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ABSTRACT In this paper a pure-attention bottom-up approach, called ViGAT, that utilizes an object detector
together with a Vision Transformer (ViT) backbone network to derive object and frame features, and a head
network to process these features for the task of event recognition and explanation in video, is proposed.
The ViGAT head consists of graph attention network (GAT) blocks factorized along the spatial and temporal
dimensions in order to capture effectively both local and long-term dependencies between objects or frames.
Moreover, using the weighted in-degrees (WiDs) derived from the adjacency matrices at the various GAT
blocks, we show that the proposed architecture can identify the most salient objects and frames that
explain the decision of the network. A comprehensive evaluation study is performed, demonstrating that the
proposed approach provides state-of-the-art results on three large, publicly available video datasets (FCVID,
MiniKinetics, ActivityNet). Source code is made publicly available at: https://github.com/bmezaris/ViGAT

INDEX TERMS Video event recognition, eXplainable AI (XAI), graph attention network, factorized
attention, bottom-up.

I. INTRODUCTION
Due to the explosion in the creation and use of video data
in many sectors, such as entertainment and social media,
to name a few, there is a great demand for analyzing
and understanding video content automatically. Towards this
direction, the recognition of high-level events and actions in
unconstrained videos plays a crucial role for improving the
quality of provided services in various applications, e.g. [1],
[2], [3], [4], [5], [6], and [7].

The introduction of deep learning approaches has offered
major performance leaps in video event recognition [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14]. Most of these
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methods operate in a top-down fashion [6], [7], [10], [11],
[12], [13], [14], i.e. they utilize a network architecture to
directly extract patch-, frame- or snippet-level features; and,
through an appropriate loss function (e.g cross-entropy),
exploit the class labels to learn implicitly the video regions
that are mostly related with the specified action or event.
For instance, state-of-the-art Transformers [10], [12], [14]
segment image frames using a uniform grid to produce a
sequence of patches, as shown in the first row of Fig. 1.
A similar image partitioning is also imposed implicitly by
convolutional neural networks (CNNs), where the patch size
is determined by the CNN’s receptive field [10]. This ‘‘patchi-
fying’’ is context-agnostic and usually only a small fraction
of the patches contains useful information about the under-
lying event. During the supervised learning procedure the
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FIGURE 1. Illustration of how top-down (1st row) and bottom-up (2nd
row) approaches learn to focus on the salient frame regions, using a
video labelled as ‘‘Walking the dog’’ event. Top-down approaches
explicitly (e.g. Transformers) or implicitly (e.g. CNNs) ‘‘patchify’’ each
frame to generate patch proposals in a context-agnostic way; the video
labels are then used to train the network so that it learns to focus on the
patches mostly related with the event (e.g. the 32 blue patches in this
example) while ignoring the rest of them (the red patches). Instead, the
proposed bottom-up approach supports the classifier by providing the
main objects depicted in the frames. Such an approach can also facilitate
the generation of object- and frame-based explanations about the event
recognition outcome. An example of this is shown in the second row of
the figure.

Transformer or CNN learns to disregard patches irrelevant
to the target event, while extracting and synthesizing infor-
mation from the patches that are related to the target event.
Considering that the real action or event may be occurring in
only a small spatiotemporal region of the video, this proce-
dure is expensive; it is also suboptimal to start by treating all
image patches equally, as a large amount of them is irrelevant
and does not need to be thoroughly analyzed [15], [16], [17],
[18], [19].

Studies in cognitive science suggest that humans inter-
pret complex scenes by selecting a subset of the available
sensory information in a bottom-up manner, most probably
in order to reduce the complexity of scene analysis [16],
[20], [21]. It has also been shown that the same brain area
is activated for processing object and action information for
recognizing actions [22], [23]. Finally, psychological studies
suggest that events may be organized around object/action
units encoding their relations, and that this structural infor-
mation plays a significant role in the perception of events by
humans [24], [25], [26].

Motivated by cognitive and psychological studies as
described above, recent bottom-up action and event recog-
nition approaches [5], [9] represent a video frame using
not only features extracted from the entire frame but also
features representing the main objects of the frame. More
specifically, they utilize an object detector to derive a set of
objects depicting semantically coherent regions of the video
frames, a backbone network to derive a feature representation
of these objects, and an attention mechanism combined with
a graph neural network (GNN) to classify the video. In this
way, the classifier is supported to process in much finer
detail the main video regions that are expected to contain
important information about the underlying event [15]. The
experimental evaluation in these works has shown that the

bottom-up features constitute strong indicators of the under-
lying events and are complementary to the features extracted
from the entire frames. More specifically, in [9], an I3D
video backbone model is applied to extract spatiotemporal
features, object proposals are generated using RoIAlign [27],
an attention mechanism [28] is used to construct the adja-
cency matrix of the spatiotemporal graph whose nodes are
the object proposals, and a GNN is used to perform reasoning
on the graph. However, the use of 3D convolutions in the
above work to represent the video may not be adequate for
describing actions or events that require long-term temporal
reasoning, as for instance is explained in [10], [11], [12], [16],
[29], [30], and [14]. Moreover, a large graph is constructed
that captures the spatiotemporal evolution of the objects along
the overall video, which imposes strict limitations in terms of
memory requirements and also makes it difficult to sample a
larger number of frames to improve recognition performance
(see [12]: Fig. 7 and the related ablation study concerning
the effect of the number of frames in the action recognition
performance). In [5], the 3D-CNNbackbone of [9] is replaced
by a 2D-CNN (i.e. ResNet [31]), and an attention mecha-
nism [32] with a GNN are used to encode the bottom-up spa-
tial information at each frame only; the sequence of feature
vectors is then processed by an LSTM [33] to classify the
video. Therefore, in contrast to [9], the above architecture
factorizes the processing of the video along the spatial and
temporal dimension, thus, effectively removing the memory
restrictions imposed in [9] by the use of expensive 3D-CNN
and the construction of the large spatiotemporal attention
matrix. Moreover, the authors in [5] make a first attempt at
exploiting the weighted in-degrees (WiDs) of the graph con-
volutional network’s (GCN’s) adjacency matrix to propose
eXplainable AI (XAI) criteria and provide object-level (i.e.,
spatial) explanations concerning the recognized event [5].
However, despite the fact that this architecture can process
long sequences of video frames, it is well known that the
LSTM struggles to model long-term temporal dependen-
cies [10], [11], [12], [14], [16], [29], [30]. Additionally, only
qualitative results of ObjectGraphs’ explanation approach are
presented in [5].

Recently, pure-attention top-down approaches, i.e. meth-
ods that aggregate spatiotemporal information via stack-
ing attention for modelling more effectively the long-term
dependencies in videos, have achieved superior video action
recognition [10], [11], [12], [16], [29], [30] or activity antici-
pation [14] performance over previous methods that use CNN
or LSTM layers in their processing pipeline. In this work,
inspired by the above findings and building on the bottom-up
approach of [5], we replace the hybrid GNN-LSTM head
of [5] with a graph attention network-based (GAT-based)
head network to process both the spatial (object) features as
well as the sequence of features derived from the multiple
frames. Our resulting head network, called hereafter ViGAT
head, utilizes attention along both the spatial and temporal
dimensions to process the features extracted from the video.
Moreover, we use the Vision Transformer (ViT) as backbone
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(instead of a ResNet backbone, used in [5]) to derive a feature
representation of both the frames and the detected objects.
Therefore, in our work attention is factorized along three
dimensions, i.e., i) spatially among patches within each object
(by using ViT), ii) among objects within each frame, and iii)
temporally along the video. Thus, in overall, due to the use of
the ViT backbone (instead of a ResNet one) and the employ-
ment of a fully-attention head (instead of a hybrid attention-
LSTMone), the proposedViGAT can extract much richer fea-
tures and model more effectively the long-term dependencies
of video events in comparison to ObjectGraphs [5]. Addition-
ally, in contrast to [5], which learns an adjacency matrix with
respect to the objects at individual frames, and can thus derive
only object-based explanations, we also derive an adjacency
matrix along the temporal dimension, i.e. with respect to indi-
vidual frames. Thus, the WiDs calculated from the different
learned adjacency matrices in the ViGAT head (i.e. along
the spatial and temporal dimensions) facilitate the derivation
of multilevel explanations regarding the event recognition
result, i.e., the extraction of not only the salient objects
but also of the most salient frames explaining the model’s
outcome. We should also note that despite the fact that the
extraction of bottom-up (object) information increases the
computational complexity of the proposed approach, during
training this is only done once using the pretrained object
detector and ViT backbone; thus, compared to the majority of
other methods, which typically train the employed backbone
end-to-end along with the rest of their components, ViGAT
has a significantly lower training complexity. Finally, fol-
lowing other works in the literature [34], [35], [36], we also
explore the weight-tying of the individual GAT blocks in
the ViGAT head of the proposed model to further reduce its
memory footprint. Extensive experiments demonstrate that
the proposed approach provides state-of-the-art performance
on three popular datasets, namely, FCVID [37], MiniKinet-
ics [38], and ActivityNet [39]. Summarizing, our main con-
tributions are the following:

• We propose the first, to the best of our knowledge,
bottom-up pure-attention approach for video event
recognition. A ViT backbone derives feature representa-
tions of the objects and frames, obtaining rich bottom-up
information about the video scenes; and, an attention-
based network head (called ViGAT head) is factorized
along the spatial and temporal dimensions in order to
identify the most interesting scene parts and thus cap-
ture effectively the long-term dependencies of events in
video.

• We contribute to the field of explainable AI by
demonstrating how to exploit the WiDs of the adja-
cency matrices at the various levels of the ViGAT
head in order to derive explanations along the spatial
and temporal dimensions for the event recognition
outcome; and, by successfully adapting popular XAI
measures from the image recognition domain, being
the first to quantitatively document the goodness

of temporal (frame) explanations for video event
recognition.

The structure of the paper is the following: Section II presents
the related work. The proposed method is described in
Section III. Experimental results are provided in Section IV
and conclusions are drawn in Section V.

II. RELATED WORK
A. VIDEO EVENT AND ACTION RECOGNITION
In this section, a survey of deep-learning-based video event
and action recognition approaches is presented. For a broader
literature survey on this topic the interested reader is referred
to [40] and [41].

1) TOP-DOWN APPROACHES
The majority of event and action recognition approaches are
top-down. We further categorize these methods according to
their design choices in relation to feature extraction.

a: CONVOLUTIONAL 2D
These approaches utilize architectures with 2D convolutional
kernels to extract features at frame-level. In [42], a two-
stream network is proposed that utilizes a spatial and a tem-
poral branch to process independently RGB and optical flow
frames. This architecture can utilize deep CNNs pretrained
on large-scale datasets, but can only operate on single frames
and is computationally expensive due to performing dense
video sampling. TSN [43] extends the above work extracting
sparsely sampled snippets, i.e. dividing the video to a few
segments of equal length and selecting randomly one frame
from each segment, yielding a significantly lower compu-
tational cost. The above techniques operate on frame-level
to derive a classification score; then, simple late fusion,
i.e. average pooling of these scores, is applied to classify
the video. Average pooling, however, ignores the temporal
ordering and other higher-order rich statistical information
which is useful for capturing complex dynamics of actions
in video. To go beyond late fusion, in [44], a factorized bilin-
ear operator is incorporated into the network’s convolutional
layers to capture pairwise interactions among CNN features
of adjacent frames and utilize more effectively the temporal
relations across frames. In [30], the non-local module [29]
(which is a kind of self-attention mechanism for modeling
the correlation between spatial positions in feature maps)
is generalized to model the interactions between positions
across channels in ResNet backbones, resulting in a modi-
fied backbone that captures more effectively the long-term
dynamics of actions in videos. In [45], a new attentive
polling mechanism is integrated in various CNN backbone
networks to combine frame-level action recognition scores.
In [46], VLAD pooling [47] that has shown state-of-the-art
performance in combining hand-crafted features, is utilized
to aggregate the features derived from the temporal and
spatial CNN-based streams. In [48], ActionVLAD derives a
global feature descriptor for the entire video, using learnable
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pooling (NetVLAD [49]) aggregating both appearance and
temporal information along the video. In contrast to the above
works, where the exact temporal ordering of the descriptors
is ignored, spatiotemporal VLAD (ST-VLAD) [50] refor-
mulates the VLAD optimization problem using Lagrange
multipliers to impose the minimization of the difference
between the VLAD descriptors corresponding to neighboring
frames. As a result, the derived VLAD descriptors of the
video signal vary smoothly along the temporal dimension.
Similarly, in [51], a 2D descriptor, called VideoMap, which
is a row-wise layout of the per-frame vectorized CNN’s fea-
tures, is learned, for action classification. Several works have
also used recurrent neural networks to process the extracted
CNN time series features. In [52], a pretrained ResNet is used
to derive a feature representation for each frame and an LSTM
to process the temporal information. In [3], a 2D-CNN and
LSTM are used to process the spatiotemporal video infor-
mation, and in addition, shot boundary detection is applied
to segment and predict multiple actions occurring in a video.
PivotCorrNN [53] introduces contextual gated recurrent units
(cGRUs) to exploit time-varying information among differ-
ent modalities (MFCC, IDT, etc.). Although many of the
above approaches utilize rather sparsely sampled frames, the
extraction of a feature representation for each sampled frame
using a rather deep CNN is still a computationally expensive
process.

In response to the above drawback, techniques that use
reinforcement learning and/or a gating network in order
to further reduce the number of video frames being pro-
cessed have also emerged. In [54], AdaFrame exploits a
policy gradient method to select future frames for faster
and more accurate video predictions. In [55], a frame sam-
pling strategy is learned using multi-agent reinforcement
learning (MARL). In [56], instead of a complex reinforce-
ment learning policy network, ListenToLook introduces the
audio-modality to build a video skimming mechanism for
selecting the most salient clips for the recognition task.
The above approaches utilize a fixed size network (i.e. with
fixed memory footprint) irrespectively of video’s complexity.
In contrast, LiteEval [57] determines dynamically the frame
resolution and utilizes a coarse- and a fine-LSTM cooper-
ating through a binary gating module that decides whether
additional high-resolution frames are necessary, thus leverag-
ing network capacity dynamically. Furthermore, the adaptive
resolution network (AR-Net) [7], instead of an expensive
reinforcement learning mechanism or an additional audio
modality, utilizes a lightweight policy network that learns to
compute the optimal frame resolution on-the-fly, allowing the
recognition of multiple video actions efficiently. Contrarily
to the above, AdaFocus [58] utilizes a reinforcement learning
policy network to leverage spatial redundancy, i.e., selects the
most salient regions in the video frames with respect to the
action recognition task. In [19], AdaFocusV2 extends [58]
by replacing reinforcement learning with a differentiable
interpolation-based patch selection operation, enabling effi-
cient end-to-end optimization. The above methods operate on

untrimmed videos (i.e., videos that contain many irrelevant
frames to the underlying action), where it is much easier to
identify and discard less-significant image regions or entire
frames. In [59], differently from the above methods, the
so-called SMART approach leverages a multi-frame attention
and relation network to select the most informative frames
in short trimmed videos. In another line of research in the
efficient video recognition paradigm, in [2], a low-cost CNN
implemented in an embedded platform is used for violence
recognition in video.

Regardless of whether the emphasis is on exploiting tem-
poral and other statistical information or on improving effi-
ciency, none of the top-down methods discussed in this
section extracts and uses representations at a finer-than-frame
level (e.g. for individual objects within a frame).

b: CONVOLUTIONAL 3D.
This category includes approaches with 3D convolutional
kernels in the network architectures, operating at clip- or
entire-video level. C3D+LSVM [60] is one of the first works
demonstrating that 3D convolutional kernels constitute a
good descriptor for action recognition in video. In [61], a two
stream architecture called I3D, which combines an optical
flow and a 3D-CNN stream, is introduced. Additionally,
[61] describes how to leverage discriminant information from
2D-CNNs trained on ImageNet; it also shows that, when
pretrained on a large-scale dataset (e.g. Kinetics), I3D pro-
vides recognition performance that is competitive to 2D-CNN
approaches. Both optical flow and 3D-CNN have high com-
putational cost, limiting the applicability of the above two
stream architectures in real-world applications [38]. In order
to reduce the computational overhead of the optical flow
computation, [62] employs a distillation approach during
training to ingest optical flow stream information to a stu-
dent network that operates on RGB frames. Most works
described above utilize relatively shallow networks, restrict-
ing the capacity of the networks for adequately learning a
large number of complex video actions. In [63], ResNet-like
3D-CNN architectures of various depths are examined, with
the authors concluding that carefully designed 3D-CNNs of
large depth can improve the recognition performance when
trained on large-scale datasets. However, even when trained
on large-scale datasets such heavy architectures can still
suffer from overfitting. To mitigate this problem, in [64],
a multiplicative regularization approach, called randommean
scaling, perturbs the low-frequency components of feature
maps, effectively alleviating overfitting in deep 3D-ResNet
architectures. Similarly, in [16], a bilinear attentional mech-
anism (i.e. a bilinear matrix multiplication operator with
learnable weights) is introduced between network layers,
extending the idea of non-local operators for 2D-CNNs [29]
to the 3D-CNNs paradigm; via directly connecting all loca-
tions of input feature maps, it is shown that this mecha-
nism can capture the long-range spatiotemporal dynamics
of video actions. In SlowFast [65], a low- and a high-frame
rate pathway, consisting of different-depth 3D-ResNets, are
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used to capture the spatial frame information and rapidly
changingmotion, respectively. In [66], a 3D-CNN is first used
to produce a feature representation for each video segment,
which are then processed using an attention network with
fast and slow pathways. In [67], 3D-CNN architectures are
build using a temporal one-shot aggregation module to cap-
ture multiple temporal receptive fields, and depth-wise spa-
tiotemporal factorized components for modeling short- and
long-termmotion dynamics. In [68], a local and global branch
are utilized using asymmetric convolution and two paralleled
1D-like convolutional blocks, to extract semantic and tempo-
ral action information, respectively; moreover, a supervised
and self-supervised loss are combined to ingest information
from labelled and unlabelled videos, respectively. Contrarily
to the abovemethods that leveragemulti-scale spatiotemporal
information, in [69] a dynamic equilibriummodule is inserted
into a 3D-CNN backbone to directly suppress the influence of
spatiotemporal variations of actions in video. In another line
of research, in [70], a self-knowledge distillation approach is
used to boost the performance of baseline 3D-CNN models
(3D ResNet-18 and -50) for the task of action recognition.

Further to the above, several works also investigated how
to reduce the high computational cost of using 3D-CNNs.
In [71], separable 3D-CNNs are introduced, factorizing the
3D convolutional filters to a 2D spatial and a 1D temporal
convolutional component, allowing faster processing of video
sequences. In [38], the above work is further extended adding
a feature gating mechanism, which is a simple self-attention
operation. In [72], a differentiable similarity guided sam-
pling module is introduced in the architecture of 3D-CNNs
that measures the similarity of temporal feature maps and
adaptively adjusts the temporal resolution. In [1], an effi-
cient architecture is proposed, consisting of a 2D-CNN and
two lightweight 1D-CNN-based branches to capture spatial
information, short- and long-term motion dynamics, respec-
tively, and a 3D-CNN feature enhancement module to obtain
more fine-grained spatial and temporal cues. This architec-
ture is much more efficient from SlowFast, which uses two
3D-ResNets in its branches. SCSampler [73] extracts C3D
features and as in [56] for 2D-CNNs, the audio-modality is
exploited to build a lightweight saliency model that selects
short temporal clips within a long video that represent well
the latter. In another direction, a multigrid approach is pro-
posed in [74], to derive variable mini-batch shapes (i.e.
number of videos, frames and spatial resolution) during train-
ing, accelerating the training procedure and improving the
generalization performance of 3D-CNNs. In [75], similarly to
EfficientNet [76], the X3D family of networks progressively
expands a base network along different network dimensions
(spatiotemporal resolution, frame rate, etc.) to derive power-
ful and efficient models. In [17], Ada3D, trains a two-head
network to learn frame and convolutional layer activation
policies conditioned on the input video clip, thus reducing
the computational cost of 3D-CNNmodels. In [6], FrameExit
utilizes X3D [75] for feature representation and applies a
conditional early exiting to further improve the efficiency of

the backbone network, i.e., stops processing video frames
when a sufficiently confident decision is reached.

In general, despite efforts to reduce the computational cost
of using 3D-CNNs, such approaches typically continue to be
much more expensive in terms of computational complexity
and power consumption in comparison to their 2D-CNN
counterparts.

c: TRANSFORMERS
Convolutional or recurrent-based operations can only process
a local neighborhood of the video in space and time; in
order to model long-range dependencies, deep CNN or RNN
architectures are utilized that stack several layers implement-
ing the above operations, effectively extending the recep-
tive field of the overall network. However, the repetition
of such local operations is computationally inefficient and
causes optimization difficulties [16], [29], [77]. In con-
trast, Transformers utilize global self-attention to obtain
a larger receptive field, thus, capturing more effectively
the long-term dependencies in action videos [77]. In [78],
inspired from the success of Transformers in natural language
processing, the so-called vision transformer (ViT) was
introduced outperforming convolutional-based approaches
in popular image recognition benchmarks. Subsequently,
several attention-based architectures were also introduced
concurrently for modeling the spatiotemporal contextual
information of actions in videos [10], [11], [12], [13], [14].
TimeSformer [11] applies temporal and spatial attention,
demonstrating that in comparison to 3D convolutional net-
works the attention-based architecture is faster and can
be applied to much longer video clips. Similarly, Video
ViT (ViViT) [12] factorizes attention to spatial and tempo-
ral dimensions to efficiently process long video sequences
and proposes effective training strategies for ViViT by
ablating different tokenization and regularization methods.
The spatiotemporal separable-attention video Transformer
(VidTr) [10] performs spatial and temporal attention sepa-
rately and utilizes a deviation-based topK pooling operator
to focus on the most representative frames of the video
sequence. In [13], similarly to SlowFast [65], andX3D [75] in
the 3D convolutional paradigm, multiscale ViT (MViT) intro-
duces several channel resolution scale stages into transformer
models.

A common characteristic of all the above transformer-based
approaches is that they rely on a context-agnostic extraction
of a multitude of image patches, using a uniform grid, in order
to learn the video actions; they do not take advantage of the
inherent object-based composition of a visual scene and of
the varying importance of specific objects for recognizing an
event.

2) BOTTOM-UP APPROACHES
The methods described so far are top-down, i.e. entire
frames or context-agnostic image patches corresponding to
equally-sized receptive fields are processed along with the
action class label of the video, to train a neural network to
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learn attending on the input frames or patches thereof that are
related to the underlying action class. Contrarily, bottom-up
approaches utilize a more human-like mechanism to select a
subset of the visual stimuli corresponding to salient image
regions [20], [21]. These methods typically use an object
detector to provide bottom-up information for training an
event classifier [5], [8], [9], [26], [79], [80]. For instance,
in [80], a person detector (Faster R-CNN), a long-term feature
bank and a 3D-CNN applied on short video segments, are
used to provide long-term supportive information for action
recognition. In [81] scene- and object-class pseudo-labels are
derived for each video using pretrained networks (ResNet-50)
on place365 and MS-COCO datasets respectively; a multi-
scale deformable 3D convolutional network and actor-object-
scene attentionmodel are then used for action recognition and
factorization of actions into an actor, co-occurring objects,
and scene cues. In [26], the Action Genome dataset is intro-
duced, containing videos manually annotated with events,
objects and their relationships, i.e., rich bottom-up informa-
tion is provided, contrarily to [81] where the objects are
annotated at video clip level. This dataset is used to learn a
spatiotemporal scene graph feature-bank for action recogni-
tion; during inference the Faster R-CNN and RelDN [82] are
used to extract objects and visual relationships for building
the spatiotemporal graph. Since video object annotation is a
labor-intensive and time consuming process, in [8], in con-
trast to [26] where object annotations are provided in the
training set, a region proposal network (R-FCN [83]) and
KLT trackers [84] are used to derive and track video objects,
and build a semantic graph for each frame; subsequently,
a hierarchical RNN is used to process the graph information
and recognize group actions in video. Instead of bounding
boxes, semantic segmentation masks are extracted in [79]
using RefineNet-152; this bottom-up information is com-
bined with optical flow features derived using FlowNet2 in
a two-stream architecture for the task of short-term action
recognition. In [9], features extracted using a 3D-ResNet
backbone with an object detector (RoIAllign [27]), are used
to train an attention-based GNN, which in comparison to
RNNs or dense classification heads used above can learn
more effectively the long-term dependencies of video actions.
In [5], object features are extracted at frame-level using an
object detector with 2D-ResNet; these features are then used
by a network head, composed of an attention mechanism,
a GNN and an LSTM, factorizing the spatial and temporal
dimension. In comparison to [9], the above work factorizes
the spatial and temporal dimension, allowing the efficient
processing of long video signals. Moreover, weighted in-
degrees (WiDs) derived from the graphs’ adjacency matrix
are utilized to identify the most salient objects in the video
that can explain the event recognition result. Despite the
considerable performance gains obtained by [9] and [5], the
use of 3D-CNN [9] or LSTM [5] may not be adequate to fully
capture the long-term dynamics of actions or events in video,
as explained in [10], [11], [12], and [14].

In this work, to benefit from bottom-up video information
while mitigating the above limitations, we propose a pure-
attention bottom-up model utilizing an attention head net-
work factorized along the spatial and temporal dimensions.
Additionally, using the temporal GAT components of our
model, we are able to derive not only explanations at spatial
level (i.e. objects, as in [5]) but also at temporal level (i.e.
frames). Furthermore, we explore the possibility of tying
the weights of the various GAT blocks to further reduce the
memory footprint of the model, similarly to works in other
domains [34], [35], [36].

B. GNN DECISION EXPLANATION
There have been only limited works studying the explainabil-
ity of GNNs. In contrast to CNN-based approaches where
explanations are usually provided at pixel-level [85], for
graph data the focus is on the structural information, i.e.,
the identification of the salient nodes and/or edges con-
tributing the most to the GNN classification decision [86].
In the following, we briefly survey techniques most rele-
vant to ours, i.e., targeting graph classification tasks and
providing node-level (rather than edge-level) explanations.
For a broader survey of various works on explainability
the interested reader is referred to [86]. In [87], for each
test instance the so-called GNNExplainer maximizes the
mutual information between the GNN’s prediction and a set
of generated subgraph structures to learn a soft mask for
selecting the nodes explaining the model’s outcome. How-
ever, the explanation masks in [87] are optimized indi-
vidually for each input graph and thus may lack a global
view [86], [88]. In [89], a surrogate, probabilistic graphical
model that can learn the non-linear relationships of the input
graph, as captured by the underlying GNN, is proposed.
More specifically, the so-called PGM-Explainer consists of
a random perturbation approach to generate a synthetic
dataset of graph data and respective predictions, a filter-
ing step to discard unimportant graph data, and a learn-
ing step that trains the probabilistic graphical model using
a Bayesian information criterion (BIC) score objective to
provide explanations for the derived predictions. Both the
above approaches learn to derive explanations by minimiz-
ing an objective function – mutual information [87] or BIC
score [89] – whose relevance to explainability is unclear,
as discussed in [90]. Contrarily, in [90], a new explainabil-
ity measure called RDT-Fidelity is introduced, satisfying
the desired properties of good explanations; subsequently,
a combinatorial procedure called ZORRO is proposed that
uses a greedy forward selection algorithm to select the sub-
graphs that directly maximize the RDT-Fidelity score. The
approaches discussed above have shown promising results,
however, they introduce a high computational cost to the
overall procedure, due to introducing an additional training
step [87], [89] or because a greedy evaluation of a large num-
ber of possible node combinations is necessary [90]. To this
end, [91] extends popular gradient-based CNNmethods to the
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FIGURE 2. Illustration of the proposed ViGAT head. The GAT blocks �1 and �2 process the frame and object feature
representations (1), (2) at the input of the head. The GAT block �3 processes the new frame feature representations at the
output of �2. The new video features at the output of the GAT blocks �2 and �3 are concatenated and the resulting
feature is fed to layer U() to produce a score for each event class. Additionally, the WiDs derived from the adjacency
matrices of the three blocks provide comprehensive explanations (in terms of salient objects and frames) for the
recognized event.

FIGURE 3. GAT block and its components, i.e the attention mechanism
(11), GAT head (12) and graph pooling (13).

FIGURE 4. Computational graph for learning the parameters of the ViGAT
head (Fig. 2) using a dataset of videos represented as in (1), (2).

GCN setting. These methods are efficient as only one forward
pass of the network is required; however, they suffer from the
well-known gradient issues [92].

In this paper, to counter the described drawbacks of both
gradient-based and computationally-expensive learning- or
perturbation-basedmethods, we propose derivingWiD scores
from the adjacency matrices at the various levels of the pro-
posed attention head network; these WiD scores exhibit more
stable behavior and improved explanation quality, and obtain-
ing them introduces very limited computational overhead that
is comparable to [91].

III. VIDEO GAT
A. VIDEO REPRESENTATION
Let us assume an annotated video training set of C event
classes. A video is represented with N frames sampled from
the video and a backbone network extracts a feature rep-
resentation γ (n)

∈ RF for each frame n = 1, . . . ,N .
The feature representations are stacked row-wise to obtain
matrix 0 ∈ RN×F ,

0 = [γ (1), . . . , γ (N )]T . (1)

Similarly to recent bottom-up approaches [5], [9], we addi-
tionally use an object detector to derive K objects from each
frame; each object is represented by an object class label,
a degree of confidence (indicating how confident the object
detector is for this specific detection result), and a bounding
box. The backbone network is then applied to extract a feature
representation x(n)k ∈ RF for each object k in frame n. Sorting
the feature representations in descending order according
to their respective degree of confidence and stacking them
row-wise we obtain the matrix X(n)

∈ RK×F representing
frame n,

X(n)
= [x(n)1 , . . . , x

(n)
K ]T . (2)

Although various backbones can be used, similarly to works
in other domains, we use a Vision Transformer (ViT),
which has shown excellent performance as backbone in a
pure-attention framework [14].

B. ViGAT HEAD
The ViGAT head depicted in Fig. 2 is used to process the
features extracted from the backbone network. It is composed
of three GAT blocks, �1, �2 and �3, where each block
consists of a GAT and a graph pooling layer (the structure
of the GAT block is described in detail in the next subsec-
tion). Each GAT block is applied separately to a different
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feature type, effectively factorizing attention along the spatial
and temporal dimensions. This is a major advantage over
the method of [5], where attention was utilized only along
the spatial dimension; the temporal video information was
encoded using a less-effective LSTM structure.

More specifically, the feature representations of video
frames (1) and objects of frame n (2) in the input of the GAT
head are processed by the blocks �1 and �2, respectively,

δ = �1(0), (3)

η(n) = �2(X(n)), n = 1, . . . ,N , (4)

where δ, η(n) ∈ RF are new feature representations for the
entire video and frame n, respectively. Subsequently, the N
outputs of �2 (which correspond to the N video frames) are
stacked row-wise to obtain a new matrix H ∈ RN×F for the
overall video,

H = [η(1), . . . , η(N )]T . (5)

This matrix is then fed to the block�3 to obtain a second new
feature representation % ∈ RF for the entire video,

% = �3(H). (6)

The derived features δ and % are then concatenated to form a
new feature ζ ∈ R2F for the video,

ζ = [δ; %]. (7)

Finally, ζ is passed through a dense layer U() in order to
derive a score vector ŷ = [ŷ1, . . . , ŷC ]T , where ŷc is the
classification score obtained for the cth event class. Using
an annotated training set, an appropriate loss function and
learning algorithm, the ViGAT head can be trained end-to-
end. Moreover, in case that the weights of the three GAT
blocks are tied (i.e.�1 = �2 = �3), the gradient updates for
the GAT block parameters are simply the sum of the updates
obtained for the N + 2 roles (see Fig. 4) of the GAT block in
the network, as in [34], [36], and [93].

C. GAT BLOCK
The GAT block structure � depicted in Fig. 3 is the building
block of the ViGAT head. To avoid a notation clutter, we use
in this section block �2 (4) as an example for defining the
GAT block (blocks �1, �2, �3 are identical). The input to
�2 is matrixX(n)

∈ RK×F (2), i.e. the feature representations
of the K objects of the nth frame.
The first component of the GAT block is an attention

mechanism that is used to compute the respective matrix
E(n)
∈ RK×K as follows [5], [32], [94],

v̌(n)l = W̌x(n)l + b̌, (8)

ṽ(n)k = W̃x(n)k + b̃, (9)

e(n)k,l = 〈v̌
(n)
k , ṽ

(n)
l 〉, (10)

where, W̃, W̌ ∈ RF×F , b̃, b̌ ∈ RF are theweightmatrices and
biases of the attention mechanism, 〈 , 〉 is the inner product
operator and e(n)i,j is the attention coefficient at the ith row

and jth column of E(n). The attention coefficients are then
normalized across each row of E(n) to derive the adjacency
matrix A(n)

∈ RK×K of the graph [5], [9], [32], [94],

a(n)k,l =
(e(n)k,l)

2∑K
ι=1(e

(n)
k,ι)

2
, (11)

where, a(n)k,l is A
(n)’s element at row k and column l.

The derived adjacency matrix and the node features are
then forwarded to a GAT head ofM -layers [5], [9], [95]

Z[m]
= σ (A(n)Z[m−1]W[m]), (12)

where, m is the layer index (i.e. m = 1, . . . ,M ), σ () denotes
a nonlinear operation (here it is used to denote layer normal-
ization [96] followed by element-wise ReLU operator), and
W[m]

∈ RF×F , Z[m]
∈ RK×F are the weight matrix and

output of the mth layer, respectively. The input of the first
layer is set to the input of the GAT block, i.e. Z[0]

= X(n),
and the output of the GAT head, 4(n)

∈ RK×F , is set to the
output of its last layer, i.e. 4(n)

= Z[M ].
Subsequently, graph pooling [97] is applied to produce a

vector-representation of the graph at the output of the GAT
block,

η(n) =
1
K

K∑
k=1

ξ
(n)
k , (13)

where ξ (n)k ∈ RF is the kth row of 4(n).
We note that (12) resembles the layer-wise propagation

rule of GCNs [95]. However, as the exploitation of the atten-
tion mechanism to create the graph’s adjacency matrix is
central in our approach and due to the fact that this matrix
is not symmetric (which violates the symmetry assumption
in [95]), we resort to the more general message passing
framework [98] and GAT [94] to describe our model.

D. ViGAT EXPLANATION
Considering that during the inference stage, the multiplica-
tion with the adjacency matrix in (12) amplifies the contribu-
tion of specific nodes, and the resulting video representation
gives rise to the trained model’s event recognition decision,
the adjacency matrix can be used for deriving indicators of
each node’s importance in said model’s decision. This was
first attempted in [5], where the importance of object l at
frame n was estimated using the associated WiD value,

ω
(l,n)
2 =

K∑
k=1

a(n)k,l, (14)

where a(n)k,l is A
(n)’s element at kth row and lth column.

The qualitative results presented in [5] demonstrated the
usefulness of WiDs to produce explanations about the recog-
nized video event. However, the use of LSTM in [5] to process
the frame features restricted the computation of WiDs only
to objects at static frames, and thus the derivation of expla-
nations only at object-level. In contrary, here we extend the
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utilization of WiDs in the temporal dimension. Specifically,
the use of temporal attention through blocks �1 and �3 to
process the frame features enables us to derive two WiDs for
the nth video frame,

ω
(n)
1 =

N∑
τ=1

πτ,n, (15)

ω
(n)
3 =

N∑
τ=1

δτ,n, (16)

where, πτ,n, δτ,n are the elements of matrices 5 ∈ RN×N

and 1 ∈ RN×N at row τ and column n, and 5, 1 are
the adjacency matrices of blocks �1 and �3, respectively
(similarly to A(n) being an adjacency matrix of block �2,
as computed in (11)). A large ω(n)

1 and/or ω(n)
3 indicates that

the contribution of frame n in the event recognition outcome
is high. In order to derive a single indicator for each frame,
we average the above values to obtain a new indicator β(n) for
the importance of frame n,

β(n) =
1
2
(ω(n)

1 + ω
(n)
3 ). (17)

Equation (17) is our proposed XAI criterion, i.e. we propose
that the top-ϒ frames with the highest β(n) values constitute
an explanation of the network’s event recognition outcome.

IV. EXPERIMENTS
A. DATASETS
We run experiments on three large, publicly available
event/action video datasets: i) FCVID [37] is a multilabel
video dataset consisting of 91223 YouTube videos anno-
tated according to 239 categories. It covers a wide range of
topics, with the majority of them being real-world events.
The dataset is evenly split into training and testing partitions
with 45611 and 45612 videos, respectively. Among them,
436 videos in the training partition and 424 videos in the
testing partition were corrupt and thus could not be used.
ii) MiniKinetics, which comes in two variants, one com-
prising approximately 130K video clips (121215 for training
and 9867 for testing) [7] and one with approximately 85K
clips (a 80K/5K training/testing split) [38]. Both variants
contain instances of 200 event/action classes and originate
from the Kinetics dataset [99]. Each clip has been sampled
from a different YouTube video, has 10 seconds duration
and is annotated with a single class label. iii) ActivityNet
v1.3 [39] is a popular multilabel video benchmark consisting
of 200 classes (including a large number of high-level events),
and 10024, 4926 and 5044 videos for training, validation and
testing, respectively. As the testing-set labels are not publicly
available, the evaluation is performed on the so called valida-
tion set, as typically done in the literature.

B. SETUP
Uniform frame sampling is one of the most commonly-used
strategies in video action recognition due to its simplicity,

efficiency and effectiveness, and has offered state-of-the-art
results in this domain (e.g. see [6], [7], [29], [42], [43],
[48], [50], [54], [55], [59] and references therein). For this
reason, uniform sampling is also applied here to represent
each video with a sequence of N frames in the input of the
proposed ViGAT.

The number of sampled frames N per video is selected
based on the videos’ average duration and the complexity
of the actions in the respective dataset, also considering
the number typically used in the relevant literature works.
The average duration of the videos in MiniKinetics and
FCVID is 10 and 167 seconds, respectively [37], [99].
On the other hand, most videos in ActivityNet are much
larger, i.e., with duration between 5 and 10 minutes [39].
Concerning the complexity of the events/actions in the dif-
ferent datasets, FCVID mostly contains generic categories,
such as ‘‘baseball’’, ‘‘fire fighting’’ and ‘‘birthday’’. On the
other hand, MiniKinetics and ActivityNet contain a broader
variety spanning from high-level events to short-term actions
that are more difficult to differentiate, such as ‘‘applaud-
ing’’ and ‘‘clapping’’, ‘‘cleaning shoes’’ and ‘‘shining shoes’’
(MiniKinetics), ‘‘drinking beer’’ and ‘‘drinking coffee’’, and
‘‘long jump’’ and ‘‘triple jump’’ (ActivityNet). Based on the
above analysis and following other works in the literature,
we set N to 9 frames for FCVID (e.g. as in [7], [54], [59],
and [5]) and 30 frames forMiniKinetics (e.g. similarly to [64]
and [68]). For ActivityNet, due to both video length and
events complexity, we decided to sample a larger number of
frames, i.e. N = 120 (e.g. similarly to [55]); in this way,
we want to ensure that the complex events/actions, especially
the ones that resemble each other, as well as those covering
only a small portion of the longer videos in this dataset, are
adequately represented.

The object detector is used to extract a set of K =

50 objects from each frame (the ones with the highest degree
of confidence). Thus, each object is represented with a
bounding box, an object class label (which we only use for
visualizing the object-level explanations) and an associated
degree of confidence. As object detector we use the Faster
R-CNN [100] with ResNet-101 [31] backbone, where fea-
ture maps of size 14 × 14 are extracted from the region of
interest pooling layer. The Faster R-CNN is pretrained and
fine-tuned on ImageNet1K [101] and Visual Genome [102],
respectively.

ViGAT utilizes a pre-trained backbone network to derive a
feature representation for each object in a frame as well as for
the overall frame, as described in (1), (2). We experimented
with two backbones: i) ViT: the ViT-B/16 variant of Vision
Transformer [78] pretrained on Imagenet11K and fine-tuned
on Imagenet1K [101] is our main backbone; specifically,
the pool layer prior to the classification head output of the
transformer encoder is used to derive a feature vector of
F = 768 elements, ii) ResNet: a ResNet backbone is also
used in order to compare directly with other literature works
that use a ResNet backbone, and to quantify the performance
improvement of the proposed pure-attention model (i.e. the
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effect of using attention also at object pixel-level through the
ViT backbone); specifically, the pool5 layer of a pretrained
ResNet-152 on ImageNet11K is used to derive an F =
2048 dimensional feature vector.

Concerning the ViGAT head (Fig. 2), the parameters of
the three GAT blocks are tied, and M = 2 layers (12) are
used in each GAT head. Moreover, U() is composed of two
fully connected layers and a dropout layer between themwith
drop rate 0.5. The number of units in the first and second
fully connected layer is F and C , respectively, where C (the
number of event classes) is equal to 239, 200 and 200 units,
for the FCVID, MiniKinetics and ActivityNet dataset; the
second fully connected layer is equipped with a sigmoid or
softmax nonlinearity for the multilabel (FCVID, ActivityNet)
or single-label (MiniKinetics) dataset, respectively.

We performed in total eight main experiments, one for each
possible combination of dataset (FCVID, the two variants
of MiniKinetics, ActivityNet) and backbone (ViT, ResNet).
In all experiments, the proposed ViGAT is trained using
Adam optimizer with cross-entropy loss and initial learning
rate 10−4 (e.g. as in [78]). Following other works in the
literature (e.g. [12]), a batch size of 64 is utilized, except
for the experiment on ActivityNet with the ResNet backbone,
where we reduced the batch size to 36 due to GPU memory
limitations. For the proposed ViGAT with ViT backbone
the initial learning rate is multiplied by 0.1 at epochs 50,
90, for FCVID; 20, 50, for MiniKinetics; and 110, 160, for
ActivityNet. The total number of epochs is set to 100 for
MiniKinetics and 200 for FCVID and ActivityNet. For the
ViGAT variant with ResNet backbone the initial learning
rate is similarly reduced at epochs 30, 60; and 90 epochs
are used in total for each dataset. We should note that in
all experiments the proposed method exhibited a very stable
performance with respect to different learning rate schedules.
All experiments were run on PCs with an Intel i5 CPU and a
single NVIDIA GPU (either RTX3090 or RTX2080Ti).

C. EVALUATION MEASURES
Similarly to other works in the literature and in order to allow
for comparison of the proposed ViGAT with them, the event
recognition performance is measured using the top-1 accu-
racy and mean average precision (mAP) [103] for the single-
label (MiniKinetics) and multilabel (FCVID, ActivityNet)
datasets, respectively.

The explainability performance of ViGAT is measured
using the top ϒ frames of the video selected by it to serve
as an explanation. We use two XAI evaluation measures used
extensively for the explanation of CNN models, i.e., Increase
in Confidence (IC) and Average Drop (AD) [104],

IC =
1
Q

Q∑
q=1

δ(ȳq,ûq > ŷq,ûq ), (18)

AD =
1
Q

Q∑
q=1

max(0, ŷq,ûq − ȳi,ûq )

ŷq,ûq
, (19)

TABLE 1. Performance comparison on FCVID.

TABLE 2. Performance comparison on MiniKinetics.

where, Q is the total number of evaluation-set videos, δ(a)
is one when the condition a is true and zero otherwise,
ûq ∈ {1, . . . ,C} is the event class label estimated by the
ViGAT model using all N frames, ŷq,ûq , ȳq,ûq are the model’s
scores for the qth video and estimated class ûq, obtained using
all or just the top ϒ frames identified as explanations by
the employed XAI criterion (17), respectively. That is, IC
is the portion of videos for which the model’s confidence
score increased, and AD is the average model’s confidence
score drop, when just the ϒ most salient frames are used
to represent the video. Higher IC and lower AD indicate a
better explanation. Additionally, we utilize two more general
explainability measures, fidelity minus (F−) and fidelity plus
(F+) [86], defined as

F− =
1
Q

Q∑
q=1

(δ(ûq == uq)− δ(ūq == uq)), (20)

F+ =
1
Q

Q∑
q=1

(δ(ûq == uq)− δ(ŭq == uq)), (21)
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TABLE 3. Performance comparison on ActivityNet.

where, uq is the ground truth label of the qth video, and ūq, ŭq
are the labels estimated by the model using the top ϒ (i.e.,
most salient) frames identified by our XAI criterion or the rest
(i.e. the least salient) N −ϒ frames, respectively. We see that
F− and F+measure the impact on the model’s performance
when only the ϒ most salient frames from each video are
considered or are ignored, respectively. LowerF− and higher
F+ denote a better explanation.

D. EVENT RECOGNITION RESULTS
The proposed approach is compared against the top-scoring
approaches of the literature on the three employed datasets,
specifically, TBN [44], BAT [16], MARS [62], Fast-S3D
[38], RMS [64], CGNL [30], ATFR [72], Ada3D [17],
TCPNet [45], LgNet [68], ST-VLAD [50], PivotCorrNN
[53], LiteEval [57], AdaFrame [54], ListenToLook [56],
SCSampler [73], AR-Net [7], SMART [59], ObjectGraphs
[5], MARL [55], FrameExit [6], and AdaFocusV2 [19]
(note that not all of these works report results for all the
datasets used in the present work). The reported results
on FCVID, MiniKinetics and ActivityNet are shown in
Tables 1, 2 and 3, respectively. The majority of the methods
utilize a ResNet-like backbone (sometimes pretrained on
ImageNet) and train it from scratch (or fine-tune it) on the
respective dataset; when this is not the case, in brackets
next to the name of each method we denote the different
backbone (e.g. EfficientNet, X3D, etc.) and/or the dataset
used for training it (e.g. Kinetics). From the obtained results
we observe the following:

i) The proposed approach achieves the best performance
in all datasets, improving the state-of-the-art by 3.1%, 3.4%,
1.2% and 0.7% on FCVID, MiniKinetics 130K and 85K,
and ActivityNet, respectively. We should also note that the
proposed model exhibits a very stable behavior converging
to the above values, as shown in the plot of Fig. 5.

ii) Concerning our ViGAT variant that utilizes a ResNet
backbone pretrained on ImageNet, this outperforms the
best-performing literature approaches that similarly use
a ResNet backbone in FCVID and ActivityNet (see
Tables 1 and 3). Specifically, we observe a significant per-
formance gain of 1% over AdaFocusV2 [19], which is the
previous state-of-the-art method. We also see that ViGAT

provides a performance improvement of 1.4% over Object-
Graphs [5], which is the best previous bottom-upmethod. The
above result clearly demonstrates the advantage of our archi-
tecture, i.e. the use of a pure-attention head in order to capture
effectively both the spatial information and long-term depen-
dencies within the video, instead of using an attention-LSTM
structure as in [5]. We also observe a large gain of 3.1%
over AdaFocusV2 (the previous top-performing approach
with ResNet backbone) on ActivityNet. We should also note
that in some cases ViGAT even with a ResNet backbone
outperforms methods utilizing a stronger backbone, e.g. the
AR-Net with the EfficientNet backbone on FCVID and
ActivityNet [7]. On the other hand, this is not the case in
the MiniKinetics dataset. This is attributed to the fact that
our ImageNet-pretrained backbone is frozen, used as a fea-
ture extractor; whereas the above methods train or fine-tune
the employed ResNet backbone in the larger MiniKinetics
dataset, leading naturally to improved performance.

iii) The use of ViT instead of the ResNet backbone in
ViGAT, i.e. the proposed pure-attention approach, provides
a considerable performance boost: 2.1% on FCVID, and an
impressive 8.2%, 7.8% and 6% on MiniKinetics 130K, 85K
and ActivityNet. The latter may be explained by the fact that
ActivityNet and MiniKinetics contain a more heterogeneous
mix of short- and long-term actions, and thus a stronger back-
bone that provides a better representation of the objects can
facilitate the discrimination of a larger variety of action/event
types. This behavior has also been observed in other methods,
e.g., AR-Net (using ResNet and EfficientNet) and FrameExit
(using ResNet and X3D-S), as illustrated in Tables 1 and 3.

Concerning computational complexity, the Fvcore Flop
Counter [105] is used to compute the FLOPs (floating point
operations) of the ViGAT head and ViT backbone. For the
Faster R-CNN object detector, due to its inherent randomness
during the inference stage, we utilize the GFLOPs per frame
reported in [106]. Using the above tool, we verified that the
proposed ViGAT head is very lightweight, with 3.85 million
parameters and only 3.87 GFLOPs to process a video in
MiniKinetics. On the other hand, counting also the execu-
tion of the Faster R-CNN [100] object detector and the ViT
backbone [78] applied on each object and frame increases
the total complexity of our method to 34.4 TFLOPs. The
latter figure is comparable with the complexity of some of
the most recent top-down approaches of the literature, such
as ViViT Large and Huge [12] with 11.9 and 47.7 TFLOPs,
respectively. However, we should note that during ViGAT
training, the pre-trained Faster R-CNN and ViT backbone
that are the most computationally expensive components of
ViGAT are executed only once per video, yielding a dramatic
GFLOP reduction for the overall training procedure. Thus,
compared to the video transformer models mentioned above,
which were trained on dedicated high-performance tensor
processing accelerators, ViGAT has a significantly lower
training complexity that allowed all reported experiments to
run on single-GPU PCs. Moreover, the overall complexity of
ViGAT can be optimized by using more efficient pre-trained
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FIGURE 5. Ablation study in MiniKinetics 85K, evaluating four variants of our model, i.e., ViGAT (proposed model with weight-tying applied),
NoWT-ViGAT (proposed model without weight-tying), Global-ViGAT (model variant using only frame feature representations) and Local-ViGAT
(model variant using only object feature representations). For each model variant, the top-1(%) performance is plotted. We see that the object
features provide significant bottom-up information for the recognition of the video event, and that their combination with the global frame features
leads to considerable performance gains.

TABLE 4. Influence of the number of layers in the GAT blocks of ViGAT
with ViT backbone along three datasets.

networks for object detection and feature representation, such
as the ones presented in [107], [108], which report a consid-
erably smaller number of GFLOPs than [78], [100].

E. EVENT RECOGNITION ABLATION STUDY
In order to gain a further understanding of the proposed event
recognition approach, results of two ablation experiments are
presented in this section. These experiments are performed
using the ViGAT with ViT backbone and following the
training procedure described in Section IV-B. Specifically,
we perform:
• Assessment of the impact of the weight sharing scheme,
as well as the relative importance of the object and frame
feature information, on the performance of our model.

• Investigation of the effect of using a different num-
ber of layers within the GAT blocks of the proposed
architecture.

In the first ablation experiment, we utilize MiniKinetics
85K to evaluate the performance of four different variants of
our method: i) ViGAT: our proposed model (Section IV-D),
i.e. with weight-tying applied across the three GAT blocks,
ii) noWT-ViGAT: this model has the same architecture as
ViGAT with the difference that the weights are not shared
along the three GAT blocks (i.e. the blocks�1,�2 and�3 of
Fig. 2 have different weights), iii) Global-ViGAT: this model
utilizes only the GAT block �1 to process only the frame

feature representations (1), iv) Local-ViGAT: contrarily to the
above, this model employs only the GAT blocks �2 and �3,
i.e. the branch of the ViGAT head that processes the object
feature representations (2). The evaluation performance in
terms of top-1(%) for all models along the different epochs
is shown in Fig. 5. From the obtained results we observe the
following:

i) The Local-ViGAT model outperforms Global-ViGAT
with a high absolute top-1(%) gain of 4.58%, demonstrating
the significance of the bottom-up information (represented
by the object features) and the effectiveness of our approach
in exploiting this information. Moreover, we observe that
the object and frame features are to some extent comple-
mentary, as shown by the 1.66% absolute top-1(%) perfor-
mance gain of ViGAT (which exploits both features) over the
Local-ViGAT.

ii) ViGAT outperforms NoWT-ViGAT in MiniKinetics
85K by 0.26% absolute top-1(%), showing that the use of
shared weights along the different GAT blocks may act as
a form of regularization stabilizing the training procedure,
as for instance has been observed in [34], [35], and [36].
However, we should note that this is not necessarily always
the case, i.e. for other datasets a larger network capacity may
be beneficial. Besides potentially improved event recognition
results, the use of shared weights leads to reduced memory
footprint: using the Fvcore Flop Counter [105] we can see that
NoWT-ViGAT has 8.426 million parameters. In comparison,
the proposed ViGAT (3.85 million parameters) achieves a
2.3× lower memory footprint.

In a second ablation experiment, the influence of the num-
ber of GAT layers M (12) in the performance of ViGAT is
examined. Specifically,M within each block (Fig. 2) is varied
from 1 to 4 and the performance is recorded. From the results
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FIGURE 6. Average drop (AD) performance along varying number of
frames for the six considered XAI criteria. Lower values are better.

FIGURE 7. Increase in confidence (IC) performance along varying number
of frames for the six considered XAI criteria. Higher values are better.

FIGURE 8. Fidelity minus (F−) performance along varying number of
frames for the six considered XAI criteria. Lower values are better.

shown in Table 4, we observe thatM = 2 is optimal or nearly
optimal along all three datasets (for simplicity, concerning
MiniKinetics we run this ablation experiment only on its 85K
variant), and the performance starts to decrease for M > 3.
This behaviour has been often observed in the literature and
is attributed to the well-known oversmoothing problem of
GNNs [109].

F. EVENT EXPLANATION RESULTS AND ABLATION STUDY
In this section, the proposed explainability approach
(Section III-D) with the ViT backbone is evaluated on the
ActivityNet dataset. This dataset is selected here because
its videos are represented with a large number of frames

FIGURE 9. Fidelity plus (F+) performance along varying number of
frames for the six considered XAI criteria. Higher values are better.

(i.e.N = 120), allowing for a thorough evaluation of different
XAI criteria.

Firstly, we perform a quantitative evaluation using the XAI
measures described in Section IV-C. Specifically, the various
criteria are evaluated based on their ability to select the ϒ
most salient frames explaining model’s outcome, where ϒ is
set to ϒ = 1, 2, 3, 5, 10 and 20.

We assess the following four ViGAT-based criteria (which
can be also considered as a form of ablation study exam-
ining the explanation power of the various WiD-based cri-
teria of ViGAT): i) Local and Global Mean, i.e. the mean
of the frame-level WiDs, β(n) (17); this is our proposed
XAI criterion, ii) Local and Global Max, i.e. max(ω(n)

1 , ω
(n)
3 ),

iii) Local Only, ω(n)
3 (16), and, iv) Global Only, ω(n)

1
(15). Additionally, the above criteria are compared against
i) GCN-Grad-Cam [91], which is the closest approach to ours
and can be applied to the ViGAT architecture, and ii) random
frame selection, as a baseline. For the latter (denoted hereafter
simply as Random), random selection is repeated five times
and the average is reported for each individual XAI measure.

The evaluation results in terms of AD (19), IC (18),
F− (20) and F+ (21) are depicted in Figs. 6, 7, 8 and 9,
respectively. From the obtained results we observe the
following:

i) In all cases the proposed WiD-based XAI criteria out-
perform by a large margin the random frame selection.
Therefore, it is clear that the WiDs derived by the learned
adjacency matrices in the proposed ViGAT architecture can
provide valuable information for explaining the model’s
decision.

ii) The proposed criteria also outperform GCN-Grad-Cam
across all performance measures. For instance, for ϒ = 1
(i.e. when the single salient frame is considered) our pro-
posed XAI criterion (β(n)) provides an absolute explanation
performance improvement of approximately 25%, 9% and
18% over GCN-Grad-Cam in terms of AD, IC and F−,
respectively.

iii) The local WiDs are powerful explainability indicators,
outperforming the global ones; this further highlights that
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FIGURE 10. Explanation example for a video correctly categorized into class ‘‘BMX’’. The barplot of frame β(n) values (17) is provided at the top of the
figure. The two and six video frames with lowest and highest β(n) (depicted with red and green bars, respectively) are shown below the barplot. The video
frame corresponding to the highest β(n) is placed within a green rectangle. We see that the model focuses on the frames that contain at least one bike
and ignores other irrelevant ones (e.g. the computer graphics frame, appearing first from the left in the figure). It is also worth noting that the frame
selected as the most salient (i.e., with highest β(n)) is the one that depicts multiple BMX vehicles.

FIGURE 11. Explanation example for a video correctly categorized into the class ‘‘Rock climbing’’. Based on the β(n) values (17) we see that the classifier
focuses on the frames showing a wall and a climber to classify this video, while frames irrelevant to the underlying event (e.g. the frames depicting an
interview) receive a low β(n) value and are thus disregarded.

FIGURE 12. Explanation example for a video correctly categorized into the class ‘‘Waxing Skis’’. This is a hard example because, as we can see from the
two left-most frames in this figure, frames showing a skier and snow are part of the video and are even assigned high β(n) values (17); these could
mislead to classifying the video as ‘‘Skiing’’ (which is among the events included in this dataset). However, thanks to the highest β(n) values being
assigned by the proposed ViGAT to frames that depict waxing skis, the classifier correctly recognizes this event.

FIGURE 13. Explanation example for a video belonging to class ‘‘Preparing salad’’ but miscategorized as ‘‘Making lemonade’’. As with previous examples,
the β(n) values correctly indicate the frames that are irrelevant to the recognized class, e.g. the two frames with the lowest β(n) depict a computer
graphics image and an empty bowl, respectively. On the other hand, the two frames with highest β(n) show human hands cutting lemons, thus providing
a convincing explanation why this video was misrecognized as ‘‘Making lemonade’’ by the proposed model.

bottom-up (i.e. object) information is crucial for the recog-
nition of events in video.

iv) The combination of the local and global WiDs (using
either operator) in most cases offers a small but noticeable
performance gain, showing that these indicators are to some
degree complementary. For instance, we observe in Fig. 7

that the mean WiDs provide consistently an absolute 2%
IC performance gain over using any of the individual WiD
indicators alone.

v) Generally, in terms of AD, IC and F−, GCN-Grad-Cam
exhibits a performance close to the random baseline. In con-
trary, it achieves a much better F+ performance from the
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FIGURE 14. Explanation example for a video belonging to class ‘‘Chopping wood’’ but miscategorized as ‘‘Starting a campfire’’. The most salient frames
(based on the β(n) values (17)) are the ones depicting a person chopping wood next to a campfire. These frames provide a convincing explanation why
the classifier has mistakenly labeled this video. On the other hand, we see that the most irrelevant frames to the classification decision (receiving a β(n)

value close to zero) are the ones with overlay text on black frames. This video has many such frames, yielding a barplot that looks quite different from
that of other videos.

FIGURE 15. Explanation example for a video belonging to class ‘‘Removing ice from car’’ but miscategorized as ‘‘Shoveling snow’’. We observe that the
most salient frame (based on the β(n) values (17)) depict a person removing ice from car, thus not providing enough evidence why this frame has been
misclassified. To this end, we resort to the object-level explanations, provided at the second row of the figure. Specifically, the eight most salient objects
are depicted for the most salient frame of the video, at the left side of the row, and the respective WiD values (ω(l,n)

2 (14)) are shown in the barplot at the
middle of the row. We also show a respective object detection barplot at the right side of the row, depicting the eight objects detected with the highest
degree of confidence (DoC) value. Concerning the bar colors: a green bar in the WiDs barplot indicates that the corresponding object did not appear in
the top-8 DoC list but was promoted by our approach; a red bar indicates that this object is completely irrelevant with the recognized event. We see that
the most salient objects identified by our approach, i.e. ‘‘person’’, ‘‘snow’’, ‘‘man’’, etc., are not characteristic enough to differentiate between the two
classes. However, we observe that the object car, which is a differentiating factor between the two classes, is not detected by the object detector;
additionally, the frame regions that the classifier focuses on do not include the car region, convincingly explaining the network’s recognition decision in
this failure example.

random baseline, as shown in Fig. 9. This is in agreement with
similar results in the literature, e.g. in [91]. More specifically,
we note that the computation of AD, IC and F− is based on
the selection of the ϒ most salient frames, while in contrary,
F+ on the remaining Q − ϒ least salient ones. Based on
this observation, we can say that AD, IC and F− correspond
to the notion of sparsity (measure of localization of an
explanation in a small subset of the graph nodes) and F+
resembles the notion of fidelity (measure of the decrease in
classification accuracy when the most salient graph nodes are
occluded), as sparsity and fidelity are defined in [91]. In the
experimental evaluation of the above work it is shown that
GCN-Grad-Cam provides explanations of high fidelity but
poor sparsity, similarly to the results obtained here.

In order to gain further insight into the proposed explain-
ability approach, qualitative results (examples) are also given
in Figs. 10 to 16. In Figs. 10, 11 and 12, we show the six most
salient and the two least salient frames selected using our
explainability criterion β(n) from correctly-recognized videos
belonging to class ‘‘BMX’’, ‘‘Rock Climbing’’ and ‘‘Waxing
Skis’’, respectively. In Fig. 10, we see that all selected frames
contain at least one BMX bike, while the one with the highest
β(n) contains several bike instances. Similarly, in Fig. 11
the climber and the climbing wall, and in Fig. 12 instances
of a person waxing skis, are clearly shown in the selected
frames. Regarding Fig. 12, despite this video being a difficult
example due to containing instances of two related events
(‘‘Waxing Skis’’ and ‘‘Skiing’’), the classifier correctly gives
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FIGURE 16. Each row of this figure provides an explanation example produced using our approach for a video belonging to a different
event category (from top to bottom): a) ‘‘Assembling a bike’’, b) ‘‘Skiing’’, c) ‘‘Cleaning windows’’, d) ‘‘Getting a haircut’’, e) ‘‘Brushing
teeth’’. An explanation example consists of the video frame associated with the highest β(n) (frame-level WiDs) and the four objects in
this frame corresponding to the highest object-based WiDs. The two barplots in the middle and right of each row depict the objects in
the frame corresponding to the eight highest WiD or degree of confidence (DoC) values, respectively. A green bar in the WiDs barplot
indicates that the corresponding object did not appear in the top-8 DoC list but was promoted by our approach and convincingly
explains the network’s recognition decision, e.g. see the ‘‘skier’’ and ‘‘baby’’ objects in the examples of the second and fifth row.
On the other hand, a red bar in the barplots indicates that this object is completely irrelevant with the recognized event, e.g., see the
‘‘tree’’ objects in the examples of second and third row. We observe that in most cases our approach indicates objects very relevant to
the recognized event as explanations for the event recognition result (‘‘dog’’ in the fourth example is a notable exception). In contrary,
objects with high DoC, although may indeed be depicted in the frame, are often not related to the event recognized by the model and
are correctly not considered by our WiD-based approach as good explanations.

more attention to the frames related to the actual, ‘‘Waxing
Skis’’, event, rather than to the ones depicting the skiers and

snow, thus achieving to correctly classify the video. On the
other hand, in all figures, the frames assigned a low β(n)
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depict information irrelevant to the recognized event and
thus are correctly dismissed as potential explanations by our
approach.

Contrarily to the above examples, Figs. 13, 14 and 15
show failure cases: videos of the classes ‘‘Preparing salad’’,
‘‘Chopping wood’’ and ‘‘Removing ice from car’’ that have
been miscategorized as ‘‘Making lemonade’’, ‘‘Starting a
campfire’’ and ‘‘Shoveling snow’’ respectively. As in the
previous examples, we observe that the frames associated
with the lowest β(n) are visually irrelevant to the recognized
events and thus were correctly dismissed. On the other hand,
most of the frames associated with high β(n) as well as the
ones corresponding to the top β(n) value, contain objects
relevant to the recognized class, explaining why the classi-
fier mislabelled these videos. For instance, the most salient
frames of the videos in Figs. 13 and 14 depict pieces of
lemons and a campfire, thus providing an explanationwhy the
classifier misclassified these videos as ‘‘Making lemonade’’
and ‘‘Starting a campfire’’, respectively. Similarly, in Fig. 15,
utilizing the object-level explanations for the most salient
frame of the video (provided at the second row of this figure),
we discover that the object car is not detected by the object
detector, misleading ViGAT to miscategorize this video as
‘‘Shoveling snow’’.

Finally, Fig. 16 depicts several examples of the frame- and
object-level explanations generated by our model: in each
row, the selected best video frame explanation, as well as the
top four object-explanations within each frame, as identified
by our approach, are shown. Additionally, two barplots per
row are provided, depicting the eight objects with the high-
est WiD (ω(l,n)

2 , see (14)) and degree of confidence values
(the latter being an output of the employed object detector),
respectively. The same type of information is also been pro-
vided in the second row of Fig. 15 to help us understand why
ViGAT misclassified that video. We observe that the objects
associated with the highest WiDs are well correlated with
the recognized event. Moreover, in most cases (i.e. when the
object detector provides a correct object class detection) the
class names of the objects can be used to provide a sensible
semantic recounting [110] that describes the event detected
in the video in a human-comprehensible format. On the other
hand, the same cannot be said for the objects associated with
high degree of confidence values; these provide a general
overview of the various objects depicted in the frame, rather
than an insight on which of the depicted objects led to the
event recognition decision.

G. LIMITATIONS
As shown from the experimental results, due to the extraction
of bottom-up information and the utilization of attention at
various levels of ViGAT, our method attains improved event
recognition performance and has the ability to provide com-
prehensive explanations about the decision of the classifier.
However, as expected, in comparison to efficient top-down
approaches, the above achievements come with a high cost
in memory consumption and inference time. To this end,

we have tied the weights of the three GAT blocks of ViGAT,
achieving more than 2× improvement in memory utilization
(see Section IV-E). However, the computational overhead is
mainly due to the use of the object detector at each sampled
frame, to extract a set of objects, and the subsequent use of
a backbone network (ViT) to provide a feature representation
of them (i.e. to derive the bottom-up information). To reduce
this overhead, inspired by the relevant literature [6], [7], [59],
we plan on investigating techniques for selecting only a small
fraction of the sampled frames to use for extracting bottom-up
information.

Another limitation of the proposed approach relates to the
accuracy of the employed object detector. More specifically,
we observe that despite the fact that the objects derived by
our approach focus on the area where the event is taking
place and explains well event classifier’s decision, their labels
are not always correct (e.g. see the red colored bars in the
WiD barplots of Figs. 15, 16). This limitation in the pro-
vided explanations is attributed to the imperfection of the
object detector. Nevertheless, we observe that ourWiD-based
explanation approach highlights the detected objects that are
most-related to the recognized event, and which are usu-
ally more accurately labeled by the object detector; in this
way, it realizes a sort of an error-correcting mechanism on
the object detection results (e.g. compare the left and right
barplots in Figs. 15, 16, depicting the objects detected with
the highest WiD and DoC values, respectively). To address
the object-detector accuracy limitation, we plan on experi-
menting with newer object detectors (e.g. [107] and [111]),
aiming to further improve the overall accuracy and efficiency
of ViGAT as well as the quality of the produced object-level
explanations.

V. CONCLUSION
We presented a new pure-attention bottom-up method for
video event recognition, composed of three GAT blocks to
process effectively both bottom-up (i.e. object) and frame-
level information. Moreover, utilizing the learned adjacency
matrices at the corresponding GAT blocks, WiD-based expla-
nation criteria at object- and frame-level were proposed.
Experimental results on three large, popular datasets showed
that the proposed approach achieves state-of-the-art event
recognition performance and at the same time provides pow-
erful explanations for the decisions of the model.

As future work, we plan to investigate techniques towards
optimizing further the efficiency of ViGAT, for instance,
techniques for discarding early in the processing pipeline
the objects/frames less correlated with the depicted event,
similarly to [6]; and investigate the utilization of more effi-
cient object detectors and network backbones, such as [107],
[111], and [108], as well as alternative frame sampling
strategies [7], [17].
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