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ABSTRACT The pedestrian trajectory prediction is critical for autonomous driving, intelligent navigation,
and abnormal behavior detection. With the booming of artificial intelligence (AI), many researchers have
employed deep learning technologies to solve the pedestrian trajectory prediction problem and obtained
relatively better performance in the short-term trajectory prediction. However, long-term trajectory predic-
tion is still challenging to achieve high prediction accuracy. In this work, we propose a space-time tree
search (STTS) method for long-term pedestrian trajectory prediction. Compared with existing methods
only considering the problem from the space dimension, the proposed method formulates the trajectory
prediction problem as a joint space-time tree search process by mapping the environment to a grid map.
Since the human’s trajectory is relative to space and time dimensions, the trajectory prediction accuracy
can be improved by the two dimensions. Then, a space-time reward trained neural network is employed to
extract the pedestrian’s intent with both the scene image and the historical trajectory as input and outputs the
prior search probabilities. Finally, the tree search can obtain the optimal predicted trajectory according to
the prior probabilities, significantly improving the tree search efficiency. After testing, our proposed method
can perform better than existing methods.

INDEX TERMS Long-term trajectory prediction, space-time reward, tree search, neural network.

I. INTRODUCTION
The goal of pedestrian trajectory prediction is to pre-
dict human trajectories by analyzing the historical trajecto-
ries. The trajectory prediction has been widely applied in
autonomous driving [1], [2], [3], intelligent navigation [4],
[5], [6], maritime Internet of Things [7], [8], abnormal
behavior detection et. al [9], [10], [11], [12]. For example,
in autonomous driving, the surrounding vehicles’ or pedes-
trians’ future trajectory predictions can help the autonomous
driving controller avoid potential risks. Besides, in maritime
Internet of Things, trajectory prediction can improve smart
traffic service for ships.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jason Gu .

The pedestrian’s trajectory can be influenced by multiple
factors: the surrounding environment, the pedestrian’s intent,
and so on. Many researchers have optimized their methods
from these factors. However, in a crowded environment, the
surrounding environment will constantly change as the sur-
rounding pedestrians walk. It’s hard to model the surrounding
environment for the trajectory prediction. Besides, in the
long-term trajectory prediction, the pedestrian’s long-term
intent is hard to be extracted, which makes the prediction
error relatively large.

The existing pedestrian trajectory prediction methods can
be categorized into two types: the traditional model-based
methods and deep learning methods. The traditional model-
based methods mainly rely on manually designed human
behavior models. They need hand-crafted settings for the
pedestrian’s walking properties. Hence, many traditional
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model-based methods for trajectory prediction use the social
force [13], [14], [15], [16], which considers the pedestrian
behaviour as the co-operation of several forces. Further-
more, some bayesian model-based methods have also been
proposed for trajectory prediction [17], [18], [19], [20].
However, the traditional model-based methods generally
can’t work well in the crowded scenes because the complex
environmental information is challenging to be fuzed into one
model manually. In the last few years, with the development
of deep learning, the long short-term memory (LSTM) has
been widely applied to the trajectory prediction [21], [22],
[23], [24], which can learn the human intent by human past
trajectories instead of manually designing the human behav-
ior model. Moreover, paper [25] proposes a model combin-
ing sequence prediction and generative adversarial networks,
which can predict more reliable trajectories.

The methods mentioned above suffer relatively low accu-
racy in the long-term trajectory prediction. Due to the only
consideration of the pedestrian’s historical trajectory, exist-
ing methods pay little attention to the space information.
Existing deep learning methods only considering minimiz-
ing the space distances between the predicted trajectory
and the ground truth trajectory. Thus, they ignore the sig-
nificant scene information for long-term trajectory predic-
tion. However, for the long-term trajectory prediction, the
pedestrian’s long-term intent should be extracted by both
the surrounding environment and the historical trajectory.
As the environment contains high spacial information of the
complex surroundings. Different from the existing methods,
our proposed method can minimize both the space and time
distance to generate a more reliable trajectory prediction.

In this paper, we propose a space-time tree search (STTS)
method to generate the future trajectory in the scenario of
long-term trajectory prediction. Different from existingmeth-
ods only considering the problem from the space dimension,
we convert the trajectory prediction problem to a joint space-
time tree search process. Hence, we can improve the tra-
jectory prediction accuracy from the two dimensions. Then,
a space-time reward trained neural network is employed to
extract the pedestrian’s intent with both the scene image
and the historical trajectory as input and outputs the prior
search probabilities. Finally, the tree search is employed to
obtain the optimal predicted trajectory by the outputted prior
probabilities, which can significantly promote the tree search
efficiency. The contributions of our proposed method are
summarized as follows.

A. THE PEDESTRIAN’s INTENT PREDICTION
The pedestrian’s intent is of great importance in the long-term
trajectory prediction. Different from existing methods only
considering the scene information or the historical trajectory,
we employ a neural network to learn the pedestrian’s intent
with both the scene image and the historical trajectory as
input. Then, the neural network will output the prior search
probabilities to guide the tree search process and can be
trained by the space and time reward.

B. THE TREE SEARCH PROCESS
The environment is converted to a grid map by the super-
pixel segmentation network [26] and the scene parsing net-
work [27].Meanwhile, the historical trajectory is employed to
improve the performance of converting. After converting the
environment to a grid map, the trajectory prediction problem
is transformed into a grid search game. Hence, we can use the
tree search to find the optimal trajectory prediction according
to the prior probabilities outputted by a space-time trained
neural network. The prior probabilities outputted by the neu-
ral network can guide the tree search to explore the grid point
with high prior probability. Hence, the search efficiency can
be significantly improved.

C. THE SPACE AND TIME REWARD
The space and time reward is calculated at each predicted grid
point in the grid map. Especially, the space reward is relative
to the minimum distance between the currently predicted grid
point and all the grid points in the ground truth trajectory. The
time reward is relative to the distance between the currently
predicted grid point and the grid point in the ground truth
trajectory at the same time. Hence, the space and time reward
can make the predicted trajectory more similar to the real
trajectory.

After testing, in the datasets: UCLA, hyang, and coupa,
the performance of our proposed method improves 21.22%,
25.21%, and 18.39%, respectively, compared with the ‘‘dark
matter’’ method [28]. The rest of the paper is organized as
follows. We first introduce the related works of trajectory
prediction in Section II. Then, in Section III, the space time
tree search process will be illustrated detailedly.What’s more,
the experimental results will be shown in Section IV. Finally,
we conclude our work in Section V.

II. RELATED WORK
A. TRADITIONAL MODEL-BASED METHODS FOR
TRAJECTORY PREDICTION
Social force is firstly proposed in paper [13], which considers
the pedestrian behavior as the co-operation of three main
forces: acceleration towards the desired velocity of motion,
repulsive force and attractive force. Later, Mehran et al. [15]
propose that the pedestrian’s interaction force can be esti-
mated based on the social force model. A discrete choice
model of pedestrian behavior is proposed in [29], which
uses a dynamic and individual-based spatial discretization
to represent the physical space. Furthermore, the Bayesian
model [19], [20] has also been proposed to model activities
and interactions in crowded and complicated scenes for tra-
jectory prediction. Recently, Xie et al. [28] present a method
for predicting human intents and trajectories in surveillance
videos of public spaces by using ‘‘dark matter’’, which can
only be observed as an attractive or repulsive ‘‘field’’ in the
public space.

Besides, some agent-based methods [30], [31] have also
been proposed for the trajectory prediction. Paper [32]
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FIGURE 1. The pedestrians’ trajectories. The red circle denotes the start
point and the blue circle denotes the end point(destination).

proposed Linear Trajectory Avoidance (LTA) model for the
short-term trajectory prediction, inspired by models devel-
oped for crowd simulation. A novel model for pedestrian
behavior modeling is proposed in [33], which includes sta-
tionary crowd groups as a key component. It can also be
employed to investigate pedestrian behaviors by inferring
interactions between stationary crowd groups and pedestri-
ans. Another method proposed in [34] models the joint dis-
tribution over future trajectories of all interacting agents in
the crowd by a real human trajectory data trained interaction
model, which can infer the velocity of each agent. Then, the
proposed method can infer the goal of the agent from its
past trajectory and use the learned model to predict its future
trajectory.

Themain disadvantage of traditionalmodel-basedmethods
is that the output accuracy depends very much on man-
ual feature engineering, such as walking directions, walking
velocity, interactive action among persons, etc. When we face
a crowded environment, these features are very complex to
model. Moreover, when we tackle with long-term trajectory
prediction tasks, predicting the motions of human targets is
extremely challenging.

B. DEEP LEARNING METHODS FOR
TRAJECTORY PREDICTION
With the development of AI, deep learning has been widely
applied in our daily life [35], [36], [37], [38], [39], [40].
Especially, recurrent neural network (RNN) is widely used
to analyze the structure of the time-series data. One popu-
lar variant of RNN is the long short-term memory (LSTM)
model [41]. The LSTM has shown excellent performance
for various tasks such as speech recognition [42], [43],
image captioning [44], [45], language translation [46], [47]
and so on.

The LSTM has also been applied to analyze the pedestrian
trajectory prediction task because the pedestrian trajectory
can also be considered time-series data. Compared with tra-
ditional model-based methods, deep learning based methods

can learn human intent by historical trajectory data without
manually designing a human behavior model. Alahi et al. [21]
proposed one Social-LSTM model to generate the future
trajectory by analyzing the past trajectory, which doesn’t
incorporate the scene information and will be unreasonable
to generate trajectory. A DESIRE (Deep Stochastic Inverse
optimal control RNN Encoder-decoder) model is proposed
in [48] for trajectory prediction, which is realized by a sin-
gle end-to-end trainable network. It can effectively predict
future trajectory in multiple scenes by using an RNN scene
context fusion module to jointly capture past motion his-
tories, the semantic scene context and interactions among
multiple agents. Xue et al. [23] use the SS-LSTM network
to model the scene information and the past movement tra-
jectories of pedestrians, which generates better results for
future trajectory. Zhang et al. [24] propose a data-driven
state refinement module for the LSTM network (SR-LSTM),
which can activate the utilization of the current intention of
neighbors. Besides, a model combining sequence prediction
and generative adversarial networks is proposed in [25] for
predicting more reliable trajectories. However, the LSTM-
based methods do not characterize the relationship between
the past trajectories and the current intents of a human at a
specific area of a scene, that the error will be accumulated in
the long term trajectory prediction.

III. SPACE-TIME TREE SEARCH
In this work, we first convert the scene image into a grid
map by superpixel segmentation, scene parsing network, and
walkable region correction. Then, we divide the scene image
into many small grids, label the grids to a walkable or non-
walkable region and correct the errors in the labeling process,
respectively. After that, we use neural networks to extract
human behavior and surrounding environment information.
Authors of [49] proposed a model which utilizes LSTM to
extract the multiple time-scale information contained in the
convolutional layers in CNN. The model performed well
on hotspots prediction tasks. Motivated by [49], we employ
an LSTM to output the prior search probabilities with the
extracted information from CNN as input. Finally, the tree
search will generate the optimal trajectory according to the
prior probabilities. A feature of the proposed method is con-
sidering the trajectory problem from space and time dimen-
sions. Hence, we use a space-time reward to train the neural
networks in the training process.

A. PROBLEM FORMULATION
Assume the coordinate of pedestrian at time t is (xt , yt ),
we can transform the coordinate to a grid coordinate gtmn
by the superpixel network. Then, the trajectory prediction
problem is converted into a sequence grid coordinates pre-
diction problem from time t + 1 to T with the histori-
cal trajectory {g1mn, g

2
mn, . . . , g

t
mn}, where T is the terminal

time. Here, the predicted trajectory is denoted as Dpre =
{gt+1mn , g

t+2
mn , . . . , g

T
mn} and the corresponding ground truth

trajectory is denote U = {(gt+1mn )U , (gt+2mn )U , . . . , (gTmn)U }.
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FIGURE 2. (a) The original image. (b) The superpixel image. (c) The superpixel segmented image. The gray pixel is walkable. The green pixel is
non-walkable. (d) The corrected superpixel segmented image. The gray pixel is walkable. The green pixel is non-walkable.

Hence, the optimization objective is to minimize the distance
between the predicted trajectory and the ground truth trajec-
tory from both the space and time dimensions as

Dis =
T∑

i=t+1

∥∥∥gimn − (gimn)U

∥∥∥
2

(1)

The part pedestrians’ trajectories are shown in Fig. 1, where
the red circles are the start points, and the blue circles are the
endpoints.

B. GRID-LIKE MAP
We first convert the scenario image to a grid map by
superpixel segmentation network, scene parsing network and
walkable region correction shown in Fig. 2. We use the super-
pixel segmentation network to divide the scenario image into
grids of different shapes. Then, the scene parsing network is
employed to label the grids into the walkable or non-walkable
region. Finally, we use the historical trajectories to correct the
errors of walkable and non-walkable labels. The details of the
three processes are summarized as follows.

1) SUPERPIXEL SEGMENTATION NETWORK
The superpixel segmentation network is based on the method
of [26], which can generate a segmented image with grids
of different shapes. It is realized by the k-means clustering
algorithm, where the distance measure is denoted as

D =

√
d2c +

(
ds
S

)2

m2. (2)

The color similarity is measured by dc, and the spatial prox-
imity is denoted as ds. The grid interval is S, and m weighs
the relative importance between color similarity and spatial
proximity. In this paper, we employ the superpixel segmenta-
tion network to divide the scene image into many small grids
shown in Fig. 2(b). Hence, each trajectory point (xt , yt ) of the
pedestrian can be corresponding to one grid location gtmn.

2) SCENE PARSING NETWORK
In the process of pedestrian trajectory prediction, the pedes-
trian will walk in the walkable region. Hence, we should
obtain the walkable region of the scene image. In this
paper, the Pyramid Scene Parsing Network (PSPNet) [27]
is employed to obtain the category label of each pixel in

the scene image. Generally, the output of the PSPNet has
hundreds of different category labels. However, in this pro-
posed scheme, we only need two categories: walkable and
non-walkable. Therefore, we classify roads and trails into
a walkable category. The tree and building are classified
into a non-walkable category shown in Fig. 2(c). The gray
segment is the walkable region. The superpixel segmentation
network is based on the method of [26], which can generate
a segmented image with grids of different shapes. Then,
the trajectory information can be mapped to discrete grid
locations. The segmented image is shown in Fig. 2(c). Finally,
we calculate the number of walkable and non-walkable pix-
els. If the number of walkable pixels is bigger than the number
of non-walkable pixels, the label of this grid gm,n · C is 1
(walkable). Otherwise, the label is 0 (non-walkable).

3) WALKABLE REGION CORRECTION
The problems of shadow and angle will result in the errors
of walkable and non-walkable labels. Hence, we use his-
torical trajectories to correct the errors. We will calculate
the frequency of the grids in the non-walkable area people
entered according to the humans’ historical trajectories. If the
frequency of the grid is larger than a threshold τ , the label
of the grid will be corrected to 1(walkable). The correction
performance is shown in Fig. 2(d).

Finally, we calculate the number of walkable and
no-walkable pixel. If the number of walkable pixel CW in
each gird is bigger than the number of non-walkable pixel
CN , the label of this grid lgmn is set to 1 (walkable). Otherwise,
the label lgmn is set to 0 (non-walkable). The process can be
represented by

lgmn =

{
1, if CW ≥ CN
0, if CW < CN

(3)

Besides, our whole grid map is denoted as IM×N . The grid
location gtmn is the valid position of IM×N as gtmn ∈ IM×N .
Each pedestrian has following attributions, the current and

historic trajectory as

Ht = {g1mn, g
2
mn, . . . , g

t
mn}, (4)

where t is the time index. The conditional probability of next
moving is p(gt+1mn |g

t
mn), where g

t+1
mn is the adjacent grid of

gtm,n. The grid location of pedestrian’s destination is denoted
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FIGURE 3. The whole framework of deep tree search-based pedestrian trajectory prediction. The framework mainly contains a human behavior
module and a deep tree search network.

FIGURE 4. The tree search process.

as gTm,n, where T is the search terminal time. The prediction
of possible trajectory is denoted as

Dpre = {gt+1mn , g
t+2
mn , . . . , g

T
mn} (5)

C. THE WHOLE FRAMEWORK OF PROPOSED METHOD
In the real environment, the pedestrians will plan their tra-
jectories according to the destination. We propose the space-
time tree search model to generate a longer trajectory shown
in Fig. 3. The space-time tree search model contains the
human behavior module and the deep tree search network.
The inputs of the behavior information extraction network
are the historical trajectory Ht and the scene image Xt , which
are processed by the LSTM and CNN, respectively. Then, the
extracted features FLt and FCt will be concatenated as the
initial state of the LSTM in the deep tree search network.
Finally, the deep tree search network can generate the tra-
jectory from (xt+1, yt+1) to (xT , yT ). In the deep tree search
network, the neural network can output the prior probabilities
for the tree search. Hence, the tree search efficiency can be
greatly promoted. In the next subsection, we will introduce
the tree search process detailedly.

D. THE TREE SEARCH PROCESS
At time t , the position of pedestrians (xt , yt ) is the start
position of our search algorithm. The possible destination

Algorithm 1 The Space-Time Tree Search
1: Calculate the top-K prior probability vector as
EP = {P1,P2, . . . ,PK } according to equation (6)

2: while not reach the destination do
3: Initialize an empty list Lp
4: for i = 1, 2, ..K do
5: The neural network output the probability vector

Epl(gtmn) of grid point corresponding to Pi
6: Calculate Ep(gtmn) according to equation (6)
7: The top K probability values of Pi ∗ Ep(gtmn)

insert the list Lp
8: Expand the search tree with the top K

probabilities in Lp
9: EP← the top K probabilities in Lp

position is denoted as (xT , yT ). Meanwhile, we use a grid
point to represent each position. The trajectory point (xt , yt )
is corresponding to the grid location gtmn. Then the future
trajectory route can be predicted by predicting the future
grid points. Each grid point gtmn has eight adjacent grid
points gt+1mn . Hence, we define the transition probability of
each grid point at the next time as

p
(
gt+1mn |g

t
mn

)
=

∥∥gtmn − gTmn∥∥2∥∥∥gt+1mn − gTmn
∥∥∥2 ∗ pl

(
gt+1mn |g

t
mn

)
(6)

where pl(gt+1mn |g
t
mn) represents the transition probability from

grid point gtmn to grid point gt+1mn and is an element of the
probability vector Epl(gtmn) with a size 1 × 8 outputted by
the neural network. Besides, the pedestrians are more likely
to walk in the direction closer to the destination. Hence,
in the first term in the equation (6), the numerator represents
the Euclidean Distance from the current grid point to the
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FIGURE 5. The predicted multiple possible trajectories at different start points. As the pedestrian walks, the number of predicted possible trajectories
will decrease to 1.

destination grid point. And the denominator represents the
Euclidean Distance from the next possible grid point to the
destination grid point. Then, suppose the next possible grid
point is closer to the destination grid point. In that case, its
transition probability will be relatively higher. Finally, for
the eight transition probabilities, we choose the grid points
corresponding to the largest K probabilities as the possible
moving positions at the next time. On the other hand, although
gtmn has eight adjacent grid points gt+1m,n , we get from the
previous section that K possible grid points must meet the
following conditions: lgt+1mn

= 1, which means the grid point
must be walkable.

As shown in Fig. 4, we take K = 3 as an example and
get the corresponding probability values, which are denoted
as p11, p

1
2, p

1
3. Then at time t + 1, we need to predict the

probability values of three new grid points according to
equation (6). Similarly, each grid point selects three adjacent
grid points with the largest probability value, as shown in
the figure, we get nine probability values p21, . . . , p

2
9. For

boosting the search speed, we calculate the joint probability
distribution of the obtained probability values, which are
P1 ∗ p21,P1 ∗ p

2
2, . . . ,P2 ∗ p

2
4, . . . ,P3 ∗ p

2
9, where P1 =

p11,P2 = p12,P3 = p13. Then we select the three grid
points corresponding to the maximum three joint probabili-
ties of the nine as the final three estimated trajectory points
at time t + 1. We finally select p22, p

2
4, p

2
9. Then the prior

probabilities can be updated to P1 = p11 ∗ p
2
2,P2 = p12 ∗

p24,P3 = p13 ∗ p
2
9. Repeat the above steps until you reach

the destination grid point. The whole process is summarized
as Algorithm 1.

Algorithm 2 Training the Neural Networks
Input: The trajectory set �, the scene image X
Output: The trained parameters of the networks θ

1: Initialize θLhbm, θ
C
hbm, θh, θ

C
enc, θ

L
gen, θp randomly

2: while within max predicting steps do
3: Sample a trajectory U (t) from trajectory set �
4: FLt = LSTMhbm

(
Ht ; θLhbm

)
5: FCt = f Chbm

(
Xt ; θChbm

)
6: Ft = concat(FLt ,FCt )
7: ht = f1 (Ft ; θh)
8: ft = f Cenc

(
Gtp,G

t
l ; θ

C
enc

)
9: pl

(
gtmn

)
= f2

(
LSTMgen

(
ft , ht ; θLgen

)
; θp

)
10: Expand the search tree according to pl

(
gtmn

)
11: Repeat step 4-10 until reaching the destination
13: Obtain the prediction trajectory Dpre
14: Calculate the space-time reward R
15: Update the parameters of the networks by

θ ← θ + α∇θ log pl
(
gtmn

)
R

E. DESTINATION SELECTION
In the previous subsection, we need to calculate the search
probability p

(
gt+1mn |g

t
mn
)
, which is relative to the trajectory’s

destination. The destination selection contains three steps.
Firstly, we will analyze the start points and end points of the
historical trajectories. For each start point Ps, we will build a
memoryMPs for its possible end points as

MPs = {(P
i
e,O

i
e)} (7)
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where Pie is one of the Ps’s corresponding end points and
Oie denotes the occurrence frequency of Pe. Then, when
predicting a trajectory, we will obtain all the possible end
points corresponding to the start point in the range, which
is a circle of radius R centered at the start point. Then,
we will select N possible end points, which have the top-N
occurrence frequencies as the possible destinations. Finally,
we will generate N possible trajectories by the tree search
in the start point Ps. The tree search process generates the
N possible trajectories independently according to the corre-
sponding destinations. Besides, as the pedestrian walks, theN
possible trajectories will be gradually corrected. Some possi-
ble trajectories will be abandoned until one trajectory is left
because their end points are in the opposite direction of the
pedestrian walking. As shown in Fig. 5, from top to bottom
and from left to right, at the initial start point, the number of
predicted possible trajectories is 3. Then, as the trajectory is
searched, the number of predicted possible trajectories will
decrease to 1.

F. NETWORK TRAINING
1) REWARD DEFINITION
The reward contains two parts: space reward and time reward.
The space reward is denoted as the difference between pre-
dicted and true trajectory in walking space. The time reward
represents the difference between predicted and true trajec-
tory in walking time.

Consequently, the normalized game reward in terms of
space dimension is given by

Rs =

∑
t→T
‖U (t + 1)− U (t)‖2∑

t→T
Fs
(
Dpre(t)− U

) (8)

where U (t) is grid location of the ground truth trajectory
at time t . The denominator of equation (8) is the difference
of prediction between ground truth trajectory in l2-norm
and the numerator is the distance of ground truth trajectory.
Considering the different walking speed among each
agent, the strict trajectory synchronization is not required.
We employ a function Fs to calculate the trajectory dis-
tance by find the minimal distance from ground truth
trajectory U as

Fs
(
Dpre(t)− U

)
= min

o→T

∥∥Dpre(t)− U (o)
∥∥2 (9)

Hence, we can introduce the time-reward as

Rt =

∑
t→T
‖U (t + 1)− U (t)‖2∑

t→T

∥∥Dpre(t)− U (t)
∥∥2 (10)

Consequently, the space-time reward is given by

R = βRs + (1− β)Rt (0 < β < 1) (11)

where β is a regulator factor to balance the reward of space
and time.

TABLE 1. The network structure of CNN.

2) TRAINING DETAILS
We need to consider the influence of historical trajectory
information and scene information simultaneously when
selecting the probability of grid points the next time. Hence,
in this section, we mainly discuss the specific structure of the
neural network. Firstly, we use a neural network to extract the
whole scene and historical track information. Then, we use
the extracted feature vector as the initial hidden state of the
LSTM network. Meanwhile, we map the output of the scene
LSTM unit to the selection probability of current grid point
pl(gt+1mn |g

t
mn) by the fully connected layer. The CNN is based

on Resnet [50], which contains 6 parts. The size of input
image is 244× 244× 3. The first part is a convolution layer
with a 7 × 7 kernel. The 2-5 parts all consist of a max-
pooling layer and three residual blocks. The sixth part is a
6 × 6 max-pooling layer. The final output is a vector with
512 dimensions. The total amount of parameters in CNN
is 48142.

Scene information and historical trajectory contain the
basic information needed for trajectory prediction. At time t ,
the pedestrian’s trajectory is Ht . In order to obtain the
continuous trajectory information, we use a LSTM in the
human beaviour module(HBM) to extract observed informa-
tion before time t . Then the hidden state FLt contained in
the trajectory information of the pedestrian at time t can be
expressed as

FLt = LSTMhbm

(
Ht ; θLhbm

)
(12)

where LSTMhbm represents the encoded LSTM network for
pedestrian trajectory extraction. The extracted hidden state
of pedestrian’s trajectory is denoted as FLt . θLhbm is weight
matrix of LSTM. Meanwhile, for extracting the hidden infor-
mation of the scene information, we train a HBM CNN
network to get the feature vector of the scene image FCt as

FCt = f Chbm(Xt ; θ
C
hbm), (13)
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FIGURE 6. The MADEs of our proposed method under varying parameter
values in the dataset: UCLA. The blue line is under parameter K , which is
set to {2,3,4,5,6,7}. The red line is under parameter β, which is set to
{0,0.2,0.4,0.6,0.8,1.0}.

where θChbm is the corresponding weight matrix and Xt is
the scene image. After getting the historical trajectory infor-
mation FLt and scene feature information FCt at time t ,
we linearly concatenate the two features into Ft as

Ft = {FLt ,FCt }. (14)

where, FLt is a 1×L vector and FCt is a 1×C vector, thus Ft
is a 1× (L + C) vector. Then, we use a fully connected layer
to get the initial hidden state ht = f1(Ft ; θh) for the selection
probability generation LSTM(LSTMgen). Through the linear
concatenation process and nonlinear activation of deep learn-
ing models, we can obtain a hidden vector containing both
trajectory and space features in a scene.

After getting the hidden unit, we need to decode the h0
to get the predicted trajectory point. At time t , we obtain
the local grid image information Gtp centered on gtmn and the
corresponding label image informationGtl . Then we extract a
feature vector value ft through an encoder CNN network as

ft = f Cenc(G
t
p,G

t
l ; θ

C
enc), (15)

where θCenc is the weight of CNN. Then we will take ft as
the input of LSTMgen and ht as the hidden unit input at the
current time. The hidden state value ht+1 of the next time is
obtained by LSTMgen. In order to obtain the state selection
probability at time t+1, we use a fully connected network to
map the hidden state ht+1 to action select probability pl(gtmn).
The weight matrix of LSTMgen is denoted as θLgen. Finally, the
prior probability provided by the neural network in the current
state can be obtained as

Epl(gtmn) = f2
(
LSTMgen

(
ft , ht ; θLgen

)
; θp

)
(16)

Through the search algorithm, we can select the optimal
trajectory prediction according to the prior probability. Then
we can update the weights θ of the whole neural network as
the policy gradient [51], which is given by

θ ← θ + α∇θ log pl
(
gt+1mn |g

t
mn

)
R (17)

TABLE 2. The performance comparison with serval existing method. Our
proposed method has the best performance in all the three datasets.

The training process is summarized in Algorithm 2. Firstly,
the scene information and the historical trajectory are
inputted into the neural network to get the prior search proba-
bilities. The search tree will be expanded. This process will be
executed repeatedly until we reach the destination. Then we
calculate the reward according to the predicted and ground
truth trajectory. Finally, the whole neural network can be
updated according to the equation (18).

When the predicted grid point reaches or near the target
point, we stop the search and assume that the final output of
K prediction trajectories is ai � Dk , k = 1, 2, ..,K . Hence,
we can build the loss function as

L =
K∑
k=1

∥∥∥∥∥∑
t→T

Fs (ai · Dk (t)− ai · U)

∥∥∥∥∥
2

+α

∥∥∥θChbm∥∥∥+ β ∥∥∥θLhbm∥∥∥+ γ ∥∥∥θCenc∥∥∥+ δ ∥∥∥θLgen∥∥∥ (18)

where α, β, γ, δ are the coefficients of regularization term.
Fs is the distance difference between each predicted trajectory
point and the nearest real trajectory point. ai � U is the true
trajectory.

IV. EXPERIMENT
In this section, we conduct experimental studies to evaluate
the performance of the proposedmethod by comparing it with
existing Social LSTM [21], Dark Matter [28], Social GAN
and SR-LSTM [24] methods.

A. DATASETS AND METRICS
Our proposed model is evaluated on three public pedes-
trian trajectory datasets: UCLA campus [28], hyang [52]
and coupa [53]. These three datasets have different scenes:
courtyard, crossroad, and park. Besides, we also test our pro-
posed model on our own collected campus dataset. Among
the datasets, UCLA campus dataset contains the most amount
of complex scenarios where the moving directions of people
cross each other. Thus, the prediction tasks on UCLA campus
dataset was the most challenging.

In our experiments, we use the Mean Average Displace-
ment error (MADE) [32] in meters as the metric to evalu-
ate the performance of trajectory prediction. The MADE is
the Mean Euclidean distance between predicted points and
ground truth at all predicted time steps. In our method, the
MADE is calculated by the ground truth trajectory and its
closest predicted possible trajectory.
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FIGURE 7. The pedestrian trajectory prediction performance of our proposed model in the datasets: UCLA, hyang, and coupa. The green line is the
ground truth trajectory and the blue line the prediction trajectory.

B. IMPLEMENTATION DETAILS
The network structure of CNN is shown in Table 1. The
final output size of CNN is 512. The number of LSTM units
is 500. The parameter β is set to 0.6, which is used to balance
the proportion of the space reward and time reward. The
parameter K is set to 4, which is the number of the expanded
nodes at each level during the tree search process. The number
of possible end points N is set to 5. The threshold τ of
walkable region correction is set to 6. The range R of the
start point is set to 5. During the training process, the mini-
batch size is set to 32. The learning rate is set to 0.0001 and
the training optimizer is Adam. These hyperparameters are
all obtained by the trading off between the performance and

computation complexity through trial in their possible values
after grid searching in the given range.

C. EXPERIMENTAL RESULTS UNDER VARYING
PARAMETER VALUES
The MADEs of our proposed method under varying param-
eter values in the dataset: UCLA are shown in Fig. 6. The
parameter K is the number of the expanded nodes at each
level during the tree search process. The parameter β is
employed to control the proportion of the space reward and
time reward.

The blue line is under parameter K and as the K
increases, theMADE of our proposedmethodwill get smaller
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FIGURE 8. The pedestrian trajectory prediction performance of our proposed model in the datasets: our campus, which contains
two different scenes. The green line is the ground truth trajectory, and the blue line is the prediction trajectory. The predicted
trajectories are very close to the ground truth trajectories.

at β = 0.6. It means that in the tree search process, more
expanded nodes at each level during the tree search pro-
cess will improve the performance of the proposed method.
However, the computation complexity will significantly
increase. After balancing the performance and computation
complexity, we select K = 4.
The red line is under parameter β and as the β increases,

the MADE of our proposed method will first get smaller and
then get bigger. Hence, we select β = 0.6, which gets the
smallest MADE. It means space and time rewards are equally
important for the long-term trajectory prediction. What’s
more, only considering the space reward or time reward will
perform much worse.

D. COMPARISON WITH EXISTING METHODS
In this section, our model is compared with several recent
existing works: (1) Social LSTM [21]: An LSTM model is

proposed to learn general human movement and predict their
future trajectories. (2) Dark Matter [28]: A model is pro-
posed to infer ‘‘Dark Matter’’ and predict pedestrian intents
and trajectories. (3) Social GAN [25]: A pedestrian trajec-
tory prediction model is proposed by combining tools from
sequence prediction and generative adversarial networks.
(4) SR-LSTM [24]: A data-driven state refinement module
for the LSTM network is proposed to activate the utilization
of the current intention of neighbors.

The experimental results are shown in Table 2. The datasets
and evaluation metrics are set to be consistent for all of the
methods. TheMADEs of our proposedmodel are the smallest
in all the three datasets, which means that the predicted tra-
jectory of our proposed model is closest to the real trajectory.
We can also know that the method ‘‘Dark Matter’’ performs
the second best. The reason is that our proposed model and
the ‘‘DarkMatter’’ method both utilize the surrounding latent
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environment information, which can correct the accumulated
error during the long-term trajectory prediction. The ‘‘dark
matter’’ method uses the ‘‘dark matter’’ to represent the
surrounding latent environment information, which plays a
key role in the trajectory prediction. In our model, we use the
neural network to extract the surrounding latent environment
information, which has an excellent instructive effect during
the tree search for the trajectory prediction. Besides, our
proposed method considers both the space and time dimen-
sions, which make our proposed method perform better than
the ‘‘dark matter’’ method. The trajectory prediction perfor-
mance of our proposed model on UCLA campus dataset is
shown in Fig. 7. The green line is the ground truth trajectory,
and the blue line is the prediction trajectory. From the results,
we can observe that even people move in various directions,
our method can precisely predict the trajectory. In the three
datasets, the predicted trajectories of ourmodel are all close to
the real trajectory. After calculating, in the datasets: UCLA,
hyang and coupa, the performance of our proposed method
improves 21.22%, 25.21%, and 18.39%, respectively, com-
pared with the ‘‘dark matter’’ method [28].

Finally, We also tested our proposed model on our campus,
which contains two different scenarios. Our proposed method
can perform well in both scenarios shown in Fig. 8 where the
green line is the ground truth trajectory, and the blue line is
the prediction trajectory. It proves that our proposed method
can be applied to the real environment and is adapted to a
variety of scenarios.

V. CONCLUSION
In this paper, we develop a space-time tree search method
for long-term pedestrian trajectory prediction. Different from
existing methods only considering the problem from the
space dimension, we transform the trajectory prediction prob-
lem into a joint space-time tree search process by mapping
the environment to a grid map. Actually, the human trajec-
tory contains the space and time dimensions. Hence, we can
improve the trajectory prediction accuracy from the two
dimensions. Then, we employ a space-time reward-trained
neural network to boost the tree search to obtain the optimal
predicted trajectory, where the neural network can output
the prior search probabilities. After testing, in the datasets:
UCLA, hyang, and coupa, the performance of our proposed
method improves 21.22%, 25.21%, and 18.39%, respectively,
compared with the ‘‘dark matter’’ method [28].

In future work, we will consider migrating our proposed
model to the crowded scenario. In the crowded scenario, the
behaviors of pedestrians can influence each other. Hence, the
neural network should be able to extract the surrounding
pedestrians’ information. It may be a scheme to realize it
using objection detection and tracking.
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