset of larger event sets denoted by E tot .
Definition 3 (Matrix Representation): Given a STA G =

(X , E, f , x0, V), an event set expressed as a sequence E tot =
{1, 2, . . . ,L} such that E ⊆ E tot and the state set given by
X = {1, 2, . . . ,N }, the transition function f is presented by
the matrix A, N × L such that:

A(x, e) =


f (x, e) if e ∈ 0(x),
0 if e ∈ E and /∈ 0(x),
x otherwise.

(2)

In addition, we need to define the input-event set for a
state, given a precedent state. This is achieved with the input
function as defined in Definition 4.
Definition 4: Consider a STA G = (X , E, f , x0, V), the

input-event set of a state x ∈ X , given a state y ∈ X ,
is defined as:

I(x, y) = {e ∈ E | x = f (y, e)} (3)

To deal with huge models, we use a ‘‘divide and conquer
strategy’’ that consists of a decomposition of the whole model
into sub-models that interact with each other using common
events. This can be done systematically by using the parallel-
composition operation as presented in Definition 5.
Definition 5 (Paralel Composition of STA): Parallel com-

position is a binary operation between two STA’s G1 =(
X1, E1, f1, x1,0, V1

)
and G2 =

(
X2, E2, f2, x2,0, V2

)
defined by:

G1 ‖ G2 =
(
X1 × X2, E1∪E2, f1‖2,

(
x1,0, x2,0

)
,V1∪V2

)
,
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FIGURE 1. Simple manufacturing system with a buffer F and a service
machine S.

FIGURE 2. Modular automaton representation of the simple
manufacturing system depicted in Figure 1.

being

f1‖2 ((x1, x2) , e) =



(f1 (x1, e) , f2 (x2, e)) if e ∈ 01 (x1)
∩02 (x2) ,

(f1 (x1, e) , x2) if e ∈ 01 (x1)
\E2,

(x1, f2 (x2, e)) if e ∈ 02 (x2)
\E1,

∅ otherwise.

This operation is associative, that is:

G1 ‖ G2 ‖ G3 = (G1 ‖ G2) ‖ G3 = G1 ‖ (G2 ‖ G3). (4)

Example 1: We consider a simplemanufacturing cell, with
a waiting space F with capacity for two pieces and a machine
S with capacity for processing one piece at a time. We con-
sider the following events a, which represents the arrival of
pieces, c, representing piece admission by the machine, and
d representing that a piece was processed and has left the
system. This system is then divided into two subsystems rep-
resenting by the modules F and S, whose automaton model
can be obtained easily focusing only on such subsystems,
as show in Figure 2 As a result, the complete model is
represented, in a compact way, by the parallel composition
F ||S. It’s important to remark that all states of the system are
‘‘embedded’’ in the automaton resulting from F ||S and we
do not need to explicit the states. However, if desired, we can
explicitly show all the states using the Definition 5. For the
present example F ||S results in the single automaton shown
in Figure 3.

A. ANALYTIC APPROACH
Since exponential distribution is a practical way of generating
non-negative random variables, as event lifetime, we can

FIGURE 3. Single automaton resulting from F ||S for the simple
manufacturing system.

approximate the behavior of an arbitrary STA employing a
continuous time Markov chain, as shown in Definition 6.
Definition 6: A continuous timeMarkov Chain Approx-

imation (MCA) MG =
(
XG,Q, π0

)
for a STA, G =

(X , E, f , x0, V), is given by:

XG = X is the finite set of states;
Q is a square matrix such that1

Q(x, y)︸ ︷︷ ︸
x 6=y

=


1∑
E[Vk ]

k ∈ I(x, y)(I(x, y) 6= ∅)

0 otherwise.

Q(x, x) = −
∑ 1

E[Vk ]
, k ∈ 0(x).

π0 is the vector probability2 of initial state x0 ∈ XG .

As a result, the dynamical evolution of aMCA if expressed
by the following autonomous system:

dπ (t)
dt
= Qπ (t), (5)

for which π (t) = [π1(t) . . . πn(t)]′ is the state probability
vector whose π1(t) = P[X (t) = i], being X (t) a random
variable that indicates the state of the system at time t .

Quite often the system converge to a steady-state behavior,
whose probabilities are constant, leading to:

Qπ (∞) = 0. (6)

In addition, we need to add the probability constraint∑N
i=1 πi(∞) = 1. Since the rows of Q have linear depen-

dence, we can eliminate, for instance, the first row, resulting
in a system of the form:

Q̂π (∞) = b, (7)

being Q̂ identical to Q, except for the first row, whose entries
are 1, and b the null vector except for b(1) = 1.

There are several methods to solve Equation 7, among them
the simplest one is based on inverse of Q̂.
Example 2: Returning to Example 1, we consider the sin-

gle automaton depicted in Figure 3.

1We denote E[V ] the expected value of a random variable V .
2In this paper, we assume that π0 = 1.
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FIGURE 4. Corresponding markov chain for simple manufacturing system
whose automaton is depicted in figure 3.

Given the temporal evolution of the system, the state space
on the date t is given by:

Xt = {(1, 1); (2, 1); (3, 1); (1, 2); (2, 2); (3, 2)}. (8)

If the event lifetimes are random variables, the state of the
system at date t is uncertain. Thus, we define the following
probabilities:

π1(t) = P[Xt = (1, 1)], π2(t) = P[Xt = (2, 1)],

π3(t) = P[Xt = (3, 1)], π4(t) = P[Xt = (1, 2),

π5(t) = P[Xt = (2, 2)], π6(t) = P[Xt = (3, 2)].

We suppose that the lifetimes are generated to respect
exponential distributions as follows:

P[Ve ≤ ve] = 1− eλave , (9)

where Ve is the random variables that define the lifetimes for
the events e. So in the present example e ∈ {a, c, d}.

In this case, we obtain an exact representation of the
stochastic automaton as a Markov chain, as shown in
Figure 4.

B. MONTE CARLO COMPUTER SIMULATION APPROACH
First of all, we recall that in this case, in general, it is assumed
that the system enters into a steady state, more specifically,
it is assumed that the associated stochastic process is station-
ary on average and ergodic. This being the case, the expected
value can be estimated by the equation:

θ = lim
n→∞

n∑
i=1

Xi
n
, (10)

where Xi is the i-th sample of a random variable X . However,
in view of the limitation of discrete computing resources,
in terms of time and memory, a finite size sample must be
considered. In this sense, in general, an estimator 2̂ is built,
that is, a finite approximation for Equation 10 is given by the
the following estimator:

2̂ =

n∑
i=1

Xi
n
. (11)

Note that 2̂ is a random variable that depends on the Xi
samples. For this estimator to be an acceptable approximation
for θ = E[X ], we need an evaluation of the variance of 2̂.

Performance evaluation of a STDES through Monte Carlo
Computer Simulation demand a lot of human and computa-
tional resources, since the models are, in general, quite com-
plex. However the implementation of a computer simulation
of a Markov STA is direct due to the memoryless property of
the exponential distribution. Indeed, it can be implemented
for a given STA G through a simple Monte Carlo simulation
based on generation of uniform random numbersU ∈ [0 1]
as presented in the Algorithm 1.

Algorithm 1 Markov STDES Simulation
procedure Markov STDES(G, Nmax)

k = 0;
while k ≤ Nmax do

for i ∈ 0(xk ) do
U = rand (U ∈ (0 1]);
Ti = E[Ti]× ln(U );

end for
Tmin = Min{Ti};
Tk+1 = Tk + Tmin;
ek = Argi Min{Ti};
xk+1 = f (xk , ek );
k ← k + 1;

end while
return {xk , ek ,Tk}

end procedure

III. MARKOVIANIZATION WITH MARKOV JUMP
MODULES
In Section II, we defined the basic elements of STDES that
we are interested in, as well as the operation of parallel
composition of sub-models. We also show how to analyze the
dynamics of STDES using analytic or Monte Carlo computer
simulation approaches. Based on those concepts, we show In
this section how to construct Markov jump modules in order
to transform a non-markovian STDES into a markovian one.

First, in order to have a general automaton representation
for the timing mechanism, we construct an automaton Te as
depicted in Figure 5. For this automaton all event lifetime are
exponentially generated as:
• the jump rate off state X into I being λ;
• the jump rate from state I to (k, 1) being pkλ;
• from state (k, j) given by λjk ;
• and from state E given by λ.
So if we have an event that causes a ‘‘non-markovian

jump’’, let’s say from state ‘‘X’’ to ‘‘Y’’, the operation of
parallel composition insert automatically several intermedi-
ary states whose transitions operate with markovian jumps
in such a way that the ‘‘ big jump’’ between ‘‘X’’ and ‘‘Y’’
respects the desired distribution. This operation must be done
for each event e that does not respect an exponential distribu-
tion. In practical situations, minimal topology can be derived
by matching the mean and variance of the collected data as
we show in the following.
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FIGURE 5. Automaton Te that implements general distribution as a timing mechanism, in which states
X and E represent respectively the origin and the destination of an event.

FIGURE 6. Adding the event se that indicates the starting of the jumping
process.

As a result, if we denote the corresponding timing STA
for each event ei by Ti, the complete timing mechanism is
therefore given by the parallel composition:

Tm = T1 ‖ . . . ‖ Tp. (12)

In addition, if the starting of the jumping process is indi-
cated with an event, let’s say se, we must include this event
in the alphabet of the system by making it feasible whenever
event e is. This can be done by inserting an appropriate trigger
mechanism as shown in Figure 6.

Therefore given an STA, denoted as G, with general life-
time distribution for some events, lets say e ∈ Et = {1, . . . p},
we create and associate starting events se ∈ Es for those
events, resulting the set of pairs:

P = {(e, se)|e ∈ E and se ∈ Es} (13)

Then we construct a modified STA by adding self-loops
of these starting event es in all states x of G for which event
‘‘e’’ is feasible, i.e. e ∈ 0(x). This procedure of insertion
self-loops is illustrated in in Figure 6 and results in a new
automaton, which we denote as T (G,P). This transformed
STA is presented formally in Definition 7
Definition 7: Given G = (X , E, f , x0, V) and the set of

pairs P , we define the Triggered STA as:

T (G,P) = (X , E ∪ Et , ft , x0, Vt) (14)

for which:

• ft (x, e′) =

{
f (x, e′) if e′ ∈ 0(x),
x if e′ = se and e ∈ 0(x).

• Vt = V ∪ Vs;
being Vs the lifetime structure for the starting events and
0(x) the set of feasible events for a given state x of the
automaton G.

As a result the the complete STA, with markovian jumps,
denoted as GMarkov, is given by the parallel composition of
triggered STA and the corresponding STA for time mecha-
nism as:

GMarkov = T (G,P) ‖ Tm. (15)

It is important to remark that the corresponding Markov
chain is systematically obtained directly from GMarkov by
replacing events with their rates. An important advantage of
the compact representation of the Markov Chain as given by
the Equation 15 is the reduced space complexity, since the
operation of parallel composition allows us to represent the
whole system through modules. Another interesting feature
of this modularity is the flexibility to change the distributions
by replacing modules.

A. TIMING MODULES FOR HYPOEXPONENTIAL AND
HYPEREXPONENTIAL DISTRIBUTIONS
In a practical situation, hypoexponential and hyperexponen-
tial are quite a general way of representing unimodal distribu-
tion for time random variables [3]. Important specifications
to fit those distributions are the well-known mean (µ) and
variance (σ 2) of the input data. In this sense, we will dis-
cuss in sequence how can we deal with a practical situation
with data described as a hypoexponential distribution, that is
σ < µ or a hyperexponential one, that is σ > µ. In particular,
we will see how to obtain minimal structures ensuring mean
and variance matching for those distributions
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FIGURE 7. Sequence of markov jumps for hypoexponential with N steps.
We assume that λi the jump rate from step i to step i + 1.

1) CONVENIENT MINIMAL STRUCTURES FOR MEAN AND
VARIANCE MATCHING
The simplified diagram for the states of an Hypoexponential
distribution is depicted as shown in Figure 7.

Therefore, our matching problem is achieved by solving
the following pair of equation for a minimum N :

N∑
i=1

mi = µ

N∑
i=1

m2
i = σ

2 (16)

whose mi = 1/λi, being λi the jump rate from state i to
state i+ 1. First, we must observe that triangular and internal
product inequalities (Cauchy-Schwartz Inequality) lead to:

(
∑N

i=1 mi)
2

N
≤

N∑
i=1

m2
i ≤ (

N∑
i=1

mi)2 (17)

As a result, provided that a solutions exists, they are all
such that:

µ2

N
≤

N∑
i=1

m2
i ≤ µ

2 (18)

So the number of states N must satisfy:

µ2

N
≤ σ 2

→ N ≥
µ2

σ 2 . (19)

Since N is an integer, its smallest possible value is3

N = dµ
2

σ 2
e.

Keeping in mind those observations, we present a solu-
tion for the system of equations 16. First we observe that
if µ2

σ 2
= 1, the solution is trivial, with only one state,

that is N = 1. So let us concentrate our attention in situations
whose dµ

2

σ 2
e ≥ 2.

Proposition 1 (Minimal Hypoexponential Distribution):
If dµ

2

σ 2
e ≥ 2, a solution for the system of equations 16

is given by:

mj =
µ

N
−

αN
√
(N − 1)

(1 ≤ j ≤ N − 1), (20)

and

mN =
µ

N
+

√
(N − 1)αN . (21)

being N = dµ
2

σ 2
e, αN =

√
Nσ 2−µ2

N .

3
dxe stands for the ceil of x, i.e. smallest integer greater than or equal to x.

FIGURE 8. STA that implements a hypoexponential distribution as an

event timing mechanism for σ < µ, whose µ2

σ2 ≤ N <
µ2

σ2 + 1.

FIGURE 9. Sequence of markov jumps possibilities for hyper-exponential
distributions. We denote by p the probability of initially routing to state
‘‘1’’, and by λi the jump rate to get out from state i .

Proof: By denotingmj = y (1 ≤ j ≤ N−1) and xN = z,
The system 16 is written as:{

(N − 1)y+ z = µ,
(N − 1)y2 + z2 = σ 2,

(22)

being N = dµ
2

σ 2
e. As a result, we can check that:

x =
µ

N
−

αN
√
(N − 1)

(1 ≤ j ≤ N − 1),

and

y =
µ

N
+

√
(N − 1)αN

are indeed solutions for the pair of Equations 22.
As a result, we obtain the minimum STA as shown in

Figure 8.
To couple the timemodule into the system for a given event

e, we do the following:
• Create a Triggered STA according to Definition 7 using
the procedure illustrated previously in Figure 6;

• The time scheme is presented by the STA Te depicted in
Figure 8, with jump rates given off state j ∈ {1, . . . ,N }
by λj = 1/mj, being mj given by Equations 20 and 21.

So far, we have established that if σ 2
≤ µ2, the minimum

number of states is given by N = dµ
2

σ 2
e, being the means

between states provided by Proposition 1. It remains to solve
the cases for which σ is strictly greater than µ, that is σ > µ.
We solve this problem by considering two states and two rout-
ing probabilities, as depicted in Figure 9. This configuration
leads us to an Hyperexponential distribution.

Denoting mi = 1
λi
, we can write that:

E[Tg] = pm1 + (1− p)m2 = µ, (23)

E[T 2
g ] = 2pm2

1 + 2(1− p)m2
2 = σ

2
+ µ2. (24)
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FIGURE 10. Visualization of the structure that implements a
hyper-exponential distribution.

FIGURE 11. Minimum automaton that implements a hyperexponential
distribution: Events e23 and e24 are implements the routing mechanism
while e34 is the end of the service time.

Considering, without loss of generality that m1 ≥ m2,
we solve the system of equation, whose solutions are given
by:

m1 = µ(1+
α

p
), (25)

m2 = µ(1−
α

1− p
). (26)

being 0 < p ≤ 2
1+C2

v
, α =

√
p(1−p)(C2

v−1)
2 and Cv the

coefficient of variation, i.e Cv = σ
µ
. So the simplest topology

to ensure the desired results is given by choosing p = pmax =
2

1+C2
v
, leading to m1 = µ

C2
v+1
2 and m2 = 0. This topology,

which has only one state, is shown in Figure 10.
Remark 1: An interpretation of the resulting distribution

for this topology, in terms of service time, is the following:
with probability p, some clients are served with exponentially
distributed service timewithmeanm1, while others are served
with negligible service mean with probability (1− p).
As a result, we obtain the corresponding minimal automaton
implementation for this distribution as depicted respectively
in Figure 11.

In order to couple the time mechanism into the system,
given event e, we follow a similar procedure as we did for
hypoexponential distributions:

• Create a Triggered STA according to Definition 7 using
the procedure illustrated previously in Figure 6;

• The time scheme is presented by the STA Te depicted in
Figure 8, with jump rates given off state j ∈ {1, . . . ,N }
by λj = 1/mj, being mj given by Equations 20 and 21.

IV. COMPLEXITY ANALYSIS OF THE MODULAR MARKOV
REPRESENTATION
First, we analyze the memory requirements complexity of
the modular model representation, then we analyze the

time complexity for performance evaluation using analytic
approach as well as computer simulation one.

A. MODEL REPRESENTATION
The complexity Analysis is performed for a model given
by a parallel composition of sub-models expressed by
Equation 15. Explicitly:

GMarkov = T (Gs,P) ‖ Tm. (27)

being Gs = G1 ‖ . . . ‖ GL the modular STA model for
the system, P the set of pairs for the non-markovian events,
as indicated in Equation 13, and Tm = T1 ‖ . . . ‖ Tp the
modular STA representation for the timing mechanism.

If we denote |H| the number of states of an arbitrary STA
H, the space complexity for the implicit model expressed by
the parallel composition is linear in terms of the number of
the sub-models:

O(
L∑
i=1

|Gi| +
p∑
i=1

|Ti|). (28)

On the other hand, for the explicit (monolithic) model, for
which we explicitly represent all states, the space complexity
is exponential:

O(
L∏
i=1

|Gi| ×
p∏
i=1

|Ti|). (29)

Therefore, comparing Equations 28 and 29, we can see
that parallel representation saves much more memory than
the explicit one.

Regarding time complexity for performance evaluation,
in the following we compare the worst-case computational
complexity for analytic as well as Monte Carlo computer
simulation approaches.

1) ANALYTIC APPROACH
In this case the method is base on matrix inversion. So the
worst-case complexity is given by:

O((
L∏
i=1

|Gi| ×
p∏
i=1

|Ti|)3), (30)

However, in practice, the matrices are very sparse for large
instance problems, since the number of events is quite small
in comparison with the number of states. Therefore the com-
putational complexity can be much more smaller depending
on the numerical method.

Numerical and Symbolic solutionmethods are presented in
[3]. Numerical Methods for solving large sparse linear equa-
tion systems can be found in [19]. Symbolic representations
and analysis of large system can be found in [20].

2) COMPUTER SIMULATION APPROACH
This method requires intensive computer iteration as we can
observe in Algorithm 1. The number of iterations depends
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FIGURE 12. Service network with customers abandonment: Event ‘‘a’’
represents that a customer arrives to the queue F; ‘‘c’’ customer
admission by the server S; ‘‘d’’ departure of customer from the server
after receiving the service. The customer abandonment when the queue F
has length i is represented by event ‘‘qi ’’.

on the desired precision. For instance, if we are inter-
ested in estimating a given expected value, we observe in
Equation 10 and 11 that the large the number of iterations
the better is the approximation. In practice, given a desired
confidence interval, the worst-case complexity is written as:

O((
L∏
i=1

|Gi| ×
p∏
i=1

|Ti|)× Nev × Nsp × Nrn). (31)

being Nev, Nsp ×Nrn respectively the number of events, com-
puter iteration and the number of runs.

We can observe that the complexity depends on sample
number Nsp, as well as on the number of runs Nrn. These
parameters depend on a previously established confidence
interval. The sample number is in general very large (thou-
sands and even millions of samples) and the number of runs is
usually small (some units). Therefore, the approach requires
intensive use of computer time, but, for large systems, it is
simpler to implement than analytic approach.

V. NUMERICAL RESULTS: SERVICE NETWORK WITH
CUSTOMERS ABANDONMENT
We evaluate the methodology with a study of a Service Net-
work with Customers Abandonment whose service time is
non-markovian but specified in terms of mean and variance.
For the representation of this system, we consider two main
subsystems: a queue, which is a space where the customers
wait for the service, and a server that can process one cus-
tomer at a time. In this system, customers conditions are
sensitive to queue waiting time, in the sense that the longer
the queue length the higher the abandonment rate. A block
diagram of this system with the event descriptions is depicted
in Figure 12.

The correspondent modular automaton model for the sys-
tem is shown in Figure 13.

To numerically evaluate the performance of this system in
terms of the overall abandonment rate of parts, we consider
that all event lifetimes follow an exponential distribution,
except for the service time, which is specified in terms of a
hypoexponential distribution. We consider that the abandon-
ment rates that are proportional to the queue length.

In the present example, we consider that the maximum
queue length is M = 10 and the mean lifetime for

FIGURE 13. Automaton model for service network with customers
abandonment for a queue with length (capacity) M.

FIGURE 14. Triggered automaton, given by Ss = T (G,P), and
automaton Td that implements the time mechanism for event ‘‘d’’.

exponentially distributed events are: a, E[Va] = 1.40; qi,
E[Vqi ] = 14/i; c, E[Vc] = 0.10.
Unlike the other events, event ‘‘d’’ follow a hypoexpo-

nential, with mean µ = 2.50 and standard deviation σ =
1.40. Therefore Proposition 1 helps us with the construction
of Markov STA for timing mechanism with 4 states and
events {sd , s1, s2, d}, whose lifetimes are given by E[Vsd ] =
E[Vs1 ] = E[Vs2 ] = 0.443 and E[Vd ] = 1.171. In the
sequence of the procedures, we need to obtain the Triggered
STA Ss = T (G,P), being P = {(d, sd )}, as explained in
Definition 7.

The corresponding STA’s that implement Ss = T (G,P)
and Td are depicted in Figure 14 The complete STA model is
the result of the parallel composition of the modules F , Sd ,
and Td presented in the Figure 15.

In the sequence, we are interested in the performance
evaluation of the system. We show how this can be
achieved through analytic approach, as well, as through
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FIGURE 15. Automaton model for service network with customer
abandon coupled with a markovian jump module for event ‘‘d’’.

compute simulation, using programs developed in ScicosLab
(http://scicoslab.org/) a variant of Scilab.4

3) ANALYTIC APPROACH
First, from Figure15, we check that the resulting STA model
has 11× 2× 4 = 88 states, leading to an equivalent Markov
Chain with the same number of states.

In order to evaluate the abandonment rate for the system,
we need to compute the throughput rate, that is, the rate of the
number of customers that receive a service from the server
per time unit. Since we can say that a customer is served
whenever an event ‘‘d’’ happens, we compute the number
of customers served by the number of times the event ‘‘d’’
occurs. In this sense, we observe that the event of departure,
‘‘d’’ is feasible whenever the server is on state ‘‘2’’ and
the Markov module is on state ‘‘4’’ no matter the queue
state. As result, the throughput rate Tr is computed using the
conditional probability formula:

Tr =
N+1∑
k=1

P[XF = k,XS = 2,XTd = 4]×
1

E[Vd ]
. (32)

So the overall abandon rate, Tq is computed by the differ-
ence between arrival and throughput rates:

Tq = λa−Tr (33)

whose λa = 1
E[Va]

is the arrival rate.
As a consequence, we obtain an abandonment percent-

age rate 100 × Tq
λa
= 33, 50%. The computation time was

0.4516 s in a DELL Computer Intel I7, 3.10Ghz, 8 GB RAM,
Windows 8 Pro with 64 bits.

For the sake of comparison, in the sequence, we do the
same analysis through Computer Simulation Approach, using
ScicosLab scicoslab.org, a variant of Scilab, to develop the
programs.

4Simulator’s code is available on GitHub in https://github.
com/AndreyM14/Marvianization-Stochastic-TDES.git

4) COMPUTER SIMULATION APPROACH
Using the Algorithm1, with the same STA used previously
in analytic approach, as depicted in Figure15, we do the
computer simulation.

We performed the simulation until the conclusion of the
service for 10000 pieces. To eliminate the transient behavior,
the throughput was computed only after the 400th piece
departure. We ran the simulation 10 times, to compute a
confidence interval (IC) of 95% using t-Student distribution.

As a result, we obtain the IC for the abandonment percent-
age rate as [33.37% 33.60%], being the computation time
104.49 s in the same DELL Computer Intel I7, 3.10Ghz, 8
GB RAM, Windows 8.1 Pro with 64 bits.
Remark 2: Comparing the results obtained through the

two approaches, that is, the abandonment percentage rate of
33, 50% for analytic and an IC of [33.37% 33.60%] for the
computer simulation, we observe that they are quite coherent.
However, in terms of computation time, we obtained 0.4516 s
for analytic approach versus 104.49 s for computer simulation
one, that is computer simulation is more than 200 times
slower.

A. DISCUSSION
The model used in the numerical example had a moderate
complexity, but we think that it was enough to show the
potential of the methodology since we could observe the
flexibility in the model construction by changing the whole
model by simply replacing modules. For instance, changing
the queue capacity, or timing mechanism, is a matter of
replacing the respective module for the system. Moreover,
despite its apparent simplicity, the total number of states for
the example is 88, that is, it is difficult to visualize (or to even
draw) the whole model resulting from the compositions of the
modules. On the other hand, modular models for the queue,
server and timing mechanism had respectively only 11, 2 and
4 states. We remark that the analytic approach gives us real
values instead of interval estimates. For systems, with a small
number of modules, it is faster, since the number of samples
required in the computer simulation approach to generate a
small confidence interval is usually very large (thousands
or even millions of samples). However, computer simulation
algorithms are simpler to implement.

VI. CONCLUSION
In this paper, we presented a complete methodology to ana-
lyze the behavior of stochastic discrete-event systems rep-
resented using STA, being the whole system expressed as
a parallel composition of sub-systems or modules. We have
shown how to incorporate timing modules to describe general
non-exponential distributions for event lifetimes. In particu-
lar, we have shown how to design timing modules for hypo-
exponential and hyperexponential distributions. Therefore,
we obtained a complete description of the system dynam-
ics by the parallel composition of individual modules that
interacts with each other through events, being dynamics
operating through markovian jumps among states. With the
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aid of a numerical example we show how the task of obtaining
the whole model of a system could be drastically simplified
through the utilization of modular models for the subsys-
tems, as well as for the timing mechanism. We can observe
the versatility of the representation as we could analyze the
dynamic behavior of the system by analytic or by Monte
Carlo computer simulation methods. Finally, we remark that
other application perspectives of the methodology, in terms of
performance evaluation of STDES, include computing prob-
abilities of accessing states, blocking, failures, or executing a
given sequence of events, which is useful in the analysis and
decision of system issues in areas such as control, diagnosing,
maintenance and security. Another interesting works to be
exploited in future works are an automated tool to convert
from STDES to STA or formal system verification.
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