IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 15 September 2022, accepted 6 October 2022, date of publication 10 October 2022, date of current version 20 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213664

== RESEARCH ARTICLE

Hardware Acceleration of Data Distribution
Service (DDS) for Automotive Communication
and Computing

CLAUDIO SCORDINO !, (Member, IEEE), ANGELA GONZALEZ MARINO 2,
AND FRANCESC FONS 2, (Senior Member, IEEE)

"Huawei Research Center, 56124 Pisa, Italy
2Huawei Technologies Duesseldorf GmbH, 80992 Munich, Germany

Corresponding author: Angela Gonzalez Marifio (angela.gonzalez.marino@huawei.com)

This work was supported by Huawei Technologies Duesseldorf GmbH.

ABSTRACT The increasing growth in complexity of vehicles’ functionalities is driving a technological shift
in the design of software architectures in the automotive industry. Traditional signal-oriented networking
is being replaced by service-oriented communications enabled by a new generation of Electronic Control
Units (ECUs). The growing interest for full-fledged middlewares can be supported by these powerful ECUs.
However, the new capabilities come at a non-negligible cost, which conflicts with the need to design a
cost-effective solution that allows for meeting aggressive budget goals in a high volume market like auto-
motive. In this paper, we illustrate how a significant part of the functionalities of a powerful middleware like
Data Distribution Service (DDS) can be effectively implemented through hardware accelerators. We show
that our approach can guarantee high performance while minimizing system complexity at the software
level (e.g. AUTOSAR) by shifting painful or inefficient software implementations of QoS policies directly
to hardware. This, in turn, allows to build cost-effective solutions suitable for next-generation automotive
systems.

INDEX TERMS Automotive, AUTOSAR, DDS, networking, real-time, service-oriented, hardware accel-
erators.

I. INTRODUCTION pliers, service providers and companies from the electronics,

For decades, automotive has been a very conservative indus-
try, with electronic functionalities made of simple Electronic
Control Units (ECUs) executing tiny real-time operating sys-
tems (RTOSs) and communicating through domain-specific
networks (e.g. CAN, LIN, FlexRay). The main focus has
been on safety and qualification (e.g. [SO26262 [1]), while
cost production has been kept under control through stan-
dardization. In particular, the AUTOSAR (AUTomotive Open
System ARchitecture) partnership, started in 2004, has coor-
dinated and driven a huge international effort to create an
open and standardized software architecture for automotive
ECUs. The consortium has fostered the growth of an open
market where different actors (vehicle manufacturers, sup-

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak

109626

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

semiconductor and software industry) can collaborate based
on common specifications.

Fig. 1 shows an example of a traditional ECU for Gaso-
line and Diesel engines based on the original specifications
(named AUTOSAR Classic [2]). The ECU receives a set
of inputs (from the human driver, through the pedals and
the cruise-control lever, from sensors or other ECUs) and
controls the injection system and the throttle. The inter-
ested readers can refer to the original study [3] for fur-
ther details. As illustrated in Fig. 1, at the bottom part,
the AUTOSAR software stack contains the Microcontroller
Abstraction Layer (MCAL). This layer, usually provided
by the chip vendor, has direct access to the on-chip MCU
peripheral modules and external devices and makes the
upper layers independent of the specific microcontroller
(MCU). An intermediate layer (called “Basic Software’)

VOLUME 10, 2022

https://orcid.org/0000-0003-3378-3307
https://orcid.org/0000-0003-2123-7915
https://orcid.org/0000-0001-5901-7534
https://orcid.org/0000-0001-5822-3432

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

Cruise

)

Control
Lever

Acceleration
and brake
pedals

AUTOSAR Software stack:

| Application software

Torque >

Engine ECU

request

Additional sensors
(e.g. pressure,

Iy

temperature)

e

Fuel injection-
ignition system

Throttle /
valve

Communication and m ECU
system services [T | | Abstraction
layer m | Layer Complex
Device
Interface Interface (CDD)
RTOS
‘ [MCAL‘

FIGURE 1. Example of automotive ECU for gasoline and diesel engines.

contains the real-time operating system (RTOS), based on
the OSEK/VDX standard [4], and provides a a set of ser-
vices (including communication). The generated Run-Time
Environment (RTE) abstracts the communication path to the
application. Finally, the functional part is implemented by the
application layer consisting of a set of Software Components
(SWCs).

The recent exponential increase in complexity of automo-
tive systems [5], due to the integration of novel functionalities
like assisted or autonomous driving, has shown the limits of
the original specifications, calling for a revolutionary shift
in the design of the computing platforms and the related
software stacks [6], [7]. Current luxury cars already contain
more than 100 ECUs for a total of more than 100 million lines
of code [8].

To properly address this novel class of functionalities, the
consortium has thus introduced an additional standard, called
AUTOSAR Adaptive [9]. The software stack for this kind of
ECUs consists of a general-purpose OS based on the POSIX
standard (e.g. Linux) and a set of C++4- libraries to support
multi-thread applications. In this novel standard, the original
signal-oriented paradigm has been replaced by a modern
service-oriented architecture (SoA). Using this paradigm, the
various software components are decoupled from each other
and communicate by requesting and providing ‘“‘services”.
Each component can be designed in isolation and the sys-
tem is assembled by composing and integrating the various
functionalities. This separation of concerns [10] allows to
lower the complexity of the designed system to a manageable
level through composability, scalability and reusability of the
various components.

At the same time, automotive OEMs have started replacing
traditional automotive networks with general-purpose net-
works (namely, Ethernet) that allow to reach higher through-
puts and also solve the issue of complex cabling inside the
vehicle [11], [12], [13]. Following the trend towards Ether-
net networks inside the vehicle, Time Sensitive Networking
(TSN) technologies are also being explored for automotive
purposes [14]. TSN brings the determinism that Ethernet

VOLUME 10, 2022

lacks and allows to bridge the gap towards the integration of
Ethernet into real time systems such as IVNs [15].

Among the various available technologies for implement-
ing SoA, Data Distribution Service (DDS) [16] is becom-
ing a de-facto communication standard. The reason behind
the success of DDS relies on its very powerful Quality of
Service (QoS) mechanisms, that allow to set requirements
at various levels of the communication stack and shape
the traffic accordingly. DDS is already supported by most
frameworks used for modern high-performance functionali-
ties in automotive. These include, for example, the mentioned
AUTOSAR Adaptive, the Robot Operating System (ROS2)
framework [17] and its derived Apex.OS operating sys-
tem [18]. In fact, according to some recent investigations [19],
the ROS framework is already being used by about 80% of
the automotive OEMs and Tier-1s developing autonomous
vehicles. Moreover, an on-going effort aims at including the
DDS support also in the more traditional AUTOSAR Classic
standard [20].

DDS is not just a protocol. It is a full-fledged middleware.
Therefore, it should not surprise the fact that some of its pow-
erful functionalities come at a price, often requesting power-
ful hardware to be timely executed. In this paper, we illustrate
how some functionalities can be effectively implemented by
hardware accelerators, relieving slow microcontrollers of the
execution of heavy computations and allowing the overall
system to better meet the timing requirements. To the best of
the authors’ knowledge, this is the first attempt to propose
the implementation of DDS functionalities with hardware
support. Furthermore, we explore the combination of DDS
with TSN technologies from a HW perspective, allowing to
integrate the QoS features at different levels.

The paper is organized as follows. First, section II presents
the key characteristics of the DDS middleware. Second,
section III introduces the context of DDS in automotive and
illustrates some automotive use-cases that can take advan-
tage of DDS features. Section IV introduces TSN tech-
nologies in the context of automotive. Section V introduces
a new HW-based network processing architecture, called

109627

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

Elastic Gateway (eGW), where DDS and TSN features can
be deployed, together with the Software Defined Network
(SDN) implementation paradigm. Then, Section VI explains
how some DDS functionalities can be effectively moved to
hardware accelerators and describes the deployment of such
features into the eGW architecture. Subsequently, Section VII
describes the framework that allows to integrate DDS fea-
tures in the HW implementation from a high level SW-
based definition. Later, Section VIII explores the intersection
between DDS and TSN technologies. Section IX compares
our HW-centric approach with the AUTOSAR SW-centric
approach and shows how our proposal is not orthogonal with
AUTOSAR software stack but compatible and integrable
with it. Before concluding, Section X shows a proof-of-
concept of HW-accelerated DDS in eGW based on real hard-
ware. Finally, Section XI states the conclusions and future
work.

Il. DATA DISTRIBUTION SERVICE (DDS)

Originally proposed in 2001, DDS became an Object
Management Group (OMG) standard in 2004, with several
open-source implementations available nowadays. OMG [21]
is an international not-for-profit consortium producing and
maintaining computer industry standards for the design of
interoperable and portable systems.

The DDS specifications [16] describe a Data-Centric
Publish-Subscribe model for distributed application commu-
nication. This model builds on the concept of a “global
data space” contributed by publishers and accessed by sub-
scribers: each time a publisher posts new data into this global
data space, the DDS middleware propagates the information
to all interested subscribers. The data-centric communication
allows to decouple publishers from subscribers, thus building
a very scalable and flexible architecture. The underlying data
model specifies the set of data items, identified by ““topics™.

A Topic corresponds to a single data type, but it may gather
multiple data-object instances (in which case, differentiated
by some key data field). DataWriter is the typed object used
by an application to communicate to the Publisher the value
of data-objects of a given type. The Publisher, which can
publish data of different data types, is then responsible for
data distribution according to the configured QoS policies.
Similarly, Subscriber is the object responsible for receiving
data of different data types. To access the received data, the
application must use a typed DataReader attached to the
Subscriber. Thus, a subscription is defined by the association
of a DataReader with a Subscriber. On the subscriber’s side
the notification can be either synchronous or asynchronous.
A domain is a distributed concept that links all the applica-
tions able to communicate with each other. Only publishers
and subscribers attached to the same domain may interact. A
DomainParticipant represents the local membership of the
application in a domain.

Fig. 2 shows a simplified vision of the interaction between
a sender and a receiver belonging to the same domain. Before
the communication can occur, the sender needs to instantiate

109628

TABLE 1. Supported QoS policies of DDS version 1.4.

‘g
B=
.9
£44 43
J.3.994
CEFEER
. - F3dH9 8
QoS policy Description AAQAAH
USER_DATA Custom user data X[X[Xx
TOPIC_DATA Custom user data X
GROUP_DATA | Custom user data X[X
DURABILITY |[If data should “outlive” their writing |x|x X
time (e.g. late-joining DataReaders)2P¢
DURABILITY_ | Specifies the service implementing the X X
SERVICE durability (if any)®
PRESENTATION |How changes to data are presented to X| X
subscribing applications®P¢
DEADLINE Maximum time after which DataReader | x|x X
expects an update of periodic data®®
LATENCY_ Maximum delay from data write to data |x|x X
BUDGET reception and notification®®
OWNERSHIP If multiple DataWriters can write the|x|x X
same data instance®P¢
OWNERSHIP_ | Strength of the DataWriter for arbitration | |x
STRENGTH in case of exclusive OWNERSHIP®
LIVELINESS Mechanism to determine if an entity is|Xx|x X
active (“alive”)?Pc
TIME_BASED_ |Minimum time a DataReader is X
FILTER interested in receiving updates
PARTITION Logical partition among the topics visi- X[X
ble by the Publisher and the Subscriber®
RELIABILITY | Reliability level of message delivery®P¢ |x|x X
TRANSPORT_ | Priority to be used on underlying X X
PRIORITY transport®
LIFESPAN Maximum time of validity of written| [x X
data, to avoid delivery of “stale” data®
DESTINATION_ |Logical order among changes made by | x|x X
ORDER Publishers to the same data instance®P¢
HISTORY Behavior in case a sample changes be- | x|x X
fore being communicated®
RESOURCE_ Maximum amount of resources X| X X
LIMITS consumed by the service
ENTITY_ Behavior of an entity when creating X| x| X
FACTORY other entities
WRITER_DATA_| Behavior of DataWriter with respect to X
LIFECYCLE the lifecycle of the data-instances
READER_DATA_| Behavior of DataReader with respect to |x
LIFECYCLE the lifecycle of the data-instances

@ Values on the publishing and subscribing sides must be compatible.

b Not changeable.

¢ May appear as in-line QoS inside RTPS messages [22].

DomainParticipant, Topic, Publisher and DataWriter. Simi-
larly, the receiver must instantiate DomainParticipant, Topic,
Subscriber and DataReader. The DDS middleware will then
take care of matching the two endpoints and properly deliver
the sent messages. The interested readers can refer to the
protocol specifications [16] for a full explanation.

It is important to note that the main DDS specification
does not address the underlying transport protocol used for
exchanging messages (e.g. TCP and UDP). This function-
ality is provided by the underlying Real Time Publish Sub-
scribe (RTPS) wire protocol [22], specifically designed to
support the unique requirements of data-distribution ser-
vices. A recent Request For Proposals by OMG [23] aims at

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

| Sender App ‘ ‘DomainParticipant|

| create participant |
"

7 create topic ;l

‘ —{ Topic |

create publisher i

Publisher

create data writer

Operating systems/ !

| DomainParticipant ‘ ‘ Recv App |

Network ' l

create participant

create topic

create subscriber

create data reader

Z DataWriter

write

L

FIGURE 2. Simplified sequence diagram of DDS.

investigating the usage of DDS on top of Time-Sensitive
Networks (TSN).

A. QUALITY OF SERVICE

The reason behind the success of DDS relies on its very
powerful QoS mechanism, that allows to assign different
QoS policies to the various entities in the system (i.e. Topic,
DataWriter, DataReader, Publisher, Subscriber and Domain-
Participant). These policies allow to control the behavior
of the middleware in terms of timing predictability, over-
head and resource utilization. Table 1 summarizes the pos-
sible 22 QoS policies according to the latest version of the
standard (1.4). The interested readers can refer to [16] for a
full description of the policies.

1Il. DDS IN AUTOMOTIVE: CONTEXT AND USE-CASES

In this section, we discuss the suitability of the DDS mid-
dleware to the automotive domain. We start by introducing
the state of the art of In-Vehicle Network architectures, and
discuss the current challenges and opportunities regarding
the design of such networks. Then, we introduce the topic
of Functional Safety, which is relevant to the automotive
domain, where HW-accelerated DDS capabilities can be ben-
eficial. Later, we discuss the existing alternative to DDS in
automotive: namely, SOME-IP [24]. Afterwards, we cover
the typical aspects that are sometimes seen as a disadvantage
of DDS for embedded systems and show how, today, it is
possible to overcome them. At the end of this section, we
present several use-cases for HW accelerated DDS capabil-
ities in automotive.

A. IN-VEHICLE NETWORK ARCHITECTURE
With the introduction of novel use-cases and technologies
in automotive, the electric/electronic (E/E) architecture of

VOLUME 10, 2022

e— Fthernet backbone .
Domain related buses

Zonal Zonal
Gateway Gateway
HPC
Zonal Zonal
Gateway Gateway

FIGURE 3. Zonal-network architecture deployment in vehicle.

the vehicle is changing radically. In order to achieve the
desired level of autonomy and connectivity, the number of
sensors (e.g. cameras, radars, LIDAR’s, ultrasound) increases
dramatically. Also, the required computation becomes more
complex (e.g. objects/events detection, decision making),
requiring more powerful computing platforms. Apart from
the cost of the new components included, the cost of the
cabling required to connect them is impacting the overall
cost of the solution. As described in [11], [12], and [13], the
In-Vehicle Network is shifting from a logical distribution of
the functionalities (i.e. domain-based architecture) to a phys-
ical distribution (i.e. zone-based architecture). Fig. 3, shows
the new IVN defined for modern vehicles. The architecture is
composed of several zonal gateway controllers which handle
the communication with sensors and actuators of one physical
area, combining the network protocols required for each of
the devices. At the same time, these zonal gateways are con-
nected between them and with the central CPU or High Per-
formance Computer (HPC) through an Ethernet backbone.

109629

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

This distributed zonal architecture simplifies the layout of
sensors, actuators and cabling inside the car. However,
it introduces new technical challenges. Now, each zonal gate-
way needs to manage different network technologies, differ-
ent kinds of functionalities and traffic with different criticality
levels. Authors in [25] review the challenges of current [IVNs,
focusing on the complexity of software configuration and
mapping of functionalities to available resources. In [26],
authors analyse the requirements of new ECUs in order to
provide the capabilities demanded by autonomous and con-
nected vehicles. Interested readers can find there details on
performance requirements (latency, bandwidth, technologies
to be supported, etc.) as well as an analysis of existing plat-
forms in the state of the art. The conclusion of the study is
that new high performance solutions are needed to reach the
desired outcome, and that HW acceleration can be the key to
unlock the potential of IVNSs.

All in all, we see that there is a need for new strategies that
allow to efficiently handle these new challenges and to enable
the required performance and QoS throughout the network.
Some examples are the current works on the integration of
TSN in the vehicular network trying to optimize latency and
reliability. Other ongoing efforts are related to safety aspects
that are relevant when increasing the level of autonomy of
vehicles. And on top of these functional aspects, the platforms
where they run also need to keep up with the ongoing changes
as seen above. In this work, we cover these trends in the
following sections, and focus on a particular strategy that
improves performance and QoS in the network: the HW
acceleration of DDS policies.

B. FUNCTIONAL SAFETY

One characteristic of modern automotive functionalities is
that they can span over multiple ECUs. When this is the
case, traditional AUTOSAR Classic ECUs [2] can be used
to implement real-time control loops for sensing and actu-
ation, while AUTOSAR Adaptive ECUs can perform HPC
processing. When the implemented functionality is safety-
relevant, functional safety practices (e.g. [SO26262 [1]) help
in lowering the risk introduced by malfunctions. For each
implemented vehicle function (““item”), the safety require-
ments are identified (“‘safety goals™) and safety mechanisms
are implemented to reduce the risk of hazardous events.
In [27], an example of safety analysis and development of
a safety concept for IVNs is presented. The benefits of HW
acceleration for safety-critical features have been already
explored in the state of the art. In [28], the authors propose
the use of reconfigurable HW as an alternative to multi-core
systems. Considering not only safety but also security fea-
tures, [29] and [30] explore the benefits of HW acceleration
for embedded cyber-security in automotive.

Later in this work, we show how HW-acceleration can
be beneficial for the processing of DDS policies related to
safety critical systems within the vehicle. The use-cases illus-
trated in Section III-E help in understanding how DDS can

109630

contribute to implement such safety mechanisms. For exam-
ple, in case a safety goal requires to detect and handle long
communication latencies, a callback can be attached to the
LATENCY_BUDGET policy. Similarly, the LIVELINESS
policy could be used when the safety goal requires to detect
the silent failure of specific components. The DEADLINE
policy allows to detect if a publisher fails to send information
at the requested rate. Moreover, the OWNERSHIP policy sup-
ports the design of safe fail-over schemes. Overall, it is clear
how the DDS middleware supports the design of a safe system
also in the automotive domain. The alternative would be the
development of the whole logic in the application code, which
would become hard to port and maintain. Furthermore, being
certified by a functional safety institution/authority would be
also more complex, mainly in terms of proving freedom from
interference (FFI) when this code gets merged with other
non-safety relevant code running on the same processor or
core concurrently.

C. SOME/IP VS DDS IN AUTOMOTIVE

Originally proposed by BMW, Scalable service-Oriented
MiddlewarE over IP (SOME/IP) [24] is a protocol specifi-
cally designed for Ethernet-based communications in auto-
motive. This standard specifies the serialization mechanism,
the service discovery and the integration with the AUTOSAR
stack. DDS, instead, is a full-fledged middleware standard-
ized by OMG and designed as a cross-domain technology,
and therefore also used for aerospace, robotics and industrial
automation.

Both protocols allow distributed communication through
either publish/subscribe or Remote Procedure Call (RPC)
patterns. However, there are some substantial differences
behind the provided functionalities:

« DDS allows looser coupling and more scalability by
offering a fully-decentralized data-centric communica-
tion; the service-based pattern provided by SOME/IP,
instead, is more coupled.

o On DDS, reliability and fragmentation are provided by
a transport-agnostic layer (RTPS), allowing to transfer
large and reliable data over (even multicast) UDP; on
SOME/IP, instead, reliability needs to be provided by the
underlying transport protocol (namely, TCP).

o« The DDS standard also offers optional transport-
agnostic security; SOME/IP, instead, does not include
security functionalities and therefore relies on the func-
tionalities offered by the underlying transports.

« DDS applications are more portable across different
platforms as the specification standardizes also the full
API for various programming languages.

« However, the most relevant difference is about QoS
support. SOME/IP provides a very limited QoS support
relying on the functionalities offered by the underlying
transport. DDS, instead, offers a wide range of QoS
policies (22, in the current specification as listed in

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

Table 1) that can be used to implement complex safety
mechanisms.

For these reasons, although SOME/IP has been supported
by AUTOSAR since 2014, in the recent years there has been
a growing interest for DDS communications. DDS support
was first included into AUTOSAR Adaptive in 2018 and
now being added to AUTOSAR Classic as well [20]. More-
over, DDS is the communication mechanism behind ROS2,
a framework often used for implementing novel automotive
functionalities.

D. CRITICISM

In this section, we discuss some technical aspects that some-
times are used to argue that DDS is not suitable for embedded
systems and/or the automotive domain. We show that, even
though these issues had some foundation in the past, the
technology has evolved enough to allow to overcome them.

1) CPU LOAD
One general concern when substituting lightweight automo-
tive communication protocols (e.g. SOME/IP) with DDS is
related to performance: DDS is a complex middleware and
thus companies fear longer communication latencies and
especially more CPU processing. Indeed, it has been shown
that the execution of a DDS stack can imply a non-negligible
amount of CPU processing. Bellavista et al. [31] has shown
that even a scalable stack can consume up to 10% of an
Intel CPU at 1.8 GHz for a simple Round-Trip-Time (RTT)
test. Wu et al. [32] showed 20% of CPU usage on an Intel
Xeon machine when transferring Computer Vision data for
autonomous driving through DDS in the ROS2 framework.
Profanter et al. [33] reported overload conditions when trying
to run 100 DDS nodes on a powerful Intel i7 at 3.7 GHz [33].
The sources of this overhead come from the various QoS
policies (which often imply message de-serialization and
filtering) and the additional messages for service discov-
ery [33]. Some recent work aimed at reducing overhead by
implementing zero-copy mechanisms [19], [34]. However,
the amount of CPU processing is still quite significant if com-
pared to other technologies like SOME/IP. Indeed, the archi-
tecture proposed in this paper specifically takes into account
these concerns reducing both CPU processing and latencies
by moving part of the DDS stack to hardware accelerators.

2) BANDWIDTH USAGE

Some previous work [33], [35] argued that DDS has higher
overhead in terms of payload size with respect to other
protocols like MQTT [36], thus resulting in a higher band-
width usage. MQTT is an OASIS standard for a lightweight
publish/subscribe protocol with minimal network bandwidth
requirements. However, such evaluations did not take into
account the possibility of disabling dynamic service discov-
ery of DDS, which is responsible for a significant part of
the additional overhead. The evaluation showed that DDS

VOLUME 10, 2022

provides “‘superior performance on data latency and reliabil-
ity”” than MQTT. At the same time, MQTT is not considered
a viable protocol in the automotive domain due to its poor
scalability [37].

3) SUITABILITY OF THE ETHERNET PROTOCOL

Another objection concerns the suitability of the Ethernet
medium for in-vehicle communications. Indeed, the auto-
motive domain traditionally preferred the design and usage
of ad-hoc protocols (e.g. CAN, FlexRay, LIN) for commu-
nications. However, these technologies cannot sustain the
high throughput necessary to support novel automotive func-
tionalities. Moreover, the burden of cabling is affecting the
design, the cost and the maintenance of the vehicles. For
instance, the impact of its weight can compromise the auton-
omy of the electric vehicles (notice that the wire harness is
the third heaviest and highest cost component in a vehicle,
behind engine and chassis).

For these reasons, rather than designing new ad-hoc high-
throughput communication mechanisms, automotive OEMs
decided to switch from previous communication technolo-
gies towards Ethernet. The design of the SOME/IP protocol
has been a first step towards this transition that is already
happening in modern vehicles [38]. The next step envi-
sioned by the AUTOSAR Consortium is the design of the
zonal architecture previously illustrated, where gateway con-
trollers communicate with a main HPC through an Ethernet
backbone.

Addressing the technical and electrical suitability of Eth-
ernet for in-vehicle communications would be an inter-
esting discussion but out of the scope of the current
work. This is being dealt with through standardization of
100/1000BASE-T1 technology migrating from Broad-Reach
PHY, which was specifically designed to address the strin-
gent electro-magnetic compatibility (EMC) requirements of
Ethernet in vehicles. However, when Ethernet is used, DDS
is expected to provide additional benefits over the usage of
other protocols (namely, SOME/IP) as it will be illustrated in
the next sections.

4) INTEROPERABILITY

Another objection is that the main benefits provided by the
DDS middleware (i.e. QoS policies) are restricted only to
peers communicating through this protocol. This is indeed
a limitation that is being already taken into account by the
AUTOSAR Consortium, which in 2022 has started an effort
to make DDS available on all ECUs designed according to the
standard. DDS is already officially supported on AUTOSAR
Adaptive ECUs [9]. The ongoing effort, however, is standard-
izing the DDS support also for ECUs designed according to
the more traditional AUTOSAR Classic standard [20]. Once
this standardization activity will be finished, all automotive
ECUs designed according to (either Classic or Adaptive)
AUTOSAR or ROS2 could interoperate based on the DDS
protocol, taking full advantage of its QoS policies.

109631

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

ECU

Camera Video Pre- Computer Emergency Brake
Adapter processing Vision Braking

\ 4 1 A \ 4

1 ATT A
Original N
frame + lane Detected
Frame informatiol vehicles

Data Distribution Service (DDS)

FIGURE 4. Use-case a: DDS communication in emergency braking system.

E. POSSIBLE APPLICATION EXAMPLES FOR
HW-ACCELERATED DDS IN AUTOMOTIVE

This section illustrates some automotive use cases that can
take advantage of the features of the DDS middleware.

1) REAL-TIME SAFETY-CRITICAL COMMUNICATIONS

In automotive, as in similar real-time domains, safety-critical
communications need to be delivered within a certain and
bounded amount of time, otherwise some humans might
be injured. As an example, Fig. 4 illustrates a camera-
based Emergency Braking Assistant (EBA) similar to the
one shipped with the AUTOSAR demonstrator [39]. The
example consists of a pipeline of SWCs activated periodi-
cally by the operating system (with a period in the order of
tens of milliseconds) and communicating through one-slot
input buffers. The Pre-processing SWC identifies the current
travel lane on every frame received from the Video Adapter.
This information is sent along with the original frame to the
Computer Vision SWC, which detects vehicles and estimates
their distance. The Emergency Braking SWC, then, receives
this information and decides if an emergency braking should
occur. Since the system is composed of several components
communicating via network, it is important to bound the E2E
latency, otherwise the system might not react in time and
people could be injured in a car accident.

DDS allows to assign these safety-critical communica-
tions higher priority than other communications through the
TRANSPORT_PRIORITY QoS policy. This way, the mid-
dleware will take care of prioritizing this communication
by e.g. increasing the priority of the underlying transport
protocol.

The timing requirement, however, can be further enforced
by additionally setting the LATENCY_BUDGET policy.
This QoS policy, in fact, allows to specify the maximum
acceptable delay from the time the data is written until the
data is received and the application notified. This policy does
not only help in prioritizing the messages, but it also allows
to execute proper diagnostic or recovery mechanisms in case
the timing requirement has not been respected.

2) HEALTHY STATE OF SAFETY-CRITICAL COMPONENTS

Collateral to communications, it is important to also check the
healthy state of critical components. The LIVELINESS pol-
icy allows a safety monitor to check if a component silently
fails or loses communication with the rest of the system
and, in case, to trigger some recovery mechanism to enter
a fail state and/or restore the failed component. In addition,

109632

HPC ECU

Control ECU
Autonomous driving system Safe stop
DDS Publisher DDS Publisher
OWNERSHIP_STRENGTH=2 OWNERSHIP_STRENGTH=1

DDS Subscriber

Control ’

Data Distribution Service (DDS)

Sensors

FIGURE 5. Use-case b: fail-over of autonomous driving.

Actuators

the OWNERSHIP and OWNERSHIP_ STRENGTH policies
allow to implement a fail-over scheme through a backup
DataWriter that automatically becomes visible and substi-
tutes the failed component.

Fig. 5 illustrates an example where, in case of failure of
an autonomous driving system, another (simpler) component
can take over the control and park the vehicle in safe con-
ditions. Both the autonomous driving and the backup SWCs
periodically send messages under the same DDS topic to the
Control SWC which, as a result, controls the vehicle actua-
tors. However, the SWC for autonomous driving is assigned
a higher OWNERSHIP_STRENGTH than the backup SWC.
This way, whenever the former SWC is alive, it “wins” the
ownership and controls the system. However, if it silently
fails, then the control gets automatically acquired by the
backup SWC.

3) AVOID PROCESSING OF UNNEEDED MESSAGES

Data messages sent on the IVN could be needed by multiple
subscribers, which may have different requirements about
how frequently to be notified of the most recent values.
Forcing all subscribers to receive (and process) the incoming
messages at the highest frequency would be a waste of pro-
cessing resources and might force system designers to select
a more powerful and expensive hardware.

Fig. 6 shows an example where a message containing the
vehicle’s speed needs to be received by two different com-
ponents. This is known as the “1-N”’ scenario, widely used
in autonomous vehicles [32]. In the example, an AUTOSAR
Classic ECU is in charge of pre-processing and publishing
speed information. A high-performance ECU needs to receive
the sent data at a high rate (i.e. 100 Hz) to implement
autonomous driving functionalities. Another ECU, instead,
needs to receive the same data at a lower rate (i.e. 10 Hz)
to show the information on a dashboard.

Without DDS (e.g. using SOME/IP), the system designer
would need to choose between either (i) receive and process
data at a faster rate also on the dashboard or (ii) hardcode

HPC ECU ECU
Ecu Autonomous Dashboard
Speed |100Hz| Classic Driving control 10Hz
AUTOSAR Dashboard
stack 100Hz 10Hz

100Hz

Data Distribution Service (DDS)

FIGURE 6. Use-case c: multi-frequency communications.

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

two different communications for the ECUs. DDS, instead,
offers the TIME_BASED_FILTER policy that allows each
DataReader to specify the minimum frequency at which data
is needed. This way, each component can specify its own
requirement, and the middleware takes care of dispatching
data at the needed frequency. The DDS middleware running
on the Dashboard will still receive data at a faster frequency,
but data will be dispatched to the application at a lower
frequency, thus reducing the amount of processing. Note that,
implementing this functionality in hardware (as proposed in
the next sections) allows to reduce CPU processing even fur-
ther. In most complex scenarios, it is possible to additionally
use content-based filtering, a functionality offered by DDS to
specify which values of the Topic the subscriber wants to be
notified for (e.g. range of values of interest).

IV. TIME SENSITIVE NETWORKING IN AUTOMOTIVE
One of the technologies to be integrated in automotive net-
works in order to provide determinism over the Ethernet
backbone is Time Sensitive Networking (TSN). TSN is a
collection of IEEE standards that define several mechanisms
which allow to provide bounded jitter and latency over Ether-
net networks [40]. A comprehensive survey of TSN technolo-
gies is available in [15] and [41], and the suitability of these
technologies for the automotive use case is explored in [42].
TSN provides a toolkit of mechanisms to equip networks
with deterministic capabilities, allowing to define the right
configuration for each use case. However, this means that
many parameters need to be properly defined for the network
to operate correctly. The state of the art is also focusing on the
configuration aspects of TSN as in [43]. In this section we
provide an overview of TSN technologies applicable to the
automotive domain, guided by the P802.1DG (TSN profile
for automotive [44]) which is currently under development.
TSN and DDS share the same goal of providing the right
QoS for frames traversing the network, but at different levels
of abstraction. While TSN operates at network access layer,
DDS operates at transport layer. In Section VIII we explore
the intersection of TSN with DDS from a HW perspec-
tive, aiming at simplifying the software management of QoS
aspects and providing the best possible performance.

A. TSN AUTOMOTIVE PROFILE: P802.1DG

Given that TSN technologies are applicable to many different
industries, there are various working groups within IEEE that
are working on different profiles to promote and ease the
adoption of TSN in different domains. The goal of these
profiles is to provide guidelines on what are the key features
that can be of interest for a particular use case and simplify
the selection of mechanisms in order to provide the desired
performance. In automotive, the P802.1DG profile is defining
the TSN features that IVNs should integrate in order to be
standard compliant. The profile defines a base profile and
an extended profile where some of the TSN features are
required and some others are optional. An overview of the
P802.1DG profile and the integrated sub-standards is given in

VOLUME 10, 2022

Time Synchronization
1AS
Qav \ '+ / Qci Reliability
I+ [H
Bounded Latency
1CB
%b_v >x< * 4 ! Base profile
Qch Qbu * Extended profile
*
" 2“ + Required
- Optional

FIGURE 7. IEEE P802.1DG - TSN profile for automotive - overview.

Fig. 7. As shown in the figure, there are three main categories
of the TSN sub-standards that are applicable to automotive:
(i) Time Synchronization, (ii) Reliability and (iii) Bounded
Latency. Next, we introduce all the sub-standards included in
P802.1DG according to their functional category and provide
a summary in Table 2.

« Time Synchronization: The basis of TSN technologies
relies on the synchronization of the different nodes in
the network, providing a common reference of time.
This mechanism is standardized in IEEE802.1AS, which
describes how this synchronization can be achieved [45].
For automotive, the purpose of 1AS is to provide syn-
chronization across the whole network with a 1 us accu-
racy. For this, one node acts as a master and distributes its
time to the other nodes periodically, allowing the slaves
to adjust their internal timing to match the one of the
master.

« Reliability: The focus of TSN regarding reliable net-
works goes in two directions. On one side, it provides
a mechanism to filter unwanted traffic (IEEE802.1Qci).
On the other side, it provides a mechanism to ensure that
critical traffic is delivered across the network by using
physical redundancy (IEEE802.1CB).

— IEEE802.1Qci [46]: This standard defines the
Per-Stream Filtering and Policing strategy that can
be used to filter streams that are identified to be
some kind of threat. It provides mechanisms to
define and identify such streams, as well as guide-
lines to what kind of traffic should be dropped.

— IEEE802.1CB [47]: This standard defines the
Frames Replication and Elimination for Reliability
strategy that allows to duplicate traffic of critical
flows in order to maximize the probability of crit-
ical messages arriving to their destination. It uses
similar mechanisms as Qci in order to identify
flows and process frame replication and elimination
accordingly.

« Bounded Latency: Finally, TSN also provides sev-
eral mechanisms with the aim of guaranteeing bounded
latency across the network. These mechanisms can be

109633

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

used independently or combined, and give flexibility to
network designers to adapt them to their specific use-
cases.

— IEEE802.1Qav [48]: This standard defines the
Credit Based Shaper (CBS) algorithm that allows
to limit the amount of bandwidth consumed by
some specific flows. This is useful in limiting faulty
devices or attackers that could intentionally or unin-
tentionally flood the network resulting in severe
faulty behaviour. By limiting certain high band-
width consuming flows, it is possible to guarantee
a certain bandwidth for other flows in the network,
or even extra bandwidth that may be needed in case
of exceptional events such as a failure.

— IEEE802.1Qbv [49]: This standard defines the
Time Aware Shaper (TAS) algorithm that allows
to effectively manage periodic traffic. The TAS
defines a base cycle time divided in smaller time
windows, and allows to control which traffic is
allowed to be transmitted in each window. With this,
it is possible to guarantee a certain open transmis-
sion window for critical periodic traffic, minimizing
the delay experienced by this traffic.

— IEEE802.1Qch [50]: This standard defines the
Cyclic Queueing and Forwarding (CQF) algorithm
that allows to set an upper limit to the delay of
frames. Similarly to Qbv, it defines a base cycle
time, but in this case it is divided only in two win-
dows. At the same time, all stations have two inter-
nal buffers, which are used either for transmission
or reception in each window time. This way, the
maximum delay of one message across the network
can be limited by the cycle time and amount of hops
traversed across the network.

— IEEE802.1Qcr [51]: This standard defines the
Asynchronous Traffic Shaping (ATS) algorithm
that provides reduced latency without the need
of time synchronization. The concept is based on
Urgency Based Scheduler and the implementation
of a token-based algorithm to assign transmission
windows.

— IEEE802.1Qbu [52]: This standard defines the
strategy of frame preemption within TSN networks.
The concept of frame preemption allows to define
two categories of traffic: express and preemptable
traffic. Given this classification, preemption defines
how express traffic can interrupt the transmission
of preemptable traffic, allowing to minimize the
delay experienced by express traffic. Like Qcr, it is
independent of time synchronization mechanisms.

V. ELASTIC GATEWAY SoC ARCHITECTURE

In this section, we introduce a novel System-on-Chip
(SoC) architecture for network processing within IVNs:

109634

TABLE 2. Summary of TSN standards included in P802.1DG.

Time Synchronization
Periodic distribution of time reference through network
in order to synchronize all nodes.

Reliability

Per Stream Filtering and Policing: provides mechanisms
to filter undesired flows
Frames Replication and Elimination for Reliability: strat-
egy to duplicate critical flows in order to make sure that
they reach their destination

IEEE802.1AS

IEEE802.1Qci

IEEE802.1CB

Bounded Latency

IEEE802.1Qav | Traffic Shaper based on Credit Based Shaping strategy
IEEE802.1Qbv | Traffic Shaper based on Time Aware Shaper

Traffic Shaper based on Cyclic Queueing and Forwarding

IEEE802.1Qch .
algorithm

IEEES02.1Qcr Traffic Shaper based on Asynchronous Traffic Shaping
strategy

TEEES02.1Qbu | Support for frame preemption

Elastic Gateway (eGW). This architecture has been specif-
ically designed to meet the requirements of future IVNs
defined in [26]. Elastic Gateway provides a full HW datapath
composed of a set of Intellectual Property Cores (IPCores)
that allow to optimize the gateway performance while keep-
ing complexity and HW resources under control. The IPCores
are optimized for the gateway application and designed with
scalability and reusability in mind, allowing to create new
gateway designs through the utilization of several IPCore
instances. The architecture follows the Software Defined
Networking approach (SDN), separating control plane from
data plane although keeping them within the device and pro-
viding full configuration capabilities from the system CPU,
allowing, for instance, to configure the datapath of each
ingress/egress port in a different way.

The high-level architecture of eGW is depicted in Fig.
8. As illustrated in such figure, eGW is composed of three
main stages, similarly to other network processing archi-
tectures: ingress stage, processing stage and egress stage.
On the ingress stage, frames are received and adapted to the
internal device processing format. To this aim, a new frame
normalization concept and HW IPCore (Normalizer in Fig. 8)
were introduced in [53]. This normalization concept allows
to extract the required information from frames in order to
process the frames accordingly. To do so, the normaliza-
tion stage extracts the metadata of interest from the frame
and composes a new frame, that we call instruction. This
approach is graphically explained in Fig. 9. Traditionally,
metadata is embedded in frames as a sort of new layer follow-
ing the Open Systems Interconnection model (OSI) layered
approach [54]in the header of each frame. However, in eGW
we propose to separate the metadata from the data frame
and to generate a new instruction frame that is transported
in parallel with the data. This instruction frame has its own
header, payload and tail, that transports the metadata related
to the data frame. This new concept allows to provide full
separation between control plane and data plane, since the
data frame flows through the data plane, while the instruction
frame carrying the metadata flows through the control plane.
More details on this strategy are given in [53].

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

SYSTEM TIME ENGINE

TimeReference

INGRESS FRAME INGRESS FRAME INTERMEDIATE FRAME
PHY L NORMALIZER QUEUEING 0 FILTERING QUEUEING 0 PROCESSING
TASK O EGRESS
INGRESS FRAME INGRESS FRAME INTERMEDIATE - lf:u':qué o rarrc I PHY
PHY QUEUEING 1 FILTERING QUEUEING 1 Q =y
f==> NORMALIZER = Match 1 TASK 1 m SHAPING 0 lol1lo
b [i il ob
TASK K =
INGRESS CRAME INGRESS FRAME INTERMEDIATE QUEEfJ';E:Z wl | esenc il Ei':l‘iss
PHY |l N ORMALIZER o] QUEVEING N | FILTER}:NG QUEVENG N || sharnom o™
ol [0 [‘& ([T 0o m ke
[DAE]
Loopback Processing
Loopback TSN

. /

INGRESS STAGE

FIGURE 8. High level architecture of elastic gateway.

The format of the instruction frame is shown in Table 3.
The header contains information extracted from the frame
at ingress stage, such as the size, ingress port ID or type
of network (CAN, Ethernet, etc.). An important field within
the header is the Timestamp of the frame at ingress, which
can be later used to be aware of the time that frames spend
within eGW. The payload contains information about which
action needs to be performed over the frame, encoded in an
operation code (OPCODE), which will be used later in the
processing stage. Finally, the tail consists of a checksum that
allows to verify the integrity of the instruction frame across
the different stages.

After normalization, frames are stored in the ingress
buffers. The FIFO-based queueing buffers, which are reused
across the different stages (ingress, intermediate and egress
queueing in the figure) allow to accommodate frames and
resolve possible conflicts on shared resources. Additionally,
these buffers allow to easily change clock domains or to
modify the datapath width across the different processing
stages, from ingress to egress, of the SoC device. The internal
architecture of these queueing buffers was described in [55].

The processing stage is composed of a single Match &
Action stage with queueing modules between the steps. The
match or filtering block allows to identify patterns within
frames and to determine the required processing for each of
them. To this aim, a Content Addressable Memory (CAM)

ORIGINAL INGRESS FRAME (OSI LAYER 2) Header { Payload l Tail

NORMALIZED FRAME New header (metadata) Header [Payload [i New tail

INSTRUCTION INFORMATION

DATA FRAME Header [payoad [ai

INSTRUCTION

FRAME

REFACTORING OF NORMALIZED FRAME
New header

[OPCODE as Payload| New Tail
INSTRUCTION INFORMATION

FIGURE 9. Normalization strategy.

VOLUME 10, 2022

PROCESSING STAGE

EGRESS STAGE

is implemented within the filtering block. The Action stage,
instead, is composed of a stack of parallel tasks which can be
performed in parallel over different frames, providing max-
imum performance and allowing to exploit all the available
HW resources. For this, the control plane of the action block
determines which frame from the intermediate queueing will
be assigned to each task at each moment in time. To make
this decision, it takes into account the processing needed for
each frame and the priority of the enqueued frames in case of
conflicts. The strategy followed in order to prioritize frames
is described later in this section. An example of application
implemented in this architecture is detailed in [56]. In case
that more than one action is required for a frame, the loopback
processing path highlighted in green in the figure can be
used. In this way, a pseudo-pipeline of Match & Action
stages can be created, with as many stages as required by the
processing of each frame. That is, the architecture allows to
adapt the datapath to the processing required by each frame,
optimizing thus the processing time when combined with an
effective prioritization and arbitration strategy responsible for
the queueing and dequeueing of the internal frames in each
moment, called Distributed Arbitration Engine (DAE) and
described later. More details on the use of this loopback path
together with an example of application implemented on this
architecture are available in [57].

After processing, frames are stored in the egress queues
and finally transmitted to the egress PHY, according to the
shaping rules determined by the traffic shaping module. This
IPCore allows to deploy any traffic shaping standard such as
the ones defined by IEEE TSN standards, or others that may

TABLE 3. Instruction frame format.

Header Payload| Tail
Prio [Size [Time [Port [Type Opcode | CS
109635

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

come in the future. The details of this IPCore are available
in [58]. Once again, the datapath can be extended through a
loopback, if required, after the traffic shaping stage. This pro-
vides the required flexibility to perform recursive processing
with frames that have already reached the egress stage. More
details about this loopback path and suitable use cases are
described in [59].

One important aspect of the eGW architecture is the scal-
ability and flexibility provided towards designing different
families of gateway products: from a very simple gateway
with few ingress/egress ports and little processing function-
alities, to a high-end product with many ingress/egress ports
and complex functionalities integrated, the high level archi-
tecture depicted in Fig. 8 remains the same. Exploiting this
characteristics of the architecture, a system design frame-
work called eGW Builder, which allows for selecting the
geometry and capabilities of each gateway design, has been
developed [60] together with a generic validation framework
for the generated designs [61]. In this work, we explain
how the integration of DDS features can be defined in the
design framework and how this is translated into the HW
implementation.

The flexibility and scalability claimed by the eGW archi-
tecture are supported by four main features: a System
Time Engine (STE) that provides system time awareness, a
Distributed Arbitration Engine (DAE) that enables flexible
control over frames routing/processing based on dynamic
priorities, an Elastic Queueing Engine (EQE) that supports
flexible memory organization for the storage of frames and
a Traffic Shaping Engine (TSE) that allows to shape traffic
according to priorities and other shaping algorithms in place.
These aspects are detailed in the following subsections.

A. SYSTEM TIME ENGINE

The System Time Engine (STE) is in charge of two structural
aspects of the eGW: (i) generating the clock references to
be used by the different eGW IPCores, and (ii) generating
the system Time Reference. The internal architecture of STE
is depicted in Fig. 10. On one hand, this block contains a
Phase Locked Loop (PLL) that can be configured to generate
different clock frequencies according to the configuration
defined by the CPU. Then, the different clocks are routed to
the corresponding IPCores, providing flexibility with regard
to frequency operation of each module. For example, the
ingress stage will usually operate at the rate of the ingress
port, but it may be useful to operate at higher rates in the
processing stage in order to accelerate complex processing
tasks when required. The queueing modules in the eGW
architecture allow frames to seamlessly traverse from one
clock domain to another.

On the other hand, the System Time Engine includes a Sys-
tem Time Controller that generates the TimeReference signal
within the system. This is an essential item within eGW,
since it allows to distribute a common notion of time across
the different eGW IPCores. As seen in Fig. 8, the TimeRef-
erence signal is distributed to all the IPCores of eGW.

109636

CPU

CONFIG FEEDBACK
SYSTEM TIME ENGINE
MEMORY MAP ‘
CONFIG [conris
» CLKq
| PHASE LOCKED » CLK;
CLKin LOOP (PLL) ,
» CLKy
SYSTEM CLK
FEEDBACK
FROM /TO ; SYSTEM TIME CONTROLLE‘R
PRZ?;ZSEING 4——»{ (IEEE 802.1AS) }——»TlmeReference

FIGURE 10. System time engine.

This information is then used at the different stages in order
to perform decisions based on time. This time signal is syn-
chronized across the network with other nodes by using the
IEEE802.1AS synchronization protocol, enabling thus the
integration of further TSN technologies such as synchronous
traffic shaping algorithms along distributed systems com-
posed by several nodes or ECUs like the ones depicted in
Fig. 3. System Time exchanges information with the process-
ing stage in order to extract the required time synchronization
information from frames related to IEEE802.1AS.

B. DISTRIBUTED ARBITRATION ENGINE

The strategy followed by the Distributed Arbitration Engine
(DAE) relies on the SDN concept at the core of eGW architec-
ture. As explained before, eGW SoC separates control plane
from data plane, allowing to handle the frame itself and the
metadata related to it in parallel (instruction frame). The most
important field within the context of this work is the first field
in the header (see Table 3): frame priority (PRIO). This field
is the one used by the DAE in order to make decisions on
how to prioritize frames. This field defines the priority of the
frame in real time, and is composed not only of fixed priorities
that can be assigned by strategies such as VLAN tag, but
also of dynamic aspects such as the time left for a frame to
meet its deadline. All these bits have a meaning and weight
used to determine thus how to perform the arbitration in the
dequeueing. The bits within the PRIO field are organised in
such a way that DAE needs only to find the bigger number
among the available frames and thus select the next frame for
processing/transmission (fast sorting in HW).

The DAE is used in different stages of eGW as seen in
Fig. 8. Mainly, it is present in every IPCore that needs to read
frames from a queueing block since this implies to decide
which frame(s) to read/dequeue. The most complex arbitra-
tion happens in the processing stage where several frames can
be selected in parallel and processed in different processing
units as illustrated in Fig. 8 by means of the building blocks
TASK 0 to K. In the egress stage, it is integrated in the Traffic
Shaping Engine as described later in this section.

The composition of the PRIO field is depicted in Fig. 11.
The first bit corresponds to interrupt events. This allows

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

‘ SYSTEM TIME ® ‘

1

‘ DEADLINE CALCULATION ‘

STATISTICS
(MEMORY MAP)

T |DP|DP|DP|DP|DP| ..|DP|IBT|IBT|IBT| .. |IBT

T: Timestamp
DP: Defined Priority
IBT: In Band Telemetry

T I: Interrupt

Priority defined by previous stage

Interrupt
Event

FIGURE 11. Priority field composition.

to suddenly increase the priority of a frame to the highest
(because it is the most significant bit) in the case of particular
events. Then, the notion of time is integrated by introducing
a deadline, which indicates how much time is left for a
frame to still get to its destination on time. In this case, the
two’s complement of the deadline is used in order to give
more priority to frames with less time available. Afterwards,
a predefined priority is included. This field can change across
the different stages of the eGW. For instance, at the ingress
stage the normalizer can assign a default priority to all the
frames coming through an ingress port. Different normalizers
can have different priorities, establishing a first prioritization
between ingress ports. Then, in the filtering stage, the priority
can change according to the pattern identified in the frame.
This allows the DAE in the processing stage to know which
are the frames with higher priority, including interrupts or
tight timing constraints as conditions that can elevate or
decrease the assigned priority at run-time. Finally, aspects
coming from the internal telemetry or in band telemetry can
also be part of the prioritization of frames, using information
collected on the statistics module of the eGW, pursuing thus a
good enough level of flexibility to define and configure such
prioritization strategy.

C. ELASTIC QUEUEING ENGINE

The Elastic Queueing Engine (EQE) provides a set of FIFO
memories that allow to store frames while waiting to be
processed by the next stage. At the same time, it acts as inter-
face between stages that can operate at different frequencies
and/or have different datapath sizes, enabling the claimed
flexibility in the eGW datapath. The internal architecture is
depicted in Fig. 12. As seen in the figure, the datapath is very
simple, with interconnection resources allowing to store any
ingress frame into any of the internal queues. The selection of
where to store the frames is done by the control plane, to be
exact by the DAE, taking into account the current status of the
queues as well as the metadata embedded in the instruction
of each frame. Like this, the queues controller block shown
in Fig. 12 is seamlessly integrated with the DAE in order
to perform the queueing and dequeueing of frames at run
time, in real time. On the output interface, EQE allows the
next stage to read from any of the queues, providing thus
maximum flexibility to manage the available frames. In terms
of configuration options, EQE allows to select the number of
input (i) and output (o) ports as well as the size of the internal

VOLUME 10, 2022

QUEUEING BLOCK

— 0o

|, FROM/TO
DAE

—
CTRL lFU LL

QUEUES CONTROLLER

Instructiong,
Instruction; 1

FIGURE 12. Elastic queueing engine architecture.

buffers, adapting thus to the needs of the different stages that
require queueing resources within the eGW datapath.

Complementing the previously described orchestration and
arbitration strategy, the queueing stage provides another
extra degree of flexibility, allowing to organize the mem-
ory resources inside the queueing module in different ways.
On one side, the architecture allows to define different queue-
ing blocks based on the same structure by selecting configu-
ration parameters such as number of FIFO modules, queueing
depth per unit, input/output width, etc. On the other side,
it also provides flexibility regarding the usage of the instanti-
ated resources during operation, i.e. at run-time, allowing to
maximize the use of the available memory. In other words,
trying to avoid unnecessary messages drops if the eGW SoC
has free space in any of the queues, independently of how
they are organized, fact that does not occur in other more
rigid, i.e. inelastic, chipset solutions in the market today. Fur-
ther details and experimental results of some initial dynamic
strategies for queueing management are available in [55].
In this work, we extend EQE by introducing a new approach
to the management of queueing resources. Instead of focusing
on virtually extending the queues as in the previous work,
now we focus on providing a large number of small size
queues that are all accessible to the next stage. With this new
approach we increase the accessibility to the data stored in the
queues, providing a finer grain on the decision making since
many more frames can be compared and stored in parallel to
improve the inline arbitration.

D. TRAFFIC SHAPING ENGINE

The Traffic Shaping Engine (TSE) allows for selecting the
next frame eligible for transmission based not only on the
priority field in the instruction frame, but also on other param-
eters defined by the traffic shaping algorithms in place. It
provides a common HW architecture to implement any shap-
ing algorithm required by TSN standards or other shaping
strategies that may be of interest. It provides a set of registers

109637

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

in the form of a memory map that can be configured from
the CPU in order to implement different shaping strategies.
Finally, it also provides the option to configure interrupt
sources that can change the configuration in place, in real-
time and at run-time. The high-level architecture of TSE is
depicted in Fig. 13. As shown in the figure, similarly to
EQE, the data plane is kept very simple allowing to minimize
the latency experienced by frames traversing the eGW. The
intelligence is managed in the control plane, mainly by the
TSE Core. This block takes as input the configuration written
in the memory map and the status of queues together with the
available instruction frames. Additionally, it also has dedi-
cated inputs for interrupt sources that may alter the behavior
of the controller. In [58] we introduced the concept of TSE
for the first time and performed some experiments to evaluate
the capabilities to implement the different TSN standards.
In this work, we extend the previous one by integrating the
DAE within TSE, improving the flexibility regarding the
management of frames. We also explore the suitability of
TSE to support the combination of DDS and TSN with a
HW-based approach (Section VIII).

The TSE core internal architecture is also visible in Fig. 13.
We show how the DAE is integrated in order to decide which
queue is the next one that will be transmitted. However,
in this case, apart from the instruction frames available in
the queueing block, DAE takes as input the output of the
queue control stage, which determines whether queues are
allowed to transmit or not. Previously, we saw how DAE
can take the status of the queues as input and combine it
with the priority field in the instruction frame. However, now
we add an additional stage to the processing, determining
queues eligible for transmission based not only on availability
(queues status) but also on the configuration of the traffic
shaping algorithms determined by the memory map. This
means that for each queue we are able to determine at each
moment in time whether it is allowed to transmit or not, and
have DAE select the next transmission frame only among
the queues for which transmission is allowed. For example,
when implementing TAS or CBS, the algorithm would run
individually for each queue determining whether the queue
can transmit or not (i.e. gate open/closed in the case of TAS
or credit available in the case of CBS). Afterwards, DAE
would select the highest priority frame of the ones allowed to
transmit. The main difference with the previous work in [58]
is that by using DAE the priority is determined by the frames
themselves, and not by the queue in which they are stored.
This allows to have more options in how to store and handle
the frames, giving more flexibility within the shaping stage
stage and making our arbitration strategy much more scalable
and HW-independent/agnostic.

VI. HARDWARE-ACCELERATED DDS: DEPLOYMENT IN
ELASTIC GATEWAY

DDS has been designed to be timing predictable and effi-
cient in its resource usage. However, the timely execution is
affected by the typical issues occurring on general-purpose

109638

[HOST CPU |
FROM/TO HOST CPU

TRAFFIC SHAPING ENGINE (TSE)

L CONTROL PLANE

CONFIGURATION REGISTERS

Time | CURRENT TIME (T bit) (MEMORY MAP)
REFERENCE \l/ 'P

INTERRUPT

CCORCE INTERRUPTS LL1s| TSE CORE

((N+1) x Y bit)
QUEUES Queue [Tx Allowed
READ_EN (N bit) CTRL

NF STATUS (N bit)
FULL STATUS (N bit)
NE STATUS (N bit) Queue [TxAllowed
EMPTY STATUS (N bit) CTRL

INSTRUCTION IN (K bit)

> STATISTICS

QUEUES
CONTROL

INTERRUPT
SOURCE

FOs DATA PLANE
DATA IN (M bit) EGRESS
| DATA OUT PHY
’I) (M bit) 1lof1]o

FIGURE 13. Traffic shaping engine architecture.

z
Te>

AN

HER

TABLE 4. RTPS message format.

Submessage
Header | Submessage | Submessage | Submessage | Submessage
Header Element Header Element

platforms such as contention on shared software and hard-
ware resources (e.g. data structures, threads, memory hier-
archy, CPUs, etc.). Furthermore, being a software tech-
nology, DDS needs some non-negligible CPU processing,
which might not be available on slow automotive CPUs.
The community answered this issue by proposing the DDS
For Extremely Resource Constrained Environments (DDS-
XRCE) standard [62]. However, this profile does not offer key
features of the full standard. Moreover, it introduces the need
of an Agent in the software architecture to communicate with
a DDS network, which could easily become a single point of
failure.

It is therefore clear the need for reducing the complexity of
the software stack and improving its timing accuracy to fully
exploit the potential of DDS technology in the automotive
domain. This section presents the novel idea of implementing
a subset of the DDS QoS functionalities directly in hardware
by means of reliable accelerators. Particularly, we showcase
how some of the DDS QoS policies can be deployed in
the previously described eGW architecture. By snooping the
DDS traffic, the network equipment can automatically con-
figure the hardware components and resources to enforce and
better meet the requested QoS.

A. USE CASE 1: eGW AS A NETWORK RELAY BETWEEN
PUBLISHERS AND SUBSCRIBERS

In this section, we detail how eGW supports DDS policies
for traffic that is traversing the eGW — i.e., eGW is neither
Publisher nor Subscriber for this traffic, just an element of
the network path between them acting as a relay or hop. The
main idea is to deploy the capability to detect DDS-related

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

INGRESS FRAME INGRESS FRAME
PHY F:\I,.I'I;izl‘NoG | QUEUEING O L o0 0
1of1]o 111 Action
DDS RULES e
INGRESS FRAME INGRESS H TASK 1 EGRESS EGRESS
PHY FILTERING QUEUEING 1 QUEUEING TRAFFIC PHY
—)
TASK K
1lol1lo Match 1 | D:I:D SHAPING |_|1 ol1lo
[DAE

T

Detect DDS frame, Extract DDS
parameters and determine
priority of frames accordingly

Arbitration of parallel queues based on
frames priority, with DDS frames competing
with the rest of non-DDS enqueued traffic

FIGURE 14. DDS support in eGW, when eGW is acting as a switch.

TABLE 5. RTPS data submessage format.

TABLE 6. InlineQoS parameterlist in data message format.

Data Submessageld [PARAMETER NAME [ID | TYPE |
Submessage Flags TOPIC_NAME 0x0005 | String<256>
Header SubmessageLength DURABILITY 0x001D | DurabilityQoSPolicy
EndiannessFlag PRESENTATION 0x0021 | PresentationQoSPolicy
InlineQosFlag DEADLINE 0x0023 | DeadlineQoSPolicy
Dat"‘Fllag LATENCY_BUDGET 0x0027 | LatencyBudgetQoSPolicy
ls)a;a §°Y1; N OWNERSHIP OX001F | OwnershipQoSPolicy
E;‘ mestsage f’g ‘;‘; ardrayloadlag OWNERSHIP_STRENGTH | 0x0006 | OwnershipStrengthQoSPolicy
emen r;:lt:rrl 4 LIVELINESS 0x001B | LivelinessQoSPolicy
N PARTITION 0x0029 | PartitionQoSPolicy
nlineQo0s RELIABILITY 0x00IA | ReliabilityQoSPolicy
serializedPayload TRANSPORT_PRIORITY | 0x0049 | TransportPriorityQoSPolicy
- LIFESPAN 0x002B | LifespanQoSPolicy
DESTINATION_ORDER 0x0025 DestinationOrderQoSPolicy
CONTENT_FILTER_INFO 0x0055 ContentFilterInfo_t
COHERENT_SET 0x0056 SequenceNumber_t
. . DIRECTED_WRITE 0x0057 | GUID_t
frames and configure the eGW in order to better meet the ORIGINAL WRITER INFO 0§OO61 OriginalWiiterTnfo_t
requirements of the communication during run-time. For GROUP_COHERENT SET | 0x0063 | SequenceNumber t
instance, itis possible to detect DDS policies such as transport GROUP_SEQ_NUM 0x0064 | SequenceNumber._t
.. WRITER_GROUP_INFO 0x0065 WriterGrouplnfo_t
priority or latency budget, and adjust the prioritization of the SECURE WR_GR_INFO | 0x0066 | WriterGroupInfo_t
traffic classes within the eGW in order to ensure that DDS KEY HASH 0x0070 | KeyHash_t -
requirements are met. In Fig. 14, we show how this strategy STATUS_INFO 0x0071 | StatusInfo_t

can be deployed within the eGW internal architecture. After
reception, frames traverse the filtering stage where RTPS
messages can be identified. Furthermore, by defining the
appropriate matching rules, the information embedded in the
RTPS message can also be identified, extracting the related
inlineQoS parameters and deciding the prioritization of the
frame within the eGW. This way, the QoS required by the
services can be guaranteed both during processing stage and
in the egress ports, which is where most conflicts occur.

The definition of matching rules for DDS Parameter
Extraction exploits the modularity of RTPS messages, which
allow to easily obtain the desired DDS parameters. The
frame format of an RTPS Message consists of a fixed-size
Header followed by a variable number of RTPS Submes-
sage parts. Each Submessage also has a SubmessageHeader
and a variable number of SubmessageElements, as shown
in Table 4. There are several kinds of Submessages, such
as Data, AckNack, Heartbeat, etc. In the case of DDS QoS
policies, RTPS messages allow to send this information in a
DataSubmessage. Therefore, we focus now only on the struc-
ture of this kind of Submessage. The most relevant parameters

VOLUME 10, 2022

of this submessage for our work are the inlineQosFlags and
inlineQos, as highlighted in Table 5. The first one signals
whether any QoS property is indicated within the message.
If so, the latter contains the inlineQos parameter list. The
inlineQos parameter list contains information related to the
DDS QoS policies used in this transaction. These can be
the parameters related to any of the QoS policies marked
with “°” in Table 1 together with information identifying the
service and entity which the message belongs to. By exploit-
ing this fixed structure it is possible to define the filtering
rules that can extract inlineQoS parameters in a simple way.
Table 6 shows the InlineQoS ParameterList format in RTPS
Data messages. The parameter types are defined in the DDS
specification [16]. Apart from these QoS properties, the sub-
message contains information related to the reader and writer
involved in the communication, or other parameters outside
of the scope of this work. Table 6 highlights the QoS policies
that can be supported by eGW for this use-case and that will
be further described in the next paragraphs.

109639

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

1) DEADLINE
On automotive systems, there is often the requirement that
some safety-critical data is sent and received at regular peri-
ods. An example is the radar information that needs to be sent
(and received) at regular intervals to let the receiving compo-
nent take decisions for emergency braking. DDS allows to
codify this requirement through the DEADLINE QoS, which
specifies the maximum period after which data must be sent
and received, respectively on the writer’s and receiver’s sides.
The API to set this QoS policy for a Topic on software DDS
implementations is similar to the following:

TopicQoS custom_gos;

DeadlineQoSPolicy deadline;

deadline.period = {\ldots, \ldots};
custom_gos.deadline (deadline) ;

create_topic (tp_name, tp_type, custom_gos);

In software implementations, however, the latency in the
intermediate network equipment might trigger unwanted call-
back executions. In fact, even if the DataWriter respects the
contract by sending the information at the right period, the
DataReader might receive them with a jitter as they were
not sent in time. For this reason, it is important that the
intermediate network equipment is aware of the DEAD-
LINE value to be able of prioritizing the messages when
the period is expiring. This information is embedded in the
RTPS messages used to send the data of a specific service
from publisher to subscriber. Therefore, as seen in Fig. 14,
it is possible for the eGW to extract the DEADLINE infor-
mation and classify this traffic into the appropriate traffic
class within the system, providing more guarantees towards
meeting the required delay. Then it is just the job assigned
to DAE, to perform the dequeueing of frames taking into
consideration the PRIO field where all this DDS information
is encoded, as shown in Fig. 11. Moreover, this policy is
a good fit for interaction between DDS and TSN standards,
since it could benefit from the same HW implementation as
IEEE802.1Qbv, as we explain later in Section VIII.

2) LATENCY BUDGET

The LATENCY_BUDGET QoS policy specifies the maxi-

mum delay from data write to data reception and notification.
The API to set this QoS policy for a Topic on software DDS

implementations is similar to the following:

TopicQoS custom_gos;

LatencyBudgetQoSPolicy latency;

latency.duration = {\ldots, \ldots };

custom_qgos.latency_budget (latency);
create_topic (tp_name, tp_type, custom_gos);

Similarly to the DEADLINE policy, this information
comes in a RTPS message when exchanging information
between publisher and subscriber. Again, eGW can extract
this information and prioritize the traffic accordingly. In this
case, classification could be based on a set of thresholds or
ranges defined within the DDS rules (when latency budget <
X, then priority—>X, when latency budget > Y, then priority—

109640

>Y). Since the latency budget format is defined by the RTPS
frame, it is possible to define the HW accordingly in order
to be able to guarantee that all values of the policy can be
handled in the HW. Furthermore, thanks to the SDN approach
followed within eGW, these thresholds can be updated by
the CPU when required, allowing to dynamically change the
configuration used to prioritize DDS traffic.

3) TRANSPORT PRIORITY
The TRANSPORT_PRIORITY QoS policy specifies the pri-
ority to be used on underlying transport.

The API to set this QoS policy for a Topic on software DDS
implementations is similar to the following:
TopicQoS custom_gos;
TransportPriorityQoSPolicy priority;
priority.value = \ldots

custom_gos.transport_priority(priority);
create_topic (tp_name, tp_type, custom_gos);

As in the previous cases, the DDS Parameter Extraction
module gets this information and defines the priority used for
these frames in the egress stage. In this case, the DDS policy is
already enforcing an explicit priority, which only needs to be
converted to the internal priorities in order to assign it to the
corresponding frame. The mapping between priorities is done
based on a table defined by the eGW CPU, which guarantees
that every possible priority in DDS will have a corresponding
priority in eGW.

4) RELIABILITY
The RELIABILITY QoS policy specifies the reliability level
of message delivery.
The API to set this QoS policy for a Topic on software DDS
implementations is similar to the following:
TopicQoS custom_gos;
ReliabilityQoSPolicy rel;
rel.kind = RELIABLE_RELIABILITY_QOS;

custom_qgos.reliability(rel);
create_topic (tp_name, tp_type, custom_gos);

In this case, the information can be identified and used to
prioritize traffic requiring higher reliability, but also to con-
figure other internal reliability mechanisms, such as Frames
Replication and Elimination for Reliability (FRER) strategy,
defined in TSN standards. The interaction between this DDS
policy and TSN standard are described in Section VIII.

B. USE CASE 2: eGW AS A PROCESSING ELEMENT
HOSTING A PUBLISHER OR SUBSCRIBER

In this section, we describe how eGW can support DDS
QoS policies for traffic that is generated/consumed at the
eGW itself — i.e. the case when eGW hosts the application
of the reader/writer. Essentially, new HW accelerators are
deployed in the frame processing stage where some of the
DDS QoS policies can be offloaded from the CPU, as shown
in Fig. 15. On one side, there is HW support for publisher
features, which collect information from the CPU memory

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

INGRESS INGRESS FRAME
PHY iy QUEUEING 0 PROCESSING
pedl FILTERING == d !
1|0f1[0 Match 0 DID MEMORY MAP
INGRESS INGRESS PUBLISHER EGRESS EGRESS
PHY FRAME EUEING 1 SUPPORT EUEIN TRAFFI PHY
et FILTERING | QUEVEING 11 QUEUEING C |
1]0j1{0 Match 1 SHAPING o[l
SUBSCRIBER
ﬁ SUPPORT
TASK K

FIGURE 15. DDS support in eGW when as publisher/subscriber.

map and generate the required traffic (e.g. alive messages).
On the other side, there is HW support for subscriber fea-
tures, where traffic is first analyzed in the HW, some charac-
teristics are extracted, and then frames are sent to the CPU
when applicable.

Next, we elaborate on some DDS policies that can be
deployed within the described architecture and how this can
be implemented.

1) LIVELINESS
The LIVELINESS QoS policy describes a “mechanism to
determine if an entity is active (“‘alive’)”.

The API to set this QoS policy for a Topic on software DDS
implementations is similar to the following:

TopicQoS custom_gos;

LivelinessQoSPolicy live;

live.kind = AUTOMATIC_LIVELINESS_QOS;
live.duration = {\ldots, \ldots };
custom_gos.liveliness (live);

create_topic (tp_name, tp_type, custom_gos);

When configured, entities send alive messages informing
that their instance is up and running. The policy can be
configured to either let the middleware send these messages
automatically (as in the example above) or to leave this
responsibility to the application code.

For this policy, a different type of RTPS message is used:
Heartbeat. As highlighted in Table 7, within the Heartbeat
message, the LivelinessFlag is the element that needs to be
asserted in order to inform the reader about the writer status.
The other fields can also be filled accordingly to maximize
usability of this Heartbeat message, although the purpose of
each field is not of interest for this particular work. In our
case, eGW can easily perform the task of periodically sending
Heartbeat messages within the Publisher Support module,
offloading the CPU of this processing.

2) TIME-BASED FILTER
The TIME_BASED_FILTER QoS policy defines the mini-
mum time a DataReader is interested in receiving updates.

VOLUME 10, 2022

TABLE 7. RTPS heartbeat submessage format.

Heartbeat Submessageld
Submessage Flags

Header SubmessageLength
EndiannessFlag
FinalFlag
LivelinessFlag
GrouplInfoFlag
readerld
writerld

firstSN

lastSN

count
currentGSN
firstGSN
lastGSN
writerSet
secureWriterSet

Heartbeat
Submessage
Element

The API to set this QoS policy for a DataReader on soft-
ware DDS implementations is similar to the following:

DataReaderQos custom_gos;
TimeBasedFilterQosPolicy time;
time.minimum_separation = {\ldots, \ldots };
custom_qgos.time_based_filter (time);
create_datareader (tp_name, custom_gos, \ldots);

When established, Readers filter frames which are outside
of the receiver window (i.e. earlier than what the time-based
filter requires). However, this policy is not embedded as
an inlineQoS parameter within an RTPS message. In this
case, it is a configuration that belongs to the reader and can
be specified in the device supporting the reader application
processing. eGW supports this feature within the Subscriber
support module just dropping messages according to the time
window rules, offloading thus the CPU from this filtering task
and reducing unnecessary workload.

3) DESTINATION ORDER

The DESTINATION_ORDER QoS policy defines the logical
order among changes made by Publishers to the same data
instance. In essence, it defines means to resolve conflicts
when several publishers update the same data instance. For

109641

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

example, it allows to choose recording values based on recep-
tion timestamp (last received prevails) or source timestamp
(last sent prevails). The API to set this QoS policy for a Topic
on software DDS implementations is similar to the following:

TopicQoS custom_gos;
DestinationOrderQoSPolicy order;

order.kind = \\
BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS;
custom_gos.destination_order (order) ;
create_topic (tp_name, tp_type, custom_gos);

Typically, the DDS_BY_SOURCE_TIMESTAMP_ DES-
TINATION_ORDER_QOS policy is used, for which a times-
tamp must be included in the messages by every Writer.
In eGW, this can be supported in the subscriber support
module, delivering the chosen data to the CPU and abstracting
from the complexity of such conflicts.

All in all, the examples elaborated in this section prove
how we can reduce the software complexity of certain
timing-related functions when appropriately ported to a dedi-
cated and cost-effective hardware architecture based on hard-
ware accelerators (HWA). Our proposal supports all this
processing performed in-memory and inline in a smooth
and more reliable manner, skipping by design those poten-
tial software uncertainties/interferences that appear when
deploying in a multicore or multi-thread SW-centric solution.
In summary, our technical proposal consists in moving all
this time-critical processing from upper SW layers to a lower
layer managed in HW but configurable in SW by the host
CPU. With this approach, all that timing complexity and
uncertainty is gone, just by design.

VIi. FROM DDS POLICIES TO IPCores: ELASTIC
GATEWAY BUILDER TOOL

The composition of a complex HW design is often an ardu-
ous task. To reduce the complexity, there are several frame-
works available targeting different applications. For instance,
authors in [63] present a framework that eases the integration
of Deep Neural Networks in FPGAs. In [64] a framework to
automate the deployment of TSN switches configuration in
FPGA:s is presented. Following this trend, we briefly intro-
duce the automation framework that enables the design of
gateways based on eGW architecture. More details on this
framework are available in [60] and [61].

As seen before, eGW allows to instantiate different
instances of a GW design by choosing which features are
integrated in each of them. To ease this task, an automa-
tion design framework, ‘‘Elastic Gateway Builder” has been
developed [60]. The framework allows to first define the
geometry and shape of the gateway design (architecture) and
later configure the embedded functions and features of each
IPCore (micro-architecture), both levels managed by means
of parameters that are configurable. Fig. 16 shows how the
framework allows to select the DDS policies that will be
included in the design, and how these are mapped to the HW
implementation.

109642

TABLE 8. eGW DDS policies memory map.

DDS Policy Parameter Type

LIVELINESS Alive timeout Natural
TIME_BASED_FILTER Minimum Time Natural
DESTINATION_ORDER Rx vs. Tx Timestamp Boolean

In the top of the figure, an architecture example with two
ingress and two egress ports is shown. After defining this first
step, the user can go block by block configuring the micro-
architecture parameters. For instance, when configuring the
micro-architecture view of the Action block, there are several
sub-blocks available, as seen in the left bottom of the figure,
corresponding to the low-level components of the Action
stage. When the selection of parameters of all blocks is done,
the designer can click on the “Generate HDL” button, to auto-
matically generate the code corresponding to this particular
design. In this automatically generated code, the IPCores
of eGW will include the required blocks according to the
parameters selected, as seen in right bottom corner of the
figure. In this case, the publisher and subscriber support for
DDS features will be included. For more details on how the
code is automatically generated, interested readers can refer
to [60].

Overall, Fig. 16 shows the graphical interface of the tool
that allows to select the desired features, and how the selec-
tion is later translated into the HW implementation, by instan-
tiating the corresponding IPCores from our eGW Builder
library. In this example, we focus on the DDS features, par-
ticularly the Liveliness policy. Additionally, for each of the
selected features, the associated registers are automatically
introduced in the memory map of the full chipset, allowing
to configure the required functionalities. An example of the
registers corresponding to the DDS features instantiated in
Fig. 16 is shown in Table 8.

With this, we show how the gap between high-level DDS
policies and low-level HW IPCores can be bridged thanks
to the SDN strategy followed in eGW architecture and sup-
ported by eGW Builder as automation tool.

VIIl. COEXISTENCE OF DDS WITH TSN IN eGW
The traditional layered approach defined by the OSI model
is the de-facto standard in networking devices. Its success
resides on the fact that it allows to decouple functionality
from transport and physical layers, permitting to reuse func-
tionalities across different network technologies and increas-
ing the scalability of network management. It also simplifies
the application layer processing, by allowing higher layers
to operate without the need of knowing anything about how
the lower layers work. However, this freedom in terms of
functionality comes at a cost: it is not only that higher layers
do not need to know how lower layers operate; it also means
that they cannot influence their behavior, even if they want to.
For this reason, QoS management is nowadays commonly
deployed in lower layers (TSN at network access layer) but
there is no link to the application layer. On the other side,

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

ELASTIC GATEWAY BUILDER

GW ARCHITECTURE VIEW

1 o0

1 1
1Port 0 ()| Normo =y iqueued (25| Matcho || intaueue 0

1. GW Architecture

Definition

1 1 1
port_1 |=D| Normt =] 1ueuet [=p] Matcht || intaueuet

2 [T

1 g
= > | EQueueo |5 Shaperd || EPort 0

ACTION

1 i
= = | EQuevet (=] shapert [=2[EPort_1

Generate HDL| |Synthesize| llmplementationl |Generate Testl lSimuIationl

MICROARCHITECTURE VIEW
BLOCK NAME : ACTION

SUB-BLOCKS:
Generic Interface ” Encryption |
DDS - Liveliness ” Decryption |

DDS - Time Based Filter ” Forwarding |

2. GW Blocks Micro-
Architecture Definition

DDS - Destination Order ” |

DDS - Liveliness
DDS - Liveliness

‘

SELECTED :

FRAME PROCESSING

DDS M
Liveliness | Ti
Timeout
] DDS PUBLISHER

SUPPORT Alive
Timeout message
Counter

DDS SUBSCRIBER
SUPPORT

3. HW Implementation

Time based

pin Filter
T Destination

Order
support

PROCESS

FIGURE 16. From DDS policies to HW implementation with eGW builder tool.

TABLE 9. Mapping of QoS features to simplified 0SI model.

[Layer [QoS features |

Application Layer
Transport Layer
Protocol Layer
Network Access Layer

DDS library
RTPS protocol
TSN technologies

middlewares such as DDS try to bridge this limitation by
offering service related QoS features at transport layer. How-
ever, without linking DDS to the lower layers, the deploy-
ment is still subject to how the link and physical layers are
managed. Table 9 shows how the existing QoS mechanisms
are mapped to the different layers defined in OSI model (a
simplified view).

There are already some works in the literature exploring
the convenient integration of TSN and DDS. In [65] authors
exploit the QoS capabilities of DDS in terms of traffic priori-
tization to guarantee the QoS of their application, while using
TSN to provide time synchronization across the network.
However, in this research TSN and DDS just happen to be in
place in the experiments, but are independent of one another.
In [66] authors describe a case study of DDS over TSN for
military applications where they map the DDS applications to
TSN enabled end stations. Similarly to the previous reference
TSN and DDS run in parallel, but independently. In [67],

VOLUME 10, 2022

authors explore the capabilities in terms of QoS of wireless
TSN networks when combined with DDS. In such work, the
intersection between TSN and DDS is introduced by mapping
DDS topics to TSN streams.

In here, we identify a gap in the state of the art, which
is why we explore how DDS and TSN QoS features can
be seamlessly merged or combined in order to provide this
missing bridge that would allow to define low-level QoS
properties at higher levels of abstraction. This bridge is an
important advance in the state of the art since it allows to
ensure the performance of application level services that have
highly stringent real-time requirements for their operation.

In this section, we analyze how DDS and TSN can be suc-
cessfully combined in order to improve the QoS management
from three different perspectives. Moreover, we also show
how this combination of DDS and TSN can be deployed in the
previously introduced eGW architecture, maximizing perfor-
mance through the combination of DDS, TSN and HW-based
network processing. Table 10 summarizes the DDS policies
that can be mapped to TSN technologies and how they are
deployed in eGW.

A. TRAFFIC PRIORITIZATION: WHO GOES FIRST?
The whole problem of traffic management can be abstracted
as a conflict resolution problem. In the end, QoS strategies

109643

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

TABLE 10. Mapping of DDS policies to TSN technologies and eGW SoC.

[DDS policy
TRANSPORT_PRIORITY
LATENCY_BUDGET
DEADLINE
RELIABILITY

[TSN feature | eGW parameters |

Strict Priority
Strict Priority
IEEE 802.1Qbv
IEEE 802.1CB

Frame Priority Field
Frame Priority Field
TSE Configuration
FRER Support

are needed because frames encounter conflicts along their trip
through the network. In other words, in a network without
conflicts, no QoS strategies would be required. However,
conflicts do exist in real-world networks, mainly due to the
presence of shared resources that need to be arbitrated, which
is why different strategies are needed in order to solve them.
The first approach to tackle this problem is to introduce
traffic prioritization, i.e. out of a collection of frames that
may be eligible for transmission at a specific moment in time,
“Which one should go first?”” Defining priorities allows to
make this decision in a simple way.

DDS provides means to prioritize traffic through 2 different
QoS policies. The first one is the TRANSPORT_PRIORITY
policy, which explicitly indicates which should be the pri-
ority used for a particular frame at transport layer. Another
policy that expresses priority in an indirect way is the
LATENCY_BUDGET policy. By informing about the avail-
able time that a frame has to reach its destination, dynamism
is achieved with regard to the priority of the frame: if a frame
has a wide margin to arrive to its destination, a low priority
can be used for its transport, giving more priority to other
frames; if, instead, it is running out of time, the priority of
this particular frame can be increased, allowing it to meet the
latency requirement.

TSN also allows to classify traffic according to priorities.
In this case, frames are divided into different Traffic Classes
(TC) (8 according to IEEE802.1Q) with each TC having
a priority assigned. Then, a Strict Priority scheduler chooses
the next frame for transmission, which will be the one with
highest priority out of the eligible frames in a particular
moment in time. In here we see an opportunity to make a
bridge between the DDS specification and TSN, matching
DDS prioritization to TSN traffic classes. For the TRANS-
PORT_PRIORITY policy, this is a direct match between the
priorities specified by DDS frames and the defined TC within
the gateway, which can be configured in the gateway memory
map. For LATENCY_BUDGET, instead, a dynamic range
can be defined, such that depending on the remaining time
that a frame has to achieve its destination, the priority used at
L2 level (i.e. the traffic class) can be adjusted. Table 10 shows
how the mapping between DDS policies, TSN traffic classes
and eGW registers in the memory map can be deployed.

B. PERIODIC TRAFFIC MANAGEMENT: A COMMON
CONCEPT OF PERIOD, TIME AND DEADLINES

Another common challenge of traffic management is how to
efficiently deal with periodic traffic. On one side, periodic
traffic should be, at first glance, easy to manage since we

109644

know in advance when it is going to occur. However, when
mixed with traffic sent with different periodicity and also with
event-based traffic, the correct management is not so simple.
Furthermore, in order to be able to make a good planning
of resources for periodic traffic, a common notion of time
needs to be shared across the different devices of the network.
This means, that in order to plan for a flow that may come at
a specific moment in time, all nodes must have a common
knowledge of “what time it is”’. In other words, all nodes
need to be synchronized.

For this, TSN offers the IEEE802.1AS standard that allows
to distribute the time of a master node so that all the other
nodes can synchronize with it with an accuracy of 1 us or less.
Once synchronization is in place, different strategies can be
used in order to handle periodic traffic. The proposal from
TSN technologies is IEEE802.1Qbv, also known as Time
Aware Shaper (TAS). Basically, TAS defines time windows
in which only one traffic class is allowed to transmit, ensuring
that periodic traffic will encounter an open path when arriving
to the node, minimizing thus the end-to-end latency if all
nodes synchronize these windows properly.

On the DDS side, the DEADLINE policy defines the maxi-
mum time (i.e. the period) between updates of a data instance.
Again, we can match the period of the services with a par-
ticular deadline policy and make it a part of the TAS cyclic
traffic management, ensuring that the traffic corresponding to
a particular service will always meet its deadline. This can be
deployed in eGW by appropriately configuring the registers
within the traffic shaping stage that allow to define the time
windows for each traffic class, as seen in Section V.

C. TRAFFIC RELIABILITY MANAGEMENT: WHEN BEST
EFFORT IS NOT ENOUGH

Apart from timing constraints, QoS also applies to the relia-
bility of frames transmission. In safety related applications
this is of utmost importance since people’s health condi-
tion might be at stake. Most of the time, reliability requires
redundancy. This is because safety related information usu-
ally needs to be received within a bounded amount of time
which does not allow for data re-transmission, and also
because the system must be robust to a link failure where no
re-transmissions would be feasible as in best-effort traffic.
There are several strategies for redundancy, ranging from
topology decisions where the amount of redundant links are
chosen, to protocol level strategies deciding which traffic
should be replicated, how and when.

DDS provides the RELIABILITY policy that allows to
specify the reliability required for a particular service. How-
ever, this is more a high-level requirement than an imple-
mentation specification, since DDS does not infer how this
reliability should be provided.

TSN also considers the topic of reliability for which
IEEE802.1CB has been defined. This standard defines the
“Frames Replication and Elimination for Reliability” algo-
rithm (FRER), which provides a standard way to provide

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

l Application Layer

Services Layer INGRESS FRAME | ol INGRESS FRAME | f vreqmeoiate FRAME
PHY QUEUEING 0 - ‘I,‘;ZE::\”:;G L ‘QUEUEING 0 PROCESSING
1{of1jo 0 Action
C T | [oAe] |-
ECU Abstraction Layer L INGRESS RAE INGRESS FRAME [Crso]
Drivers PHY QUEUEING 1 FILTERING QUEUEING 1
! 18 TASKL i
[To[ile 1 Match 1
N
i 1 INGRESS INGRESS FRAME
Microcontroller Abstraction Layer o FRAME QUEENG N e NERMEOAT TRAEFIC
= - SHAPING M
[Tl N Match N BE
bl [oac]
I Loopback TSN |

FIGURE 17. AUTOSAR SW stack vs eGW SoC architecture.

Application Layer

System Memory Crypto
Services Services Services
Device Memory Crypto

Abstraction Abstraction Abstraction

Microcontroller
Drivers

Crypto

Memory Drivers .
ry Drivers

FIGURE 18. Simplified AUTOSAR stack (adapted from [68]).

this redundancy of the safety related communication over
alternate paths.

Within the eGW, FRER can be integrated in the process-
ing stage, as one more task in the stack which handles this
generation and elimination of replicates, offloading the CPU
from this reliability related processing. More details on how
FRER algorithm can be deployed in the eGW architecture are
described in [56].

IX. eGW SoC ARCHITECTURE AND AUTOSAR: HW VS SW
CENTRICITY

In this section, we showcase how the eGW SoC architecture
is compatible and integrable with the AUTOSAR Classic
software stack. This compatibility is a key aspect towards a
possible future adoption of eGW architecture in the industry,
for instance in the way of new networking HW peripherals
integrable in next-generation networking SoC devices and
adopted in automotive and AUTOSAR standard. Further-
more, it is the main reason why it is possible to embed
such a wide range of functionalities related to IVNs, and
definitely the enabler of the integration of HW-Accelerated
DDS. In order to show this concept, we start with an overview
of AUTOSAR software stack and afterwards detail how each
of the layers maps to eGW SoC architecture.

On the left side of Fig. 17 the AUTOSAR Classic SW stack
is shown. From top to bottom, AUTOSAR defines an appli-
cation layer where the different functionalities required in
the vehicle organized in SW components are deployed. This

VOLUME 10, 2022

Comm

R

Diagnostic
Comm.

Communication ATEED Generic

Services Comm. manager N‘M
Communication IPDUM — PDU Router
Abstraction ! 5 Module
FlexRay TP CAN TP _‘
| |

Communication i T i
Drivers FlexRay !nterface CAN In‘terface LIN Int‘erface

[[[
I | I I
FlexRay Driver CAN Driver LIN Driver

application layer runs on top of the Run Time Environment
(RTE). Below RTE there are different software layers that
provide functionalities related to lower level infrastructure.
On one side, there is a layer for service related functionalities
which allows for supporting the service oriented architecture.
This is key in providing flexibility towards distribution of
services across the network supporting the SDN paradigm.
On the other side, there are different HW abstraction layers
allowing for making the higher layers independent of the
lower layers. Particularly, this abstraction is divided between
the MCU abstraction layer, which provides the required APIs
to interact with the particular MCU in each implementation,
and the ECU abstraction layer, which abstracts the whole
ECU, where one or more MCUs may be in place. Addition-
ally, there is a set of drivers that manage the communication
between the RTE and the MCU, skipping the other layers
when necessary.

On the right side of Fig. 17, we show how eGW maps to
this software layers defined in AUTOSAR. On the top, the
application layer runs on the eGW CPU, similarly to any other
AUTOSAR implementation. There, the SW components
responsible for running the applications of each automotive
domain are deployed, i.e., ADAS/AD, body/comfort, cock-
pit/infotainment, powertrain/chassis and connectivity. Then,
all the HW abstraction layers together with services and RTE
are absorbed by the IPCores that compose eGW data-path and
their interconnections. The ECU and microcontroller (MCU)
abstraction layer are simplified in the CPU-HW interface

109645

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

FRAME FILTERING | EGRESS
Match 0 FRAME :::‘),EESSING QUEVEING
RULE 0: RTPS MSG + PRIO =
| Y | INS:\E,SS QoS=TRANSPORT_PRIO [| TRANSPORT_PRIO D:I:D
|_Header | TRANSPORT PRIO=6| ! — — | FORWARDING |
- RULE 1:RTPSMSG = PRIO=3
1lof1fo
[oo il
| e ! RULE 3: NON RTPS MSG PRIO=0 EGRESS
| | TRAFFIC PHY
D:IIJ ko{ SHAPING et
ENGINE
FRAME FILTERING
Match 1 OTHER D:I] HOHO
PROCESSING e
RULE 0: RTPS MSG + PRIO = TS
INGRESS QoS=TRANSPORT_PRIO || TRANSPORT_PRIO D:I:D
PHY
. SN N
I — IRTPS Lk = I M RULE1:RTPSMSG [PRIO=3 D:I:D
eader | 1 |i| 1 |0_
| RULE 3: NON RTPS MSG H PRIO=0 | | [I:D | | | | |

FIGURE 19. PoC — eGW as a switch between publishers and subscribers.

(yellow line in the figure), together with the memory map
embedded in each of the IPCores. This simplification is
possible thanks to the integration of functionalities directly
in HW, which “lift up” the abstraction required by the CPU,
covering most of the lower layers and reducing the complex-
ity significantly.

The communication drivers are split across the different
IPCores of eGW data-path. Fig. 18 shows a more detailed
view of the functionalities embedded in these drivers in
AUTOSAR specification. On one side, the drivers man-
age the communication with different network protocols
(CAN, Ethernet, FlexRay, etc. in the figure). This function-
ality is absorbed in the Normalizer stage of eGW together
with the SDN strategy previously described. Furthermore,
eGW allows to integrate new network protocols by writing
a different configuration in the Normalizer Memory Map.
In AUTOSAR, the integration of a new protocol requires the
the standardization and development of a new Basic Software
(BSW) module or a custom Complex Device Driver (CDD).
So, again, we see how eGW simplifies the management of
complexity through HW integration. On the other side, the
drivers perform also routing/diagnostics functionalities, that
are split between Normalizer, Filtering and Action stage in
eGW, providing all these functionalities in HW, without inter-
vention of the CPU, increasing performance while reducing
CPU load.

Finally, the Services Layer is absorbed between the Match
and Action stages of eGW, by integrating the required
IPCores for each service, together with the eGW data-path
itself and the queuing and DAE strategies described above,
as we have shown for DDS in the previous sections.

Overall, we see how eGW remains compatible with
AUTOSAR and how it enables the integration of modern
functionalities and services such as DDS in a simple way.
More importantly, eGW is able to reduce the complexity
of handling and orchestrating all the required functionalities
while providing maximum performance, through a pioneer
fully HW-centric approach.

109646

X. PROOF OF CONCEPT

This section shows experimental results of some of the
concepts defined above, synthesized on the FPGA of a Xil-
inx Zynq UltraScale+ ZU19EG SoC-based platform [69].
We evaluate the impact in performance of QoS both for the
case when eGW is a network switch between publishers and
subscribers, and when it is acting as a publisher or subscriber.
For the PoC design, we use the previously described eGW
Builder Tool in order to generate the corresponding design
file for each test case. For the experimentation and data
analysis we follow the approach described in [61]. Mainly,
we base the experimentation on the use of standard PCAP
files in order to inject/log traffic to/from the system. After-
wards, we process the collected PCAPs with Python scripts
that allow to extract the data we are looking for.

A. TEST CASE 1: eGW AS A SWITCH BETWEEN
PUBLISHERS AND SUBSCRIBERS

In this subsection, we evaluate the performance improvement
in terms of QoS of RTPS messages provided by the eGW
DDS support when eGW is a switch between publisher and
subscribers, i.e. eGW is neither transmitter nor receiver of
the RTPS messages. For this, we focus on the TRANS-
PORT_PRIORITY QoS policy which provides a simple yet
powerful mechanism to control the priority with which a
frame is transmitted through the network. To evaluate this
feature, we run experiments with different configurations
regarding the priority used for transportation of RTPS traffic.
The experiments run are the following:

e Experiment 1 — No prioritization of RTPS traffic: First,
we measure the delay observed for each frame without
using any prioritization or traffic shaping mechanism,
just a FIFO approach with all the traffic using the same
queue inside the queueing modules.

o Experiment 2 — Prioritization of RTPS traffic over Best Effort
traffic: Second, we define a rule in the filtering stage
that recognises RTPS frames and assigns them a priority

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

higher than the rest of the traffic, which is considered
best effort in the eGW.

o Experiment 3 — Prioritization of RTPS traffic according to
TRANSPORT-PRIORITY QoS: Third, we add more rules in
the filtering stage that not only recognise RTPS frames,
but also inspect the QoS inline parameters. The pri-
ority used for the transmission of traffic in the egress
stage of eGW is determined by the content of the
TRANSPORT-PRIORITY QoS policy.

The PoC runs on a GW platform based on eGW architec-
ture, particularized for this use case as depicted in Fig. 19.
In this case, we instantiate two ingress ports and one egress
port, with Ethernet connections of 100 Mbps. We inject the
same traffic (at the same time) in the two ingress ports, and
forward all the traffic to the egress port. The traffic in each of
the ports consists of 1000 frames of 64 Bytes which are sent
every 200 us. We define 8 different traffic classes, following
the IEEE TSN standardization approach [40], where Traffic
Class 7 represents the highest priority, and Traffic Class O rep-
resents the lowest priority. As shown in Fig. 19, we define
three filtering rules to differentiate RTPS messages with
TRANSPORT_PRIORITY QoS policy, RTPS messages in
general with other QoS properties and non-RTPS messages.
For each of them, a different priority is defined and used
internally in eGW. This way, frames are stored in different
queues of the egress stage (based on availability and not on
priority, since priority is embedded in the instruction frame).
Finally, the TSE is able to select between the frames based on
the priority field of the instruction frame, closing thus the loop
and allowing to use the QoS properties defined by the DDS
middleware. However, as detailed before, not all the exper-
iments are sensitive to this traffic classification. In the first
experiment there is no prioritization of traffic (i.e. all frames
fall under Rule 3 in Fig. 19). In the second one, all RTPS
messages are given the same priority (Rules 2 and 3 apply,
differentiating RTPS from non RTPS traffic). Finally, on the
third experiment, the TRANSPORT-PRIORITY QoS policy
isused (Rules 1,2 and 3 apply, differentiating RTPS messages
with TRANSPORT_PRIORITY QoS, RTPS messages with
other QoS properties and non RTPS messages). In our exper-
iments, the TRANSPORT_PRIORITY used in the messages
corresponds to the traffic class of the frames, for the sake of
easing the final data analysis. We generate the traffic based
on PCAP files with CANoe tool from Vector [70].

The detailed results for each of the experiments are shown
in Table 11. For each of the experiments, we show the max-
imum, minimum and average delay for the flows of each
traffic class. Traffic Class 7 represents traffic with highest
priority, and Traffic Class O represents traffic with lowest
priority. As we can see in the tables, in the case of Exper-
iment 1, eGW does not differentiate among traffic classes
and therefore the average delay for all classes is the same.
When we introduce the prioritization strategy, we already
see some improvements (Experiment 2) regarding the delay
of the RTPS traffic, which further improves when introducing

VOLUME 10, 2022

60,000 |- —

50,000 |- —

40,000 |- —

Time (ns)

30,000 |- —

20,000 |- —

10,000 [— | | | | | | | | =
7 6 5 4 3

Traffic Class

o Experiment 1 m Experiment 2 @ Experiment 3

S
=)

FIGURE 20. PoC — plot of delay measurement of frames across
experiments.

the use of TRANSPORT-PRIORITY QoS policy (Experi-
ment 3). The rows highlighted in bold in Table 11 show the
delay experienced by frames corresponding to the highest
priorities (Traffic Class 6 and 7). There we see how in the first
experiment these flows have similar delay to others, while
in experiments 2 and 3 they benefit from higher transport
priority. On the other side, the worst case delay for traffic
with lower priority increases significantly in exchange for
reducing the worst case delay of high priority traffic, as it
could be expected. This effect appears because the experi-
ments are using two ingress ports at maximum rate to transmit
traffic over one single egress port, taking the system to the
limit. Therefore, the egress port needs to queue some of the
low priority frames for a longer time in order to infer the
lowest possible delay over new coming high priority traffic.
In Table 12, we compare a summary of the results focusing on
the average delay per traffic class in each of the approaches.
We see that, in general, the average delay of all traffic classes
improves, with higher improvements related to higher traffic
prioritization (improvement for Traffic Class 6 and 7 high-
lighted in bold).

Finally, Fig. 20 provides a graphical view of the results.
Again, we see the results for each of the traffic classes, being
TC 7 and 6 the ones with highest priority. We represent the
range of delay from minimum to maximum within each traffic
class with vertical lines, and the average with dots. The differ-
ent experiments are differentiated with colors and superposed
in the figure to ease visual comparison. Experiment one is
plotted in blue, experiment 2 in red and experiment 3 in
brown. The Figure shows how the introduction of prioritiza-
tion improves the average response time of all traffic classes
for this particular use case. Furthermore, we also see how
the use of specific priorities for each traffic class reduces the

109647

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

TABLE 11. PoC — measured frames delay (in ns) across the different experiments.

Experiment Configuration | Experiment 1 Delay [Experiment 2 Delay I Experiment 3 Delay

Traffic Class | Framesin | Minimum [Maximum | Average | Minimum | Maximum [Average | Minimum | Maximum [Average
7 125 13824 41984 22759 14080 35072 20342 13824 35072 20256
6 125 13824 41984 22870 13824 36096 21004 13824 35840 20592
5 125 13824 41984 22884 13824 36096 21880 13824 41984 20721
4 125 13824 40960 23799 14080 41216 22484 13824 38144 21110
3 125 13824 41216 22851 13824 42240 22032 13824 41984 20948
2 125 13824 47872 23443 13824 40960 21288 13824 46848 21071
1 125 14080 41984 24107 13824 41984 22769 13824 41216 20707
0 1125 13824 47872 23042 13824 48128 22034 13824 58112 20985

*Traffic Classes 6 and 7 represent highest priority traffic

TABLE 12. PoC — average delay comparison across the different experiments (total measurements in ns).

TC7 TC 6 TCS TC 4

TC3 TC2 TC1 TCO

22759 (Ref) 22870 (Ref) 22884 (Ref) 23799 (Ref)

22851 (Ref) 23443 (Ref) 24107 (Ref) 23042 (Ref)

20342 (-10,6%) | 21004 (-8,1%) | 21880 (-4,4%)

22484 (5,5%)

22032 (-3,6%) | 21288 (-9,2%) | 22769 (-5,5%) 22034 (-4,4%)

W D | |

20256 (-11%) 20592 (-10%) | 20721 (-9,5%)

21110 (-11,3%)

20948 (-8,3%) | 21071 (-9,2%) | 20707 (-14,1%) | 20985 (-4,37%)

delay of higher priority classes, allowing to guarantee a maxi-
mum worst case for a given traffic class. We see how the intro-
duction of priorities per traffic class reduces the maximum
delay of high priority traffic (TC 6 and 7) in exchange for
longer worst case delays in the lower priority traffic classes.
The big variations observed in the experiments are caused by
the traffic pattern used, where two ports are sending a burst
of traffic to one single egress port simultaneously. During
the experiments, we saw that the traffic pattern used has a
great impact on the result. One shortcoming we identified,
is that there is currently no available and standardized data set
that can be used to simulate vehicular traffic for experiments.
Authors in [71] identify this issue too, and provide some
guidelines on how to build the traffic that can be used in
IVN experiments. In our case, we follow these guidelines and
randomize the generation of frames when possible in order to
get the most realistic results we can. From our perspective,
this is an opportunity for future research as well, which could
represent an important contribution in the field.

B. TEST CASE 2: eGW AS A PUBLISHER OR SUBSCRIBER
In this subsection, we evaluate some of the benefits of per-
forming certain DDS features in a HW accelerator when eGW
is acting as publisher or subscriber. In particular, we evaluate
the benefit of offloading a simple task such as the LIVELI-
NESS QoS policy. As described before, this policy mainly
defines the periodicity of Heartbeat messages that need to
be generated and transmitted by writers. The benefits of
offloading such functionality are two-fold:

o CPU-load reduction: On one side, the CPU is free of this
task and can dedicate its resources to other processing
tasks that require software capabilities (e.g. due to algo-
rithm complexity or high silicon cost of a HW alter-
native). This is a qualitative benefit that is difficult to

109648

#: Experiment Number
*Traffic Classes 6 and 7 represent highest priority traffic

measure since it depends on the applications running on
the CPU.

« Better timing accuracy: On the other side, the time precision
achieved by the HW implementation is typically higher
(i.e. the jitter observed regarding the established period
is expected to be smaller). This aspect can be quantita-
tively evaluated, so we focus on this second benefit in
this PoC.

In order to evaluate the difference in the jitter between
messages at receiver side, we deploy two implementations
of the LIVELINESS QoS policy: a software-based imple-
mentation and a HW-accelerated implementation. On the
software-based implementation, we define a function that
sends frames with a certain periodicity by writing the corre-
sponding registers of the HW driver. No other functionalities
are present in the CPU at run-time and no other traffic is
present in the system. Although being a simplistic system
implementation, it allows us to compare the impact of the
SW implementation running on the CPU Operating Sys-
tem versus the HW-accelerated functionality. On the HW-
based implementation we implement the publisher support
block described in Fig. 16. Both the SW and HW imple-
mentations are configured to generate alive messages every
second, and we run the experiment on both platforms for
1000 seconds. The results are summarized in Table 13 and
Fig. 21. As expected, the jitter of the HW implementation
(250 ns) is much smaller than the jitter experienced by the
SW implementation (>1ms). Considering that the SW imple-
mentation used for this experimentation is a very simple one
without interferences of other tasks/threads in parallel, it is
reasonable to foresee that the benefit would be even higher
on an ECU loaded with many different applications running
concurrently. It is important to note that we use the timestamp
provided by the CANoe tool [70] when recording the result-
ing PCAP files. This means that measurements include delay

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

1.000500060 =]

1.000000060 [~ @ |

0.999500060 |— —

Time (s)

0.999000060 ‘ ‘
HW offload SW implementation

FIGURE 21. PoC — plot of jitter measurement of Heartbeat messages.

TABLE 13. PoC — results of jitter measurement of Heartbeat messages.

Statistic

Maximum time (s)
Average time (s)
Minimum time (s)
Jitter (Max-Min) (s)

| SW Implementation

1.000393828 1.000000250
1.000004977 1.000000147
0.999118813 1

0.001275015 0.000000250

[HW offload |

and jitter related to the tool itself, and not only to the eGW
implementation. However, since this is the same for both the
SW and HW implementation this is just an offset in both cases
and does not influence the purpose of the comparison.

XI. CONCLUSION

In this paper, we have illustrated the rationale behind the
transition of the automotive market towards service-oriented
architectures (SoA) and we have illustrated how some use
cases can take advantage of the functionalities provided by
modern middlewares.

The research has then contributed in bringing the DDS
technology to the next-level, by proposing the transition of
some DDS functionalities from software to hardware accel-
erators. This approach allows to either avoid the need of
powerful and expensive MCUs/CPUs to execute the DDS
middleware and improve the predictability of the overall sys-
tem. The concept of this transition has been not only detailed
but also deployed through a Proof of Concept. For such a goal,
the eGW SoC architecture has been developed showcasing
the possibility to manage DDS requirements at HW level
through the right management of queueing, arbitration and
scheduling of frames with the different proposed IPCores.
With this, the suitability of the HW-centric approach for
high-performance DDS deployment is successfully demon-
strated. Moreover, we have shown some insights about the
reasonable easiness of porting the HW-centric DDS solution
to be adopted and standardized in AUTOSAR by means of
new standardizable HW peripherals integrable in future next-
generation automotive-related SoC devices as accelerators.

The work done proves also that the evaluated DDS
QoS policies can coexist in a compatible manner with
other TSN standards and IVN functional safety mechanisms
required in next-generation autonomous-connected-electric-
and-shared (ACES) vehicles. The work describes also the
compatibility of DDS with part of TSN P802.1DG and Func-
tional Safety ISO 26262 standards for certain automotive
in-vehicle networking uses cases.

VOLUME 10, 2022

All in all, this work pioneers the deployment of HW-centric
DDS in cyber-physical systems, particularized here in a zonal
gateway networking SoC device for automotive-related sce-
narios. The work shows how the presented eGW SoC archi-
tecture enables not only the integration of HW-centric DDS
and TSN features but also the compatibility with AUTOSAR
software stack. The research has also contributed to bridge
the gap in automotive software complexity thanks to a pioneer
HW-oriented approach that integrates SDN, TSN and DDS.

REFERENCES

[1] Road Vehicles—Functional Safety—Part 1:
ISO 26262-1:2018, 2018. [Online].
iso.org/standard/68383.html

[2] AUTOSAR. Classic Platform. Accessed: Sep. 15, 2022. [Online]. Avail-
able: https://www.autosar.org/standards/classic-platform/

[3] Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine
Control Units Version 6.0, EGAS Workgroup, Germany, 2015.

[4] OSEK/VDX Operating System Specification 2.2.3, OSEK, Germany,
Feb. 2005.

[5] McKinsey. The Case for an End-to-End Automotive Software Platform.
[Online]. Available: https://www.mckinsey.com/industries/automotive-
and-assembly/our-insights/the-case-for-an-end-to-end-automotive-
software-platform

[6] Luc van Dijk. (2017). Future Vehicle Networks and ECUS Architecture and
Technology Considerations. NXP Semiconductors. [Online]. Available:
https://www.nxp.com/docs/en/white-paper/FVNECUA4WP.pdf

[7]1 H. Askaripoor, M. H. Farzaneh, and A. Knoll, “E/E architecture syn-
thesis: Challenges and technologies,” Electronics, vol. 11, no. 4, p. 518,
Feb. 2022.

[8] K. Strandberg, T. Olovsson, and E. Jonsson, ‘“Securing the connected car:
A security-enhancement methodology,” IEEE Veh. Technol. Mag., vol. 13,
no. 1, pp. 56-65, Mar. 2018.

[9] AUTOSAR. Adaptive Platform. Accessed: Sep. 15, 2022. [Online]. Avail-
able: https://www.autosar.org/standards/adaptive-platform/

[10] E.W. Dijkstra, “On the role of scientific thought,” in Selected Writings on
Computing: A Personal Perspective. Cham, Switzerland: Springer, 1982,
pp. 60-66.

[11] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin,
“Intra-vehicle networks: A review,” IEEE Trans. Intell. Transp. Syst.,
vol. 16, no. 2, pp. 534-545, Apr. 2014.

[12] O. Alparslan, S. Arakawa, and M. Murata, ““Next generation intra-vehicle
backbone network architectures,” in Proc. IEEE 22nd Int. Conf. High
Perform. Switching Routing (HPSR), Jun. 2021, pp. 1-7.

[13] J. Walrand, M. Turner, and R. Myers, “An architecture for in-vehicle
networks,” IEEE Trans. Veh. Technol., vol. 70, no. 7, pp. 6335-6342,
Jul. 2021.

[14] G. Patti, L. Lo Bello, and L. Leonardi, “Deadline-aware online scheduling
of TSN flows for automotive applications,” IEEE Trans. Ind. Informat.,
early access, Jun. 17, 2022, doi: 10.1109/TI1.2022.3184069.

[15] Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, “Timely survey of time-
sensitive networking: Past and future directions,” IEEE Access, vol. 9,
pp. 142506-142527, 2021.

[16] OMG. Data Distribution Service (DDS) Version 14.
Accessed: Sep. 15, 2022. [Online]. Available: https://www.omg.org/
spec/DDS/

[17] Robot Operating System (ROS). Accessed: Sep. 15, 2022. [Online]. Avail-
able: https://www.ros.org

[18] Apex.Al, Inc. Apex.OS. Accessed: Sep. 15, 2022. [Online]. Available:
https://www.apex.ai

[19] M. Pohnl, A. Tamisier, and T. Blass, ““A middleware journey from micro-
controllers to microprocessors,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2022, pp. 282-286.

[20] AUTOSAR. (2022). 13" AUTOSAR Open Conference (AOC). [Online].
Available: https://www.autosar.org/news-events/aoc2022/

[21] Object Management Group. Accessed: Sep. 15, 2022. [Online]. Available:
https://www.omg.org

[22] OMG. The Real-Time Publish-Subscribe Protocol DDS Interoperability
Wire Protocol (DDSI-RTPSTM) Specification Version 2.5. [Online]. Avail-
able: https://www.omg.org/spec/DDSI-RTPS

[23] OMG. DDS-TSN Request For Proposals. Accessed: Sep. 15, 2022.
[Online]. Available: https://www.omg.org/news/releases/pr2018/10-08-
18.htm

Vocabulary, Standard
Available: https://www.

109649

http://dx.doi.org/10.1109/TII.2022.3184069

IEEE Access

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

AUTOSAR. SOME/IP Protocol Specification. Accessed: Sep. 15, 2022.
[Online]. Available: https://www.autosar.org/fileadmin/user_upload/
standards/foundation/21-11/AUTOSAR_PRS_SOMEIPProtocol.pdf

H. Askaripoor, M. H. Farzaneh, and A. Knoll, “E/E architecture syn-
thesis: Challenges and technologies,” Electronics, vol. 11, no. 4, p. 518,
Feb. 2022.

A. G. Marino, F. Fons, and J. M. M. Arostegui, ‘“The future roadmap of in-
vehicle network processing: A HW-centric (R-)evolution,” IEEE Access,
vol. 10, pp. 69223-69249, 2022.

A. A. Kane, A. G. Marino, F. Fons, S. Nueesch, P. Serwa, and M. Schoetz,
“Elastic gateway functional safety architecture and deployment: A case
study,” IEEE Access, vol. 10, pp. 91771-91801, 2022.

F. Fons and M. Fons, “FPGA-based automotive ECU addresses
AUTOSAR and ISO 26262 standards,” Xcellence Automot. Appl., vol. 1,
pp. 20-31, 1st Quart., 2012.

F. Fons, M. Fons, P. Olivier, and A. Weimerskirch, “A modular, recon-
figurable and updateable embedded cyber security hardware solution for
automotive,” in Proc. Embedded World Conf., 2017.

S. Shreejith and S. A. Fahmy, ““Security aware network controllers for next
generation automotive embedded systems,” in Proc. 52nd Annu. Design
Autom. Conf., Jun. 2015, pp. 1-6.

P. Bellavista, A. Corradi, L. Foschini, and A. Pernafini, ‘“‘Data distribution
service (DDS): A performance comparison of OpenSplice and RTT imple-
mentations,” in Proc. IEEE Symp. Comput. Commun. (ISCC), Jul. 2013,
pp. 377-383.

T. Wu, B. Wu, S. Wang, L. Liu, S. Liu, Y. Bao, and W. Shi, “Oops! It’s too
late. Your autonomous driving system needs a faster middleware,” IEEE
Robot. Autom. Lett., vol. 6, no. 4, pp. 7301-7308, Oct. 2021.

S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC
UA versus ROS, DDS, and MQTT: Performance evaluation of Industry
4.0 protocols,” in Proc. IEEE Int. Conf. Ind. Technol. (ICIT), Feb. 2019,
pp. 955-962.

OpenADX. iceoryx—True Zero-Copy Inter-Process-Communication.
Accessed: Sep. 15, 2022. [Online]. Available: https://github.com/eclipse-
iceoryx/iceoryx

Y. Chen and T. Kunz, “Performance evaluation of IoT protocols under
a constrained wireless access network,” in Proc. Int. Conf. Sel. Topics
Mobile Wireless Netw. (MoWNeT), Apr. 2016, pp. 1-7.

MQTT, OASIS, Manchester, U.K., 2014.

Vector, ‘“Middleware protocols in the automobile: Service-oriented, data-
centric or RESTful?” Elektronik Automot. Mag., vol. 3, pp. 18-21,
Mar. 2020.

A. Toana, A. Korodi, and 1. Silea, “Automotive IoT Ethernet-based com-
munication technologies applied in a V2X context via a multi-protocol
gateway,” Sensors, vol. 22, no. 17, p. 6382, Aug. 2022.

C. Menard, A. Goens, M. Lohstroh, and J. Castrillon, “Achieving deter-
minism in adaptive AUTOSAR,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2020, pp. 822-827.

IEEE. Time Sensitive Networking Working Group.
Accessed: Sep. 15, 2022. [Online]. Available: https://1.ieee802.org/tsn/
A. Nasrallah, S. A. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ULL) networks:
The IEEE TSN and IETF DetNet standards and related 5G ULL research,”
IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 88-145, 1st Quart., 2019.
L. Lo Bello, G. Patti, and G. Vasta, ‘“Assessments of real-time communica-
tions over TSN automotive networks,” Electronics, vol. 10, no. 5, p. 556,
Feb. 2021.

S. B. H. Said, Q. H. Truong, and M. Boc, “SDN-based configuration
solution for IEEE 802.1 time sensitive networking (TSN),” ACM SIGBED
Rev., vol. 16, no. 1, pp. 27-32, Feb. 2019.

Draft Standard for Local and Metropolitan Area Networks—Time-
Sensitive Networking Profile for Automotive in-Vehicle Ethernet Commu-
nications, Standard IEEE P802.1DG/D1.4, 2021.

IEEE Standard for Local and Metropolitan Area Networks—Timing and
Synchronization for Time-Sensitive Applications, IEEE Standard 802.1AS-
2020, 2020.

IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 28: Per-Stream Filtering and Polic-
ing, IEEE Standard 802.1Qci-2017, IEEE Standard 802.1Q-2014, IEEE
Standard 802.1Qca-2015, IEEE Standard 802.1Qcd-2015, IEEE Standard
802.1Q-2014/Cor 1-2015, IEEE Standard 802.1Qbv-2015, IEEE Standard
802.1Qbu-2016, and IEEE Standard 802.1Qbz-2016, 2017, pp. 1-65.
LAN Man, Standards Committee, and IEEE Computer, /[EEE Standard for
Local and Metropolitan Area Networks—Frame Replication and Elimina-
tion for Reliability, Standard IEEE802.1CB, 2017.

109650

(48]

(49]

(50]

[51]

(52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 12 : Forwarding and Queu-
ing Enhancements for Time-Sensitive Streams, Standard 802.1Qav-2009,
2010.

IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 25: Enhancements for Scheduled Traffic,
IEEE Standard 802.1Qbv-2015, IEEE Standard 802.1Q-2014, IEEE Stan-
dard 802.1Qca-2015, IEEE Standard 802.1Qcd-2015, and IEEE Standard
802.1Q-2014/Cor 1-2015, 2016, pp. 1-57.

IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 29: Cyclic Queuing and Forwarding,
IEEE Standard 802.1Qch-2017, IEEE Standard 802.1Q-2014, IEEE Stan-
dard 802.1Qca-2015, IEEE Standard 802.1Qcd(TM)-2015, IEEE Standard
802.1Q-2014/Cor 1-2015, IEEE Standard 802.1Qbv-2015, IEEE Stan-
dard 802.1Qbu-2016, IEEE Standard 802.1Qbz-2016, and IEEE Standard
802.1Qci-2017, 2017, pp. 1-30.

IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 34: Asynchronous Traffic Shaping,
IEEE Standard 802.1Qcr-2020, IEEE Standard 802.1Q-2018, IEEE Stan-
dard 802.1Qcp-2018, IEEE Standard 802.1Qcc-2018, IEEE Standard
802.1Qcy-2019, and IEEE Standard 802.1Qcx-2020, 2020, pp. 1-151.
IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 26: Frame Preemption, IEEE Standard
802.1Qbu-2016, IEEE Standard 802.1Q-2014, 2016, pp. 1-52.

A. G. Marifio, F. Fons, L. Ming, and J. M. M. Arostegui, “PDU normalizer
engine for heterogeneous in-vehicle networks in automotive gateways,”
in Applied Reconfigurable Computing. Architectures, Tools, and Appli-
cations, S. Derrien, F. Hannig, P. C. Diniz, and D. Chillet, Eds. Cham,
Switzerland: Springer, 2021, pp. 140-155.

Information Processing Systems—Open Systems Interconnection—Basic
Reference Model, Standard ISO 7498-2:1989, 1989. [Online]. Available:
https://www.iso.org/standard/14256.html

A. G. Marino, F. Fons, A. Gharba, L. Ming, and J. M. M. Arostegui,
“Elastic queueing engine for time sensitive networking,” in Proc. IEEE
93rd Veh. Technol. Conf. (VIC-Spring), Apr. 2021, pp. 1-7.

A. G. Marifio, A. A. Kane, F. Fons, and J. M. M. Arostegui, ‘“Enhance-
ments for hardware-based IEEE802.1CB embedded in automotive gate-
way system-on-chip,” in Proc. Symp. Architectures Netw. Commun. Syst.,
New York, NY, USA, Dec. 2021, pp. 31-37.

A. G. Marifio, F. Fons, Z. Haigang, and J. M. M. Arostegui, ‘“Loopback
strategy for in-vehicle network processing in automotive gateway network
on chip,” in Proc. 14th Int. Workshop Netw. Chip Architectures, New York,
NY, USA, Oct. 2021, pp. 22-28.

A. G. Marino, F. Fons, Z. Haigang, and J. M. M. Arostegui, “Traf-
fic shaping engine for time sensitive networking integration within in-
vehicle networks,” in Proc. IEEE Veh. Netw. Conf. (VNC), Nov. 2021,
pp. 182-189.

A. G. Marino, F. Fons, Z. Haigang, and J. M. M. Arostegui, ‘“Loopback
strategy for TSN-compliant traffic queueing and shaping in automotive
gateways,” in Proc. IEEE Conf. Netw. Function Virtualization Softw.
Defined Netw. (NFV-SDN), Nov. 2021, pp. 47-53.

A. G. Marino, N. H. Naganath, F. Fons, and J. M. M. Arostegui, ‘“Build
automation framework for architecture design of automotive elastic gate-
way,” in Proc. Embedded World Conf., 2022, pp. 728-742.

A. G. Marino, N. N. Halinge, F. Fons, and J. M. M. Arostegui, “Build
automation framework for design validation of automotive gateway con-
trollers,” in Proc. IFIP Netw. Conf. (IFIP Netw.), Jun. 2022, pp. 1-6.
OMG. DDS for eXtremely Resource Constrained Environments
Version 1.0. Accessed: Sep. 15, 2022. [Online]. Available:
https://www.omg.org/spec/DDS-XRCE

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-M. Hwu, and D. Chen,
“DNNBuilder: An automated tool for building high-performance DNN
hardware accelerators for FPGAs,” in Proc. Int. Conf. Comput.-Aided
Design, Nov. 2018, pp. 1-8.

J. Yan, W. Quan, X. Yang, W. Fu, Y. Jiang, H. Yang, and Z. Sun, “TSN-
builder: Enabling rapid customization of resource-efficient switches for
time-sensitive networking,” in Proc. 57th ACM/IEEE Design Autom. Conf.
(DAC), Jul. 2020, pp. 1-6.

T. Agarwal, P. Niknejad, M. R. Barzegaran, and L. Vanfretti, ‘“Multi-
level time-sensitive networking (TSN) using the data distribution services
(DDS) for synchronized three-phase measurement data transfer,” IEEE
Access, vol. 7, pp. 131407-131417, 2019.

Using DDS Over TSN to Support NATO Generic Vehicle Architecture
(NGVA) for Land Systems, RELYUM Real Time Innov. (RTI), Erandio,
Spain, 2019.

VOLUME 10, 2022

C. Scordino et al.: Hardware Acceleration of DDS for Automotive Communication and Computing

IEEE Access

[67] S. Sudhakaran, V. Mageshkumar, A. Baxi, and D. Cavalcanti, ‘‘Enabling
QoS for collaborative robotics applications with wireless TSN,” in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2021,

. 1-6.

[68] pAI;I,JTOSAR. AUTOSAR Layered Software Architecture.
Accessed: Sep. 15, 2022. [Online]. Available: https://www.autosar.
org/fileadmin/user_upload/standards/classic/21-11/AUTOSAR_EXP_
LayeredSoftwareArchitecture.pdf

[69]1 ProFPGA Zynq UltraScale+ ZUI9EG. Accessed: Sep. 15, 2022.
[Online]. Available: https://www.profpga.com/products/fpga-modules-
overview/zyng-ultrascale-based/profpga-zul9eg

[70] Vector. Canoe. Accessed: Sep. 15, 2022. [Online]. Available:
https://www.vector.com/int/en/products/products-a-z/software/canoe/

[71] F. Rezabek, M. Bosk, T. Paul, K. Holzinger, S. Gallenmiiller, A. Gonzalez,
A. Kane, F. Fons, Z. Haigang, G. Carle, and J. Ott, “EnGINE: Flexible
research infrastructure for reliable and scalable time sensitive networks,” J.
Netw. Syst. Manage., vol. 30, no. 4, Oct. 2022, Art. no. 74, 10.1007/s10922-
022-09686-0.

CLAUDIO SCORDINO (Member, IEEE) received
the M.Sc. degree in computer engineering and
the Ph.D. degree in computer science from the
University of Pisa, in 2003 and 2007, respec-
tively. He collaborated with Scuola Superiore
Sant’ Anna and the University of Pittsburgh about
research on power-aware real-time operating sys-
tems. He has collaborated with the Linux Ker-
nel Community, especially for the development
of the SCHED_DEADLINE CPU scheduler. His
research interests include real-time operating systems, middle wares, and
hypervisors. He is an AUTOSAR Member, actively collaborating to the
standard.

VOLUME 10, 2022

ANGELA GONZALEZ MARINO received the
bachelor’s degree in telecommunications engi-
neering from the Universidade de Vigo (UVIGO),
Vigo, Spain, in 2015, and the master’s degree
in electronics engineering systems from the Uni-
versidad Politecnica de Madrid (UPM), Madrid,
Spain, in 2016. She is currently pursuing the
Ph.D. degree with the Universitat Politecnica de
Catalunya (UPC), Barcelona, Spain.

She was a Research and Development Electron-
ics Engineer at HP Inc., Barcelona, from 2016 to 2020, designing electronics
for large format printers and supporting the full product lifecycle devel-
opment. She is currently with the Automotive Engineering Laboratory of
Munich Research Center, Huawei Technologies, Munich, Germany, focusing
on HW accelerators design for automotive networking solutions. Her current
research interests include HW design for automotive in-vehicle networks and
system on chip design.

FRANCESC FONS (Senior Member, IEEE)
received the bachelor’s degree in electrical engi-
neering, the master’s degree in automatic control
and industrial electronics engineering, and the
Ph.D. degree in electronics technology from the
Universitat Rovira i Virgili (URV), Tarragona,
Spain, in 1995, 2001, and 2012, respectively.

He has focused his professional career on
the automotive electronics industry, working on
Research and Development in the areas of embed-
ded software, systems, hardware, and networks. Along his career, he has been
with different automotive Tier 1 and Tier 2 suppliers from USA, Germany,
and China, and has participated in the successful launch of many commercial
products for OEMs in Europe and Asia. Currently, he is with the Automotive
Engineering Laboratory of Munich Research Center, Huawei Technologies.

109651

http://dx.doi.org/10.1007/s10922-022-09686-0
http://dx.doi.org/10.1007/s10922-022-09686-0

