
Received 30 August 2022, accepted 3 October 2022, date of publication 10 October 2022, date of current version 18 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213645

Integrating Cyber Deception Into Attribute-Based
Access Control (ABAC) for Insider
Threat Detection
MANAR ALOHALY 1, OLUSESI BALOGUN 2, (Student Member, IEEE),
AND DANIEL TAKABI 2, (Member, IEEE)
1Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh 11671, Saudi Arabia
2Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA

Corresponding author: Olusesi Balogun (obalogun6@student.gsu.edu)

This work was supported in part by the National Science Foundation under Grant 2006329.

ABSTRACT Insider threat is an ever-present challenge to corporate security. The availability of knowledge
and privileges to insiders makes it extremely difficult to prevent, detect or deter malicious insider activities.
In the literature, several studies have proposed deception-based approaches tomitigate insider threats through
different layers of corporate systems. However, the integration of access control and cyber deceptionmethods
has not been adequately discussed. In this paper, we integrate Attribute-based Access Control (ABAC) with
honey-based deception techniques to effectively track insiders, particularly in the context of a dynamic work
environment. To the best of our knowledge, this is the first study to design, implement and evaluate this
integration. Our evaluation results show that the proposed framework reliably identifies sensitive attributes
in the system and generates indistinguishable honey values to protect them with an average similarity score
of 0.90 to the truth.

INDEX TERMS Insider threat, defensive deception, attribute-based access control (ABAC), honey attribute,
sensitivity estimation.

I. INTRODUCTION
Insider threat poses a serious security risk as it origi-
nates from within the organization itself. It typically occurs
when a trusted employee (former or current) misuses the
granted privileges to achieve a secondary unauthorized pur-
pose. Unlike external threats that are often anticipated and
prepared for, insider threat tends to go undetected for a
long time leading to costly security breaches [5]. Besides,
the complexity involved in locating the insider adversary
extremely amplifies the difficulty of mitigating insider
threats [11]. Several recent studies have highlighted the sever-
ity of insider threats towards organizations. In 2020, the
Securonix Threat Research Team conducted a threat analysis
of over 300 security incidents across several organizations
from 8 different sectors. The study showed that privilege

The associate editor coordinating the review of this manuscript and

approving it for publication was Sathish Kumar .

misuse is the second most common type of incidents, at 19%
of all cases [6]. Similarly, a survey study conducted by the
Cybersecurity Insiders, a community of 400,000 informa-
tion security professionals [6], revealed that 72% –out of
373 participating organizations – have observed a frequent
occurrence of insider attacks over the last 12 months, while
65% have actually experienced some sort of malicious insider
activities over the same period [7].

In the literature, the malicious insider adversary is catego-
rized into two classes, masqueraders and traitors [9]. Mas-
queraders are illegitimate users who impersonate legitimate
users. Traitors, on the other hand, are legitimate users within
an organization who misuse their access rights for their bene-
fits [23]. To detect masqueraders, an anomaly-based intrusion
detection approach is the commonly used solution. It func-
tions by modeling the normal behavior of a legitimate user
and capturing the deviation from that model [8]. It is worthy
to note that external attackers may become masqueraders by

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 108965

https://orcid.org/0000-0001-7460-2635
https://orcid.org/0000-0001-5216-9084
https://orcid.org/0000-0003-0447-3641
https://orcid.org/0000-0002-3162-2211

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

stealing valid employee credentials [13]. However, our focus
in this study is to mitigate the traitor threat. The term insider
is used herein to refer to the traitor.

Several studies have researched the insider threat detection
problem across different domains. The proposed approaches
can broadly be categorized into four lines of research:
psychological-based, behavioral-based, content-based, and
deception-based. The psychological-based approach uses
human bio-signals capturing the brain activity [15], heart
rate [46], and eye movements [17] in building a framework
to monitor and detect malicious insider threats [15]. The
behavioral-based approach analyzes access logs collected
from different systems and appliances to detect insiders activ-
ities [18]. On the other hand, the content-based approach
applies machine learning and natural language processing
techniques to textual content to build models for insider threat
detection [2], [3], [4]. Finally, the deception-based approach
uses decoy assets otherwise known as honey elements such
as honey permissions [23], honeypots [25], honey files [19],
honey documents [20], honey tokens [21], [26], honey words
[24], and honey encryption [22] to attract and track insiders.
Unlike other approaches, deception-based measures provide
efficient early signs of insider incidents with the least amount
of data collected from former or potential insiders [44]. How-
ever, none of the existing deception studies have considered
the insider threat detection problem in the context of today’s
dynamic work environment.

To address this gap, we propose an ABAC-based defen-
sive deception framework for insider threat detection. ABAC
is an access control model that provides an unprecedented
amount of flexibility to cope with dynamic and change-
oriented business environments [1]. In particular, we extend
and integrate the original ABAC model with decoys protect-
ing sensitive objects. With this extension, access requests
targeting sensitive objects are suspicious and indicate poten-
tial malicious activity. To the best of our knowledge, this is
the first work that integrates cyber deception into ABAC for
insider threat detection. The main contributions of this paper
are:

1) Integrating the notion of honey elements with the
standard ABAC model to build a defensive deception
framework for insider threat detection.

2) Extending the standard ABAC with deception-related
components such as sensitivity estimator, honey
attribute generator, and monitoring unit.

3) Generating a realistic dataset to evaluate the proposed
framework that could also be used for future studies in
this area.

The remainder of this paper is organized as follows:
Section II provides the background information. Section III
summarizes the related work. Section IV outlines the threat
model, and Section V describes the details of the proposed
approach. Section VI discusses the experiments and results.
Section VII presents a discussion and our future directions,
and we conclude the study in Section VIII.

FIGURE 1. National institute of standards and technology (NIST) standard
ABAC model [1].

II. BACKGROUND
In the following subsections, we provide background infor-
mation on key concepts used in this work, namely Attribute-
based Access Control (ABAC) and genetic algorithm.

A. OVERVIEW OF ABAC
In this section, we provide an overview of ABAC archi-
tecture. To scale the compatibility and the applicability of
the proposed framework, we focus on the National Institute
of Standards and Technology (NIST) standardized ABAC
model [1]. According to NIST definition, ABAC is an access
control model in which the requests issued by subjects to
perform actions on objects are granted or denied based on the
attributes of subjects, objects, actions, and the environment
conditions. The attributes of an object describe its character-
istics such as its type, date of creation, etc. On the other hand,
subjects in ABAC can be human or non-human (application)
entities, and may have attributes such as name, office num-
ber, job title, etc. The actions performed on objects can be
open, edit, execute, etc. Similarly, the environment conditions
attributes indicate the current state of the system including
current timestamp, location, threat level, and temperature, etc.

Authorization policies in ABAC are defined as a set of
rules. Each rule is a conjunction of the attributes of subjects,
objects, actions, and environment conditions. The attributes
and the policies are respectively stored in the attribute and
policy repositories, as illustrated in Figure 1. Also, these
repositories contain information that describes the set of
attributes and policies, referred to as meta-attributes and
meta-policies.

In addition, ABAC model integrates four functional points
to analyze and evaluate access requests. These functional
points include: (1) Policy Information Point (PIP) which
controls the access to attribute and policy repositories to
get the data needed to evaluate access requests; (2) Policy
Decision Point (PDP) which makes logical access decisions

108966 VOLUME 10, 2022

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

by evaluating the applicable policies and attributes against
access requests; (3) Policy Enforcement Point (PEP) which
enforces access authorization decisions; and (4) Policy
Administration Point (PAP) which provides an interface for
creating, managing, and testing policies. Figure 1 shows the
connections of these functional points.

B. GENETIC ALGORITHM
Genetic Algorithm (GA) is a population-based algorithm that
derives its inspiration from evolution theory [33] and was
first introduced by John Holland [37]. GAs are well-suited
for evolving solutions for real-world problems [38]. The
algorithm starts by generating an initial population either ran-
domly or with prior knowledge. Each individual solution in
the population is represented as a chromosome. The goodness
of the individual is evaluated using a fitness function, which is
a problem-specific metric designed to estimate the closeness
to the optimal solution. Then, the best-fit individuals are
selected as intermediate parents to generate the next popu-
lation. Once the parents are selected, GA performs two basic
operations to produce new offspring, namely crossover, and
mutation. The crossover operation splits up the parent chro-
mosomes and recombines them to produce new individuals.
The split is performed at a random point or based on standard
heuristics [40]. After the crossover, a mutation operation is
used to introduce randomness to the solution by altering some
genes of the resulting chromosomes. The process is repeated
until a predefined stopping criterion is met [28]. In this work,
we apply GA to generate honey attributes as part of the
proposed deception framework.

III. RELATED WORK
In this section, we discuss existing insider threat detection
studies in four lines of research.

A. DECEPTION-BASED APPROACHES
Defensive deception has gained a significant attention from
the cybersecurity community. Several studies have been pub-
lished on this field. To understand the perspective of existing
research and the contribution of our work, we introduced
8 factors to compare relevant studies: (1) the sensitive ele-
ments needed to be protected against insider attack; (2) the
technique used to identify sensitive elements; (3) the honey
elements; (4) the technique used to generate the honey ele-
ments; (5) the host system that is extended to incorporate
the deception component; (6) the dataset; (7) the size of the
dataset; (8) and the performance evaluation. Table 1 presents
a summary of the findings, while the rest of this subsection
discusses each study separately.

Bercovitch et al. [26] proposed ‘‘HoneyGen’’systemwhich
automates the production of honey tokens for any type of
data. The authors’ proposed approach consists of three main
steps:(1) mining set of rules that capture the characteristics
of real data; (2) generating artificial or honey data items
based on the mined rules; and (3) ranking the resulting

honey items based on their similarity to the ground truth
data. The high similarity scores between honey elements
and the truth data suggest high degree of indispensabil-
ity. The authors conducted a turing-like test to evaluate
the quality of the produced honey elements. The evaluation
showed a detection rate confidence interval of (0.47, 0.67)
with a confidence level of 0.95 indicating a random detec-
tion rate. Although the results are promising, this study
focused only on generating honey elements. Unlike our pro-
posed framework, it did not address the problem of identi-
fying sensitive data that needs to be protected with honey
elements.

Bowen et al. [20] proposed a Decoy Document Distributor,
D3, system which automatically generates and distributes
decoy documents across a file system aimed at luring mali-
cious users. The authors employed a rule-based approach to
design the decoy documents. For evaluation, they deployed
the D3 system on the honeynet platform and carried out
a user study experiment with 20 participants. The results
indicate that during the first week of the experiment, the
system reported that around 30% of the participants have
used/misused the bait data found in decoy documents sug-
gesting the effectiveness of theD3 system.However, Bowens’
proposal has limited application domains; it is only applicable
in file and directory systems. Moreover, It distributes honey
elements randomly across the system. Such random integra-
tion of honey elements worsens the space complexity of the
system.

Bhagat et al. [25] proposed the use of honeypots for intru-
sion detection problem. The authors studied the interaction
of attackers with the honeypots and analyzed data retrieved
from honeypots for possible attacks. The results showed
that the TCP, among other network protocols, can easily be
compromised.

Srinivasa et al. [21] proposed a set of techniques, referred
to as fingerprinting honey tokens, to compromise a decoy
system. The authors of this study explicitly mentioned the
difficulty of fingerprinting honey tokens created at data
level. This finding supports the reliability our proposed
solution

Kaghazgaran et al. [23] proposed an extension to the stan-
dard role-based access control (RBAC) to support insider
threats detection. The proposed model introduced honey per-
missions and honey objects as new elements to protect sensi-
tive objects. The authors evaluated the work using Americas
Large dataset. The analysis of their results using the weighted
structural complexity (WSC) showed that the overhead intro-
duced by the proposed approach is minimal in comparison
with the standard RBAC. Perhaps Kaghazgaran’s work is
most similar in spirit to our study [23]. Unlike [23], which
required a manually configured sensitivity level of objects,
our proposed framework automatically computes sensitivity
scores of attributes and objects. This is a significant improve-
ment over [23] as the manual configuration is subjective,
error-prone and difficult to maintain.

VOLUME 10, 2022 108967

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

TABLE 1. Deception and insider threat detection related work. In this table, N/A stands for not applicable while N/R means not reported.

B. PSYCHOLOGICAL-BASED APPROACHES
This line of research studies the emotional and mental states
of individuals to carry out a risk assessment and identify
potential insider threats.

Brdiczka et al. [16] proposed a proactive method of
detecting insider threats by integrating Structural Anomaly
Detection (SA) from social and information networks with
Psychological Profiling (PP) of individuals using their behav-
ioral patterns. In [16], insider threats are predicted through
a fusion and ranking of the outcomes from SA and PP. The
authors evaluated the proposed approach using the World of
Warcraft (WoW) dataset and they reported an average classi-
fication accuracy of 83.86%. Similarly, Greitzer et al. [14]
proposed a psychosocial model to assess an employee’s
behavior suggesting an increased risk of insider abuse. The
authors developed a list of indicators based on examination
of published case studies and discussions with experienced
human resources (HR) professionals. These include dis-
gruntlement, anger management issue, performance, stress,
confrontational behavior, and lack of dependability. based
on the proposed psychosocial indicators and using Genie
dataset, the authors built a Bayesian Network (BN) model
to identify individuals who pose a possible insider threat.
The results showed a high agreement between the model
outcomes and the judgement human experts. More recently,
Hashem et al. [15] developed a classification model using
electrical signals, e.g., Electroencephalography (EEG), Elec-
trocardiogram (ECG), and Electromyography (EMG), gen-
erated by humans biological activities to detect potential
insiders. The authors reported a detection accuracy of about
86% indicating that this approach holds promise. However,
it poses plethora of privacy concerns associated with the use
of physiological signals.

While studies in this field heavily considered the dynamic
nature of human psychology and its relation to insider attacks,
they failed in capturing the dynamic nature of inter and
intra business processes in today’s work environment. It is
worth mentioning that our proposed model complements this
limitation with the use of ABAC.

C. BEHAVIORAL-BASED APPROACHES
This approach of insider threat detection studies the set of
actions and reactions produced by individuals as they interact
with their environment. The goal is to identify behavioral
patterns that pose insider threats. Leg et al. [27] proposed a
behavior profiling and anomaly detection model to identify
a consistent and acceptable pattern of users’ behavior. The
model analyzes the daily activity of a user and produces three
levels of alerts which are policy violations, threshold-based
anomalies, and deviation-based anomalies. Yessir et al. [17]
studied different sets of behaviors and their relation to insider
threats. In [17], the authors used eye movement and pupil
size responses to build a classification model to classify
both malicious and benign computer-based activities. The
model was developed and evaluated through a user study with
30 participants who were set to perform several scenarios of
malicious and benign activities. The authors reported an accu-
racy of 85% using the proposed behavioral model. In addi-
tion, they empirically showed that the feature-level fusion
of physiological and behavioral indicators yields at least a
10% improvement in classification accuracy. Jiang et al. [18]
proposed a deep learning-based approach using Graph Con-
volutional Networks (GCN) to detect anomalous behaviors
of users posing possible insider threats. The GCN model
was evaluated on the CMU CERT v4.2 dataset consisting
of 1000 users in a simulated network. The results showed a

108968 VOLUME 10, 2022

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

detection rate of 93% outperforming other machine learning
models.

Similar to the psychological-based approaches, the
behavioral-based approaches of insider threats detection
focus solely on the human elements. However, it over-
locks resources and other elements of the business environ-
ment. Our proposed approach complements this limitation
by considering the sensitivity and dynamics of organizational
resources.

D. CONTENT-BASED APPROACHES
This approach analyzes the content created by users to
construct an insider threat detection model, mostly using
machine learning and/or natural language processing tech-
niques. A major challenge facing this line of research is
the dearth of data arising from data protection legislation.
An early effort to promote and advance this type of research
was proposed byGlass et al. [4] to generate a synthetic textual
dataset free of privacy concerns associated with real data.
During the same period of time, Brown et al. [2] exploited the
co-relation between the words use and a set of psychological
and behavioral risk factors to develop a proactive insider
threat detection framework. The authors evaluated their work
on Enron emails, a real-world emails corpus. The evalua-
tion results indicated that the proposed approach successfully
identified insiders in about 66.7% of all cases. More recently,
Paxton et al. [3] proposed a natural language processing
framework to model incidents of insider attacks using written
and recorded notes of an incident. Despite many years of
research, the practical progress on this field is relatively
slow due to the lack of data and limitations of the underling
techniques.

IV. THREAT MODEL AND PROBLEM STATEMENT
The attacks from the inside of an organization are more
challenging to manage because of the privileges given to
insiders. In this work, we consider a threat model where
insiders present risks to sensitive data of an organization by
performing a set of actions. We assume that the actions have
the potential of affecting the integrity and availability of these
critical data. In addition, the actions vary across organizations
and are dependent on the data type or content. For example,
the action set may involve read, open, edit, delete, copy,
or create operations. We also assume that the motivation for
misuse of privileges may include the desire for illegal finan-
cial gains, promotion, political adversity, or satisfy curiosity.

To mitigate these risks, we present a defensive strategy
by incorporating a deception mechanism into attribute based
access control. As shown in Figure 2, we add the monitoring
unit, sensitivity estimator, and honey attribute generator to the
existing functional units of ABAC; PEP, PDP, PIP, and PAP.
The sensitivity estimator estimates objects’ sensitivities and
identify the sensitive objects to be considered as candidate
objects for deception purpose. The honey attribute generator
generates a set of honey attributes for the candidate objects
while the monitoring unit tracks the object’s activities. In the

FIGURE 2. The proposed insider threat detection framework: it integrates
the standard ABAC model with deception-related components.

process flow shown in Figure 3, the monitoring unit is inte-
grated to the PEP of ABAC. It analyses the access decision
from the PDP and tracks if honey attributes are used in access
request to detect the presence of potential insider. In the event
of detection of potential insider, we suggest that the system
may take any of two actions: deny access and sends an alarm
to the admin, or presents honey objects to the potential insider
and thereafter sends an alarm to the admin.

One potential use case is a hospital environment. After
successful login, all Nurses and Doctors are given permission
to create new patients’ health records. The sensitivity scores
of each health records’ attributes are estimated using the sen-
sitivity estimator according to equation 5. Next, we estimate
the overall sensitivity of health records using equation 7.
If the score value is greater than sensitivity score threshold,
the record will be regarded as candidate object. Thereafter,
the PDP determines if a particular nurse or doctor can access
patients’ health records by evaluating the subject’s attributes,
requested object’s attributes, environment’s attributes, access
policies, and requested operations/actions. The monitoring
unit evaluates the access decision and tracks the user’s oper-
ations. It detects the presence of potential insiders and takes
necessary actions thereafter.

V. THE PROPOSED APPROACH
We extend the standard ABAC model with deception-related
components to enable insider threat detection.We introduce a
Honey-Attribute-based Access Control framework for insider
threat detection. The proposed framework identifies attributes
with relatively high confidentiality or integrity requirements,

VOLUME 10, 2022 108969

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

referred to as sensitive attributes. It, then, produces honey
attributes to protect the sensitive attributes. If a subject uses a
honey attribute to access an object, the system recognizes it as
a potential insider attack and generates an alarm accordingly.
The remainder of this section presents the formal definition
of the extended ABAC system and its components.

A. BASIC COMPONENTS
1) BASIC ENTITIES

1) Subjects (U): set of users in an organization that place
requests to access objects or resources. Each subject u
is a member of the set U (u ∈ U).

2) Objects (OBS): set of protected resources such as data
records or files in an organization. Each object ob is a
member of the set OBS (ob ∈ OBS).

3) Sensitive Objects (SO): subset of resources, SO ⊆
OBS, such as a data record or a file of which the
accumulated sensitivity scores of its attributes (see
the definition of Sensitive Attributes in this section)
exceeds a predefined threshold. Each sensitive object
so is a member of the set SO (so ∈ SO)

4) Actions (A): set of operations applicable to an object
such as read, write, create, delete, update etc. Each
action a is a member of the set A (a ∈ A).

5) Rule (r): A logical combination of attributes, actions
and access decisions. A rule r defines an authorization
condition that has to be satisfied to execute an access
request. Each rule r is a member of the set R (r ∈ R).

6) Policies (P): set of rules. Each policy p is a member of
the set P (p ∈ P).

7) Decisions (D): set of access decisions produced by the
Policy set such that each decision d is a member of the
D set (d ∈ D).

2) ATTRIBUTES
1) Subject Attributes (UA): set of attributes applicable to

each user in an organization. Each user attribute ua is a
member of theUA set (ua ∈ UA) such that ua is a tuple,
where ua = (name : value).

2) Object Attributes (OA): set of attributes applicable to
each object in an organization. Each attribute oa is a
member of theOA set (oa ∈ OA) such that oa is a tuple,
where oa = (name : value).

3) Environment Attributes (EA): set of attributes that
indicate the current state of the system. Each attribute
ea is a member of the set EA (ea ∈ EA) such that ea is
a tuple: ea = (name : value)

4) Sensitive Attributes (SA): subset of objects attributes
with high confidentiality or integrity requirements
making them a potential target to insider attacks. The
set of sensitive attributes SA is defined as:
SA = {sa : sa ∈ OA ∧ Sensitivity(sa) ≥ K }.
Where Sensitivity is a function, discussed in
Subsection V-A3, to measure the sensitivity score of an

attribute andK is a predefined threshold. Each attribute
sa ∈ SA is a tuple: sa = (name : value)

5) Honey Attributes (HA): set of attributes generated for
each sensitive object as honey elements. Each attribute
ha is a member of the set HA (ha ∈ HA) such that ha is
a tuple: ha = (name : value)

3) FUNCTIONS
To support insider threat detection, we extend the standard
ABAC model with the following functions:
1) Sensitivity: Returns a real value indicating the sensi-

tivity of object’s attributes, as shown in the following:

Sensitivity : OA→ R (1)

The larger the value, the higher the sensitivity, i.e.
the confidentiality and integrity requirements of the
attribute.

2) HoneyAttribute: Produces honey attributes values
for the attributes of a sensitive object, as shown the
following:

HoneyAttributes : SO→ HA (2)

3) CheckHoneyAccess: Determines if a user activates
honey attributes by requesting an unauthorized access
to the corresponding candidate objects. Formally
defined as indicated in Equation 3

CheckHoneyAccess(ua, oa, ea, a)

=

{
True {if oa ∈ HA}
False {if oa /∈ HA}

(3)

As illustrated in Figure 2, the proposed framework con-
sists of, in addition to the core functional points of ABAC
model, a sensitivity assessment component, honey attributes
generation component, and monitoring components. These
three components work together to: (1) automatically iden-
tify sensitive objects having relatively high confidential-
ity or integrity requirements; (2) and protect them against
insider attacks using honey data. In the following subsections,
we discuss the details of each component.

B. MODULE 1: SENSITIVITY ASSESSMENT
The type of actions the users may exercise on an object
and the number of users authorized to perform the action
provide key insights on the sensitivity of the object and its
attributes. For instance, writable objects are more sensitive
than objects with only read access due to a higher risk of
integrity breaches. In addition, an object is likely to be more
sensitive if it is authorized to few users indicating high con-
fidentiality requirements. Further, the level of confidential-
ity and integrity implies uncertainty on existing information
regarding the object and its attributes. In other words, a con-
fidential object attribute is less predictable and hence more
uncertain. Similarly, write access exposes object attributes to
high uncertainty. Based on this reasoning, we use the Shan-
non information content measure ‘‘surprisal’’ [10], which

108970 VOLUME 10, 2022

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

measures the uncertainty in an event using its probability P
as defined in Equation 4, to quantify the sensitivity (or the
amount of surprise and uncertainty) in an attribute access.

IC = − log(P) (4)

Particularly, we compute the sensitivity of an attribute attr
by summing over the information content in each access
targeting attr to perform an action a as shown in Equation 5.

SObjattr = −
∑
a∈A

log(PObjattr) (5)

where the probability PObjattr is the probability of authorized
users targeting the object attribute Objattr with the action
a ∈ A, defined as follows.

PObjattr =
nObjattr
N

(6)

where nObjattr and N indicate the number of authorized and
the total number of users, respectively. Then, we compute
the sensitivity of an object as the Root Mean Square (RMS)
function of the sensitivity scores of its attributes as defined in
Equation 7

SObj =

√
1
n

∑
i

SObj attri (7)

where n is the number of attributes of an object and SObj attri
is the sensitivity score of the ith attribute of the object such
that i ≤ n. An SObj value greater than a sensitivity threshold
indicates a sensitive object. The threshold is calculated as
the RMS value of sensitivity scores of objects. The proposed
sensitivity assessment algorithm is shown in Algorithm 1.
We note that we applied the Root Mean Square (RMS) in
this algorithm due to its sensitivity to large values [12]. That
is, if the majority of the attributes of an object are of low
sensitivity scores and only a few with high values, then the
values indicating a sensitive object.

C. MODULE 2: HONEY ATTRIBUTE GENERATION
We use the genetic algorithm (GA) (see Subsection II-B) to
generate honey attributes values for each sensitive object.
A key property of a honey element is its indistinguishabil-
ity from the truth. Therefore, we optimize the algorithm to
produce honey values with a relatively random detection rate
as discussed in the following steps.

1) STEP 1: STARTING POPULATION
To seed the algorithm with an initial population, we use
existing attributes values. The values are categorized into
categorical or numerical. For categorical attributes, we tok-
enize1 each value into words that constitute individuals in
the population. Each individual is then encoded using word
embeddings. On the other hand, the numerical values are kept
unchanged and encoded as is. This step shown inAlgorithm 2,
lines 3-11.

1Tokenization is a process of breaking of splitting strings of text into
individual words or phrases [43].

Algorithm 1: Sensitivity Assessment
Input : an object Obj
Output: The sensitivity of the object Obj

1 Function getObjectSensitivity (Obj)
2 A = getAllActions()
3 N = countUsers()
4 AttributesSensitivity = List()
5 for Objattr ∈ Obj.attributes() do
6 AttProbabilities = List()
7 for a ∈ A do

// calculates the probability
of users targeting the
attribute Objattr to perform
action a ∈ A

8 PObjattr =
countAuthorizedUsers(a)

N
9 AttProbabilities.add(PObjattr)
10 end

// returns the sensitivity of
object attribute Obj attr

11 SObj attr = getEntropy(AttProbabilities)
AttributesSensitivity.add(SObj attr)

12 end
13 SObj = getRMS(AttributesSensitivity)
14 return SObj

2) STEP 2: EVALUATE THE FITNESS
The fitness value of each individual in the population is
calculated based on its semantic similarity to real attributes
values in the system. A group of individuals is then selected
as intermediate parents based on their fitness. In Algorithm 2
Lines 12-17, we define the getFitnessScore function to eval-
uate the fitness scores. The function takes pair of values of
which one is real and the other is GA-generated. It calculates
the semantic similarity between each pair using GLOVE
embedding2 and returns a value in the range of [0-1], where
0 indicates completely dissimilar while 1 indicates identical
pair. In general, individuals with high similarity to the truth
are more indistinguishable, and hence more fit as honey
values. However, to preserve the secrecy of the true values,
we omit identical or close-to identical individuals by reset-
ting their fitness to 0 when the similarity scores are higher
than 0.97. Note that we experimented with several random
threshold values and obtained the best results with a threshold
value of 0.97.

3) STEP 3: GENERATE A NEW POPULATION
This process goes through three sub-steps: parents selection,
crossover, and mutation. For the first generation, we ran-
domly select one parent from the real values and the other
from the initial population. For the subsequent generations,
one parent is selected from the resulting offspring and the

2Glove Embedding is an unsupervised learning algorithm used for gener-
ating words’ vector representations [34].

VOLUME 10, 2022 108971

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

Algorithm 2: Honey Attributes Generation
Input : an object Obj
Output: Honey Attributes of the object Obj

1 Function getHoneyAttributes(Obj)
2 HoneyAttributes(Obj) = List()

// generates the population of
attributes

3 Function getPopulation()
4 Population = List()

// categorical attributes
5 for Objattr ∈ Obj.attributes() do
6 Population.add(tokenize(Objattr))
7 end

// numerical attributes
8 for Objattr ∈ Obj.attributes() do
9 Population.addObjattr)
10 end
11 return Population

// estimates and returns fitness
score

12 Function getFitnessScore(var 1, var 2)
13 FitnessScore =

SemanticSimilarityScore(var1, var2)
14 FitnessScore =

SequenceMatcherScore(var1, var2)
// score to 0 if above 0.97 to

preserve secrecy
15 if Score > 0.97 then
16 Scorevar1,var2 = 0
17 end
18 return Score

// Perform cross over and mutation
of two parent words and returns
the offspring

19 Function Crossover()
20 for Objattr ∈ Obj.attributes() do
21 Objhattr = null, Score = 0
22 Pinit = random(Population)
23 C = UniformCrossover(Objattr ,Pinit)

// C is the Offspring
24 getMutation(C)
25 Scoreinit = getFitnessScore(C,Pinit)
26 while True do
27 P1 = C
28 P2 = select(Population) 3

getFitnessScore(P1,P2) > Scoreinit
29 C = UniformCrossover(P1,P2)
30 getMutation(C)
31 Scoreinit = Score
32 end
33 Objhattr = C
34 HoneyAttributes(Obj).add(Objhattr)
35 end
36 return HoneyAttributes(Obj)

other from the existing population using the roulette wheel
selection algorithm [41]. Then, we apply uniform crossover
operation to swap genes between the two selected parents,
and finally mutate some genes in the resulting offspring
to diversify the results [39]. For mutation, we design two
operations; one for alphanumeric attributes and the other for
categorical attributes. Our alphanumeric mutation involves
selecting a random point i in the interval of [0, N], where N
is the length of the crossover output. Then, it replaces the ith
character of the output with a random character of the same
data type of existing alphanumeric attribute. For categorical
attributes values, we use semantic word substitutions with
Glove [34] as a mutation operation. It is worth noting that we
empirically evaluated the mutations obtained with different
word vector representations, such as FastText [35],Word2Vec
[36], and BERT [42]. The results show that GloVe embed-
dings achieved more semantically related substitutions.

Step 4: Convergence: The algorithm iterates over the
selection, crossover, and mutation operations. It converges
when the similarity score of the honey attribute is equal
to or beyond a predefined threshold. In this work, we set
the threshold value to 0.6 to ensure that there is a level of
indistinguishability between the real and honey attributes.

Algorithm 3: Cyber Deception

1 A: Set of action combinations in the system
= {a1, a2,, an}

2 S: Set of Subjects in the system
3 Areq: Set of Access Request
4 Si: Set of Insiders = null
5 for req ∈ Areq do

6 Ad = (reqs ∈ S)
(reqa∈A)
−−−−−→ (reqo ∈ O)

// The system checks if the subject
is unauthorized to access the
object.

7 if Ad == ‘‘False′′ then
8 System Presents honey attributes

9 A′d = (reqs ∈ S)
(reqa∈A)
−−−−−→ (reqo ∈ O)

10 if (reqo ∈ C) and (A′d == ‘‘True′′) then
// System Presents dummy data

to the subject
11 Si = Si

⋃
s

// System sounds an alarm
12 end
13 end
14 end

D. MODULE 3: MONITORING
We integrate the monitoring module into the policy deci-
sion point (PDP) to achieve our goal of detecting poten-
tial insiders. Figure 3 illustrates the operation of this unit
along with other components in the system. As shown in the

108972 VOLUME 10, 2022

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

FIGURE 3. Process flowchart.

figure, the user must be authenticated before accessing the
system’s resources. Note that the authentication process is
beyond the purview of this paper. Once authenticated, the
monitoring workflow begins with the user submitting access
requests. For each request, the PDP evaluates the user’s and
resource’s attributes along with the requested action against
the stored policy to make one of three possible decisions:
(1) If the requesting user is authorized, the PDP returns
ALLOW decision. Consequently, the user is granted the right
to the submitted access request. (2) On the other hand, if the
user is unauthorized and the requested resource is deemed
sensitive, the PDP denies the access to the real resource and
presents the user with an object of honey attributes as bait.
The user is, then, monitored such that any attempt by the user
to access the denied resource as enticed by the honey attribute
indicates the presence of a potential insider. (3) Otherwise,
the access request is denied. Algorithm 3 illustrates the over-
all deception process.

VI. EXPERIMENTS AND EVALUATION
This section presents setups and experiments conducted to
assess the effectiveness of the proposed approach. Particu-
larly, we focused on the following questions:
• Q1: How is the performance of the sensitivity estimator
component (Module 1)?

• Q2: How is the performance of the honey attributes
generator component (Module 2)?

• Q3: What is the complexity overhead induced by
deception-related components?

A. DATASETS
Carrying out the experiments and answering our questions
require a dataset that consists of subject and object attributes,

subject and object attributes data (attributes values), and
ABAC rules. To the best of our knowledge, there is no pub-
licly available dataset with all of the required elements. For
reliable evaluation, we constructed a novel dataset by inte-
grating various real-world data/data resources in education
domain as discussed in the following.

1) SUBJECT AND OBJECTS DATA
We obtained the subjects and objects attributes data using the
California Basic Educational Data System (CBES) admin-
istrated by the Department of Education and released in
2018 [31]. The CBES provides publicly accessible datasets
about students, staff, schools performance, course enroll-
ments, . . . etc. In this work, we used the staff demographics
and staff-assignment datasets as the subjects’ data. The staff
demographics dataset has 364,759 subjects with 16 attributes,
while the staff assignment dataset has 1,269,836 unique
records with 13 attributes. We linked the two datasets
based on overlapping key attributes to generate one dataset
of 1,269,836 unique records and 23 attributes. In addi-
tion, we used the course enrollment data, which con-
tains 3,228,250 unique object records with 23 attributes,
for the object dataset. To reduce the execution time,
we performed a proportionate sampling from the resulting
datasets.

As a result, we obtained 5 samples in the ration of
1:2.5 with 30000 and 75000 randomly selected subjects
and objects of each sample. Using the sensitivity estima-
tor in Subsection V-B, we identified 51675 sensitive and
18325 non-sensitive objects in the objects dataset, in a total
of 75000 objects. Tables 2 and 3 describe the attributes of
subjects and objects, respectively.

2) ABAC RULES
To achieve the goal of having holistic and realistic data
for evaluation, we constructed the set of ABAC rules by
drawing some policies from various sources including, the
privacy of pupil records from the education code of the
State of California [49073 -49079.7] [32], the Administration
Assignment Manual of California Commission on Teacher
Credentialing [29], the Data guide of California Longitudinal
Pupil Achievement Data System (CALPADS) [30], and other
policy documents of different educational institutions. Next,
we reviewed the referenced sources to identify policies that
can be defined using the subjects’ and objects’ attributes,
discussed earlier. We note that some of our ABAC rules do
not explicitly follow the contents in the policy sources, but
rather we constructed the rules using those sources as guide
and in consistence with our subject and objects datasets We
identified 13 relevant policy sentences, and we defined them
as JSON-based ABAC rules. Each rule has three sections;
object attributes, subject attributes, and allowable actions.
For action attributes, we identified three major actions; open,
edit, and delete. We note that if any of the actions were not
explicitly mentioned in the policies, we mapped those actions
to open, edit, delete, or combination of two or all the actions.

VOLUME 10, 2022 108973

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

TABLE 2. Subject dataset.

TABLE 3. Objects dataset.

Our mappings are based on the assumption of possible
privileges the subject(s) can have over specific resource(s).
For example, we interpret ‘‘review’’ in rule 1 to open, edit,
and delete actions because we assumed that a review will
require an open action. Also, while reviewing, there may be
a need to edit or delete the object. The list below outlines the
rules:

1) Student Enrolment is reviewed by Administration staff
to ensure that it has been completed correctly.

2) Academic and nominated administrative staff will be
able to view and maintain student course enrolments.

3) An Admin can view, edit and delete the course enroll-
ment of a student from the same county.

4) An Admin can view, edit and delete the course enroll-
ment of a student from the same district.

5) A Teacher can view the record of students from the
same school if he has a tenured position.

6) A Teacher can view the record of students if he has a
tenured position and assigned the same course code as
the object.

7) A Teacher can view the record of students if he has a
tenured position and assigned the same class ID as the
object.

8) A Teacher can view the record of students from the
same school if he has a long term position.

9) A Teacher can view the record of students if he has a
long term position and assigned the same course code
as the object.

10) A Teacher can view the record of students if he has
a long position and assigned the same class ID as the
object.

108974 VOLUME 10, 2022

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

FIGURE 4. The distribution of sensitivity scores versus the probability of
authorized users for different access rights as calculated.

11) A Teacher can view the record of students from the
same school if he has a probationary position.

12) A Teacher can view the record of students if he has
a probationary position and assigned the same course
code as the object.

13) A Teacher can view the record of students if he has a
probationary position and assigned the same class ID
as the object.

B. IMPLEMENTATION
We implemented ABAC-related components of the proposed
framework using Py_ABAC,3 an open-source attribute-based
access control toolkit written in the Python programming
language. The toolkit gives a fine-grained control on the
definition of ABAC rules that restrict access to resources.
Then, we defined ABAC rules using a JSON-based Pol-
icy Language. We also used SQL along with SQLAlchemy
database extension to store users’ and objects’ attributes and
policies. In addition, we used Flask Python web application
framework; a lightweight WSGI web application framework
to an create access endpoint for users. To build the honey
attribute generator model, we used Python programming lan-
guage in Jupyter notebook environment. We note that we
run all the experiments on AMD Ryzen 5 2600 Six-Core
processor machine.

C. EVALUATION
To evaluate the performance of sensitivity estimator (Q1),
we used the subject and object datasets as discussed in
section VI-A. Intuitively, the higher the number of authorized

3https://py-abac.readthedocs.io/en/latest/

users, the less confidential the object is, and hence the less
the sensitivity. On the other hand, the higher the privilege,
the higher the risk, and hence the higher the sensitivity.
Therefore, we examined the effect of increasing the number
of authorized users on the sensitivity scores of a resource
attribute A. We also evaluated the change in the sensitivity
scores for various access right which are open, edit, and
delete. Access rights are granted to users in a hierarchi-
cal structure. For example, open access requires the least
privileges, while edit access requires higher privileges and
more trusted users. On the other hand, delete access requires
the highest privileges of all access rights as it may cause
some data/information to disappear. Note that, a user with
edit access implicitly has open access to the same resource.
Similarly, delete access indicates the user’s right to open and
edit the resource as well. Figure 4 shows the distribution
of sensitivity scores versus the normalized form of autho-
rized users for different access rights. Two observation can
be drawn from the figure: (1) Actions that require higher
privileges produces higher sensitivity scores. In our case, the
sensitivity scores of an attribute targeted with delete access
are higher than when targeted with edit access. And the scores
obtained in the case of edit access are higher than scores with
open access; (2) the higher the number of authorized users,
the lower the sensitivity. These observations go inline with
our initial intuition and suggest the effectiveness of using
information content as a measure of the sensitivity.

To address (Q2), we evaluated the performance of the
proposed honey attributes generator component with respect
to the indistinguishability between real and honey attributes.
To quantify the indistinguishability, we measured the seman-
tic similarity between pairs of honey and real values using
GLOVE embedding. In our experiments, we run the gener-
ator algorithm (See Algorithm 2) 5 times on 75000 samples
collected with random sampling technique from our object
dataset. We note that we experimented with various Glove
models and embedding dimensions to represent attributes
values. Table 4 shows the basic statistics of the resulting
similarity scores across 5 runs. The table shows that Glove
840B 300D have the highest mean, median, and standard
deviation. This indicates that the similarity scores with Glove
840B 300D are centered around the mean value and therefore
more effective. Based on this, we selected Glove 840B 300D
as the best model and used it to generate the honey attributes.
Table 5 shows examples of real and honey attribute values
as well as the similarity scores generated using Glove 840B
300D word embedding as explained in section V-C. Note that
we only show 5 values due to the space limit.

In addition, we carried out a pilot user study on a sample
of the generated values to examine their indistinguishability
from the truth. In the study, we compiled 20 real and honey
values of two attributes, namely ‘‘school name’’and ‘‘school
district’’. We captioned them as A and B. Then, we presented
the attributes to our three participants who were tasked to
rate the following statements on a scale of 1 to 10, where
10 indicates strongly agree:

VOLUME 10, 2022 108975

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

FIGURE 5. Survey results.

TABLE 4. Similarity of honey attributes.

TABLE 5. Real attributes, honey versions, and similarity scores.

• Only A could be a valid value for a ‘‘school name’’/
‘‘school district’’

• Only B could be a valid value for a ‘‘school name’’/
‘‘school district’’

• BothA and B could be valid values for a ‘‘school name’’/
‘‘school district’’

Figure 5a and 5b show ratings distributions by each par-
ticipant for the two attributes. The varying values of each
rating reveal that none of the participants could completely
distinguish the actual attributes from the honey versions. For
example, in figure 5a, participant 1 gave 90% agreement
that only A could be a valid value for a school name. Also,
participant 1 gave 80% agreement that both A and B could be

TABLE 6. Overhead of sensitivity estimator.

valid values for a school name. This reveals that the real and
honey attributes are indistinguishable.

To evaluate the complexity overhead induced by
deception-related components (Q3). Table 6 shows the
overhead added by the sensitivity estimator. The time com-
plexity increases as the number of subjects requesting access
grows because the access rule analyses every request from
the subjects.The honey attribute generator adds an overhead
of 2.08 seconds to generate one honey attribute using our
selected model, Glove 840B 300D. As expected, the over-
head increases as the number of attributes grows. Therefore,
we limit this process to the sensitive objects to reduce the
cumulative overhead to the system.

VII. DISCUSSION AND FUTURE DIRECTIONS
While the present study was carefully designed and imple-
mented, it is not without limitations. In particular, we did not
find any publicly available self-contained real-world dataset
to carry out our experiments. However, the data concern is
not unique to this problem, but rather is common to studies
in the field of cybersecurity. To address this issue, we gath-
ered elements of the required dataset from multiple real-
world resources to construct a realistic dataset. The time
complexity of the proposed approach is another potential lim-
itation. We observed that the execution time of our approach
increases as the number of objects‘ attributes grows because

108976 VOLUME 10, 2022

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

the sensitivity estimator analyzes each attribute separately.
Similarly, the execution time increases as the number of
subjects grows because the monitoring unit has more subjects
to check. Although these increases may not be regarded as
limitations, they may lead to scalability issues when used in
large organizations with very large numbers of subjects and
objects.

Our future work plan is focused on improving the pro-
posed work in several directions. First, we will work on
improving scalability of the proposed framework by devel-
oping more efficient components. Second, we will explore
additional approaches for generating the honey attributes.
One such approach would be utilizing Generative Adversarial
Networks (GANs) which have shown significant results in
a variety of domains. The GAN based approaches could
improve quality of the generated honey attributes and result
in better indistinguishability. Third, in a situation where the
insider is aware of the deception, moving target defense [45]
could provide another layer for defense. We will investi-
gate integrating moving target defense approaches into the
extended ABAC framework to increase the insider’s cost to
guess the actual attribute from the honey attribute values.
We also plan to conduct a comprehensive user study to empir-
ically understand users‘ behaviour while interacting with the
proposed system.

VIII. CONCLUSION
In this paper, we proposed an approach for detecting insider
threats by integrating cyber deception into standard Attribute-
based Access Control (ABAC) framework.We introduced the
notion of honey attributes to protect sensitive attributes in the
system as opposed to all the attributes to mitigate the over-
head.We extended the standardABACmodel with deception-
related components such as sensitivity estimation component,
honey attribute generator, and monitoring unit. We also pro-
posed an approach based on genetic algorithm to generate
honey attributes values. The findings of our implementation
and experimental results are manifold. First, the attributes
of objects in ABAC are not equally sensitive. Therefore,
the sensitivity estimator can successfully identify the highly
sensitive attributes. Second, the probability that insiders will
access an object through sensitive attributes is high. There-
fore, producing honey versions for sensitive attributes is more
effective. Third, actions that require higher privileges produce
higher sensitivity scores. Fourth, the higher the number of
authorized users, the lower the sensitivity. Fifth, the results
reveal that the genetic algorithm is a powerful technique for
producing honey attributes that are indistinguishable from
real attributes.

REFERENCES
[1] V. Hu, D. Ferraiolo, D. Kuhn, A. Schnitzer, K. Sandlin, R. K. Miller, and

K. Scarfone, ‘‘Guide to attribute based access control (ABAC) definition
and considerations,’’ Nat. Inst. Standards Technol. Special Publication,
vol. 800, pp. 1–54, Jan. 2014.

[2] C. R. Brown, A. Watkins, and F. L. Greitzer, ‘‘Predicting insider threat
risks through linguistic analysis of electronic communication,’’ in Proc.
46th Hawaii Int. Conf. Syst. Sci., Jan. 2013, pp. 1849–1858.

[3] K. Paxton-Fear, D. Hodges, and O. Buckley, ‘‘Understanding insider threat
attacks using natural language processing: Automatically mapping organic
narrative reports to existing insider threat frameworks,’’ in Proc. 2nd Int.
Conf. HCI Cybersecur., Privacy Trust (HCI-CPT), Held Part 22nd HCI Int.
Conf. HCII, Copenhagen, Denmark, Jul. 2020, pp. 619–636.

[4] J. Glasser and B. Lindauer, ‘‘Bridging the gap: A pragmatic approach to
generating insider threat data,’’ in Proc. IEEE Secur. Privacy Workshops,
May 2013, pp. 98–104.

[5] R. Chinchani, A. Iyer, H. Q. Ngo, and S. Upadhyaya, ‘‘Towards a theory
of insider threat assessment,’’ in Proc. Int. Conf. Dependable Syst. Netw.
(DSN), Jun. 2005, pp. 108–117.

[6] Securonix Securonix. (Apr. 2020). 2020 Insider Threat Report Securonix.
[Online]. Available: https://www.securonix.com/resources/2020-insider-
threat-report/

[7] C. Insiders. (Apr. 2020). 2020 Insider Threat Report Cybersecu-
rity Insiders. [Online]. Available: https://www.cybersecurity-insiders.
com/portfolio/2020-insider-threat-report-darktrace/

[8] T. E. Senator, H. G. Goldberg, A.Memory,W. T. Young, B. Rees, R. Pierce,
D. Huang, M. Reardon, D. A. Bader, E. Chow, and I. Essa, ‘‘Senator TE
detecting insider threats in a real corporate database of computer usage
activity,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, pp. 1393–1401 (2013), doi: 10.1145/2487575.2488213.

[9] A. Kim, J. Oh, J. Ryu, and K. Lee, ‘‘A review of insider threat detection
approaches with IoT perspective,’’ IEEE Access, vol. 8, pp. 78847–78867,
2020.

[10] T. D. Schneider, ‘‘Information content of individual genetic sequences,’’
J. Theor. Biol., vol. 189, no. 4, pp. 427–441, Dec. 1997.

[11] R. A. Alsowail and T. Al-Shehari, ‘‘Empirical detection techniques of
insider threat incidents,’’ IEEE Access, vol. 8, pp. 78385–78402, 2020.

[12] R. E. Deakin and D. G. Kildea, ‘‘A note on standard deviation and RMS,’’
Austral. Surveyor, vol. 44, no. 1, pp. 74–79, Jun. 1999.

[13] J. E. Tapiador and J. A. Clark, ‘‘Masquerade mimicry attack detection: A
randomised approach,’’ Comput. Secur., vol. 30, no. 5, pp. 297–310,
Jul. 2011. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404811000654

[14] F. L. Greitzer, L. J. Kangas, C. F. Noonan, A. C. Dalton, andR. E. Hohimer,
‘‘Identifying at-risk employees: Modeling psychosocial precursors of
potential insider threats,’’ in Proc. 45th Hawaii Int. Conf. Syst. Sci.,
Jan. 2012, pp. 2392–2401.

[15] Y. Hashem, H. Takabi, M. Ghasemigol, and R. Dantu, ‘‘Towards insider
threat detection using psychophysiological signals,’’ in Proc. 7th ACM
CCS Int. Workshop Manag. Insider Secur. Threats, Oct. 2015, pp. 71–74,
doi: 10.1145/2808783.2808792.

[16] O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil, R. Chow, E. Bart, and
N. Ducheneaut, ‘‘Proactive insider threat detection through graph learning
and psychological context,’’ in Proc. IEEE Symp. Secur. Privacy Work-
shops, May 2012, pp. 142–149.

[17] Y. Hashem, H. Takabi, R. Dantu, and R. Nielsen, ‘‘A multi-modal
neuro-physiological study of malicious insider threats,’’ in Proc. Int.
Workshop Manag. Insider Secur. Threats, Oct. 2017, pp. 33–44, doi:
10.1145/3139923.3139930.

[18] J. Jiang, J. Chen, T. Gu, K.-K.-R. Choo, C. Liu, M. Yu, W. Huang, and
P. Mohapatra, ‘‘Anomaly detection with graph convolutional networks for
insider threat and fraud detection,’’ in Proc. MILCOM IEEEMil. Commun.
Conf. (MILCOM), Nov. 2019, pp. 109–114.

[19] J. Yuill, M. Zappe, D. Denning, and F. Feer, ‘‘Honeyfiles: Deceptive files
for intrusion detection,’’ inProc. From 5th Annu. IEEE SMC Inf. Assurance
Workshop, Jun. 2004, pp. 116–122.

[20] B. Bowen, S. Hershkop, A. S. Keromytis, and S. J. Stolfo, ‘‘Baiting
inside attackers using decoy documents,’’ in Proc. Int. Conf. Secur. Privacy
Commun. Syst., 2009, pp. 51–70.

[21] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, ‘‘Towards systematic
honeytoken fingerprinting,’’ in Proc. 13th Int. Conf. Secur. Inf. Netw.,
Nov. 2020, pp. 1–5, doi: 10.1145/3433174.3433599.

[22] K. S. M. Moe and T. Win, ‘‘Enhanced honey encryption algorithm for
increasing message space against brute force attack,’’ in Proc. 15th Int.
Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol. (ECTI-
CON), Jul. 2018, pp. 86–89, doi: 10.1109/ECTICon.2018.8620050.

[23] P. Kaghazgaran and H. Takabi, ‘‘Toward an insider threat detection frame-
work using honey permissions,’’ J. Internet Serv. Inf. Secur., vol. 5,
pp. 19–36 Aug. 2015.

[24] A. Juels and R. L. Rivest, ‘‘Honeywords: Making password-cracking
detectable,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur. (CCS),
2013, pp. 145–160, doi: 10.1145/2508859.2516671.

VOLUME 10, 2022 108977

http://dx.doi.org/10.1145/2487575.2488213
http://dx.doi.org/10.1145/2808783.2808792
http://dx.doi.org/10.1145/3139923.3139930
http://dx.doi.org/10.1145/3433174.3433599
http://dx.doi.org/10.1109/ECTICon.2018.8620050
http://dx.doi.org/10.1145/2508859.2516671

M. Alohaly et al.: Integrating Cyber Deception Into ABAC for Insider Threat Detection

[25] N. Bhagat and B. Arora, ‘‘Intrusion detection using honeypots,’’ in
Proc. 5th Int. Conf. Parallel, Distrib. Grid Comput. (PDGC), Dec. 2018,
pp. 412–417.

[26] M. Bercovitch, M. Renford, L. Hasson, A. Shabtai, L. Rokach, and
Y. Elovici, ‘‘HoneyGen: An automated honeytokens generator,’’ in Proc.
IEEE Int. Conf. Intell. Secur. Informat., Jul. 2011, pp. 131–136.

[27] P. A. Legg, O. Buckley, M. Goldsmith, and S. Creese, ‘‘Automated insider
threat detection system using user and role-based profile assessment,’’
IEEE Syst. J., vol. 11, no. 2, pp. 503–512, Jun. 2015.

[28] D. Whitley, ‘‘A genetic algorithm tutorial,’’ Statist. Comput., vol. 4, no. 2,
pp. 65–85, 1998.

[29] (2021). Teacher Credentialing Assignment Unit, C. Administrator’s
Assignment Manual. [Online]. Available: https://www.ctc.
ca.gov/docs/default-source/credentials/manuals-
handbooks/administrator-assignment-manual.pdf

[30] (2020). Education, C. CALPADS Data Guide: A Guide for
Program Staff. [Online]. Available: https://documentation.calpads.
org/Support/docs/CALPADSDataGuide.docx

[31] (Nov. 2018). Education, C. Staff Assignment and Course Data. [Online].
Available: https://www.cde.ca.gov/ds/ad/filesassign.asp

[32] (Nov. 1976). Education, C. Education Code Privacy of Pupil Records.
[Online]. Available: https://leginfo.legislature.ca.gov/

[33] J. H. Holland, ‘‘Genetic algorithms,’’ Sci. Amer., vol. 267, no. 1,
pp. 66–73, 1992. [Online]. Available: https://www.jstor.org/stable/
24939139?seq=1#metadata_info_tab_contents

[34] J. Pennington, R. C. Socher, and C. D. Manning, ‘‘GloVe: Global
vectors for word representation,’’ in Proc. Empirical Methods Natu-
ral Lang. Process. (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[35] E. Grave, P. Bojanowski, P. Gupta, A. T. Joulin, and T. Mikolov, ‘‘Learning
word vectors for 157 languages,’’ in Proc. Int. Conf. Lang. Resour. Eval.
(LREC), 2018, pp. 1–5.

[36] Word2Vec. (2022). Accessed: Mar. 26, 2022. [Online].
Available: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-
science/word2vec.html

[37] J. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis With Applications to Biology, Control, and Artificial Intelligence.
Cambridge, MA, USA: MIT Press, 1992.

[38] G. Ancora, G. Palli, and C. Melchiorri, ‘‘A hybrid genetic algorithm for
pallet loading in real-world applications,’’ IFAC-PapersOnLine, vol. 53,
no. 2, pp. 10006–10010, 2020.

[39] E. Semenkin and M. Semenkina, ‘‘Self-configuring genetic programming
algorithm with modified uniform crossover,’’ in Proc. IEEE Congr. Evol.
Comput., Jun. 2012, pp. 1–6.

[40] X. B. Hu and E. D. Paolo, ‘‘An efficient genetic algorithm with uniform
crossover for the multi-objective airport gate assignment problem,’’ in
Proc. IEEE Congr. Evol. Comput., Sep. 2007, pp. 55–62.

[41] M. T. Ahvanooey, Q. Li, M. Wu, and S. Wang, ‘‘A survey of genetic
programming and its applications,’’ KSII Trans. Internet Inf. Syst., vol. 13,
no. 4, pp. 1765–1793, Apr. 2019.

[42] J. Devlin, M. Chang, K. K. Lee, and T. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
NAACL. 2019, pp. 1–16.

[43] Tokenization. Accessed: Apr. 4, 2022. [Online]. Available:
https://www.techopedia.com/definition/13698/tokenization

[44] H. Li, Y. Guo, S. Huo, H. Hu, and P. Sun, ‘‘Defensive deception frame-
work against reconnaissance attacks in the cloud with deep reinforcement
learning,’’ Sci. China Inf. Sci., vol. 65, no. 7, pp. 1–19, Jul. 2022.

[45] S. Jajodia, A. Ghosh, V. Swarup, C. X.Wang, and X. S.Wang,Moving Tar-
get Defense: Creating Asymmetric Uncertainty for Cyber Threats. Cham,
Switzerland: Springer, 2011.

[46] Y. Hashem, H. Takabi, M. R. GhasemiGol, and R. Dantu, ‘‘Inside the
mind of the insider: Towards insider threat detection using psychophysi-
ological signals,’’ J. Internet Services Inf. Secur. (JISIS), vol. 6, pp. 20–36,
Feb. 2016.

MANAR ALOHALY received the Ph.D. degree
from the University of North Texas, Denton,
TX, USA, in 2020. She is currently an Assis-
tant Professor in cybersecurity at Princess Nourah
Bint Abdulrahman University (PNU), Riyadh,
Saudi Arabia, where she is also the Director
of the Innovation Center, College of Computer
and Information Sciences. Her research interests
include access control, usable privacy and security,
cyber deception, insider threat detection, applied

machine learning, and natural language processing on security-related topics.
She is a member of the technical program committee for several inter-
national conferences. She is also a member of the Information Security
Association-Hemaya.

OLUSESI BALOGUN (Student Member, IEEE)
received the B.S. degree in computer engineer-
ing from Obafemi Awolowo University, Nigeria,
in 2014. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Georgia State University, Atlanta, Georgia, USA.
He works as a Research Assistant under the super-
vision of Dr. Daniel Takabi at the Information
Security and Privacy: Interdisciplinary Research
and Education Center, which is designated as the

National Center of Academic Excellence in Cyber Defense Research. His
research interests include insider threat detection, moving target defense,
access control models, and security and privacy in cyber-physical systems
(CPS). He also works as a Teaching Fellow at the Department of Computer
Science, Georgia State University, Atlanta, Georgia, USA. He is a Student
Member of ACM. He received the National Diploma (ND) Certificate in
computer engineering from The Federal Polytechnic, Ilaro, Nigeria, in 2008.

DANIEL TAKABI (Member, IEEE) received the
Ph.D. degree from the University of Pittsburgh,
Pittsburgh, PA, USA, in 2013. He is currently an
Associate Professor in computer science and the
Next Generation Scholar with Georgia State Uni-
versity, Atlanta, GA, USA. He is also the Founding
Director of the Information Security and Privacy:
Interdisciplinary Research and Education Center,
which is designated as the National Center of
Academic Excellence in Cyber Defense Research.

His research interests include various aspects of cybersecurity and privacy,
including privacy-preserving machine learning, adversarial machine learn-
ing, advanced access control models, insider threats, and usable security and
privacy.

108978 VOLUME 10, 2022

