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ABSTRACT Wireless sensor networks are typically characterized by large network size and sensor nodes
with low energy capacity and a limited bandwidth for data transmission. Over-activity of the sensor nodes
will therefore cause many issues to the network, such as an increase in the network depletion rate and
poor data transmission. Data prediction methods that exploit the inter-relationship between sensor nodes
can be used to reduce data traffic across wireless networks. Several related work in data prediction do
not consider the time-series distribution of the sensing data. However, exploiting sequential features of the
historical observations can improve prediction accuracy, and increase the number of sensing data predicted
per sequence. This work propose a sequence to sequence data prediction model, using a one dimensional
layer convolutional neural network to extract spatial features from the pre-processed sensing data, and an
encoder-decoder model to predict the next two outputs in the sequence by exploiting the temporal distribution
of the data. The aforementioned approach has the capacity of generating more accurate information, which
can reduce network traffic and energy expenditure in WSNs. Furthermore, the experimental results reveals
that, based on a suitable choice of nodes, our proposed model perform accurate predictions, with reduced
root mean squared error as compared to related work. We also propose an approach to regulate and control
the data traffic toward the base station.

INDEX TERMS Wireless sensor network, data prediction, lifetime extension, deep learning.

I. INTRODUCTION consumption is indeed one of the commonly encountered

Wireless Sensor Networks (WSNs) are commonly used
where remote monitoring and control are needed. As such,
we can find their application in environmental data collec-
tion, smart transportation systems, health monitoring systems
and agriculture, among others on [1], [2], [3], [4]. This is
mostly because of their very low cost, abundant availabil-
ity and large-scale deployment capacity. Despite this high
usability property, WSNs’ applications come up with many
issues like data transmission delay, poor and abnormal trans-
mission quality and very high energy consumption. Energy
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problems in WSNs as it has a strong relationship with the
lifetime of the nodes constituting the network [5], [6]. This
is to say that, the higher the working activity of the network
nodes, the faster it deteriorates and as a result the less efficient
data transmission becomes. Related works to overcome this
problem rely on techniques such as data compression, data
aggregation and data clustering algorithms, to limit the quan-
tity of information transmitted [7], [8], [9], [10].

Recent advancement in research in the field of Data
Science and Artificial Intelligence has made it possible to
develop a new technique called Data Prediction. Fortunately,
data prediction has proven to be an excellent approach
as it improves energy consumption and data transmission
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efficiency by reconstructing data lost due to node
failure [11], [12], [13].

There is a necessity in building sensor networks that takes
into account the data transfer process of the sensor nodes.
This unfortunately depletes the data transmission quality
and lifespan of the network. Despite transmission tools such
as cognitive radio modules and antennas, keeping a sen-
sor network available for a long time requires a good data
prediction strategy so as to limit data flow through the net-
work. For WSNs dealing with a large number of sensors,
several research works have been made to obtain an effective
data prediction approach. Some of the works were directed
toward solving the problem of energy consumption during
data transmission [14], [15], [16] while other researchers
where focusing on data reconstruction [17].

To improve the prediction potential, [6] proposes two
main factors that have to be taken into consideration.
Firstly, an investigation of a relationship between the sens-
ing data is done, which gives further information about
the spatio-temporal property of the data. The relationship
between sensing data is quantified by its degree of corre-
lation. The highest correlation is used to predict the data,
which makes this factor an efficient way of detecting outliers.
The second factor investigates the quality of data collection,
which also helps to detect abnormal data.

Convolutional neural networks (CNN) and recurrent neu-
ral networks (RNN) are feed-forward neural networks that
are generally used to extract spatial and temporal features
required to improve model performance. Their broad appli-
cation in spatio-temporal climate data processing, traffic flow
prediction and network lifetime extension reveals CNN and
RNN as suitable candidate for data prediction [18], reason
why Chengetal. [11], [19], used these neural networks to pro-
duce a multi-step data prediction model using historical data
observations from different sensor nodes. As aforementioned,
most data prediction studies provide single output at a time
and few of them take into account the time-series distribution
of the sensing data.

An important property of WSNs is their ability to col-
lect and transfer time-series data in the form of sequences.
Exploiting this characteristic will permit to forecast unavail-
able information over a given period of time.

In this paper, we study the strategy to design sequential
prediction model, that exploits the time distribution property
of the data collected by the sensors, to effectively reconstruct
unobtainable data observations. Our objective is to use the
correlation between the neighborhood sensors and then pro-
vide prediction of a given sensor at a time while prevent
network depletion. Thus, we provide a mathematical formu-
lation of the data prediction problem based on sequence-to-
sequence prediction and use the concept of encoder-decoder
to built the model. The deep-learning model developed
exploits the spatio-temporal distribution of the sensing data to
accurately reconstruct data loss during nodes failure. Indeed,
predicting the sensing data for a set of nodes within a period
has a crucial advantage that the sensor data collected at the
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FIGURE 1. General example illustrating our approach of data prediction.

node level will only be transferred if the difference between
the predicted value and the observed value of the data is
greater than a given threshold state. By doing so, data trans-
mission is limited to a reasonable quantity of information
transfer, to the base station. To reduce data traffic flow across
wireless network and thereby the energy consumption, the
encoder-decoder model proposed is designed to predict two
times more output. Compared with Long-Short Term Mem-
ory (LSTM) and auto-regressive model, simulation results
show that ours model outperforms them in terms of Root
Mean Squared Error (RMSE) and network lifetime extension.

A. GENERAL INTUITION

Figure 1 illustrates a simple example to describe the approach
we intend to implement. In the figure, we describe the differ-
ent nodes (from 1 to 7) as the set of nodes deployed in the
coverage area. The red node (node 1) represent a default node
at given time steps ¢, + 1,7 + 2..., on the other hand the
nodes {2, 3, 4,5, 6, 7} are in activity. We then look over the
near-by nodes surrounding the default node 1. The intuition
is that closer nodes collects almost the same information.
Assuming that, each node have similar technical configu-
ration, and using historical data of closer nodes {2, 3, 6}

at .t — 2,t — 1,t,t + 1,¢t +2,...,t + n we are able to
perform predictions on node 1 in our case at time ¢ and ¢ + 1,
respectively.

Figure 2 illustrates a simple flow chart of our data pre-
diction model, moving from the simple stages of data
pre-processing to the final predictions. Initially the raw data
is converted into structured data frame, which is then got-
ten rid of noise(outliers), using a two stage pre-processing
technique. The first stage is a Z-score denoizer (Z;) which
remove outliers base on the Z-score of a set of data values.
The second stage of pre-processing is an anomaly detection
function, using the moving-average principles (MA), which
we describe later in this paper. The pre-processed data is con-
verted into a supervised learning problem, using the principle
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FIGURE 2. Simple flow chart of our proposed model, from left to right, we perform different stages of pre-processing to

improve on predictions.

of lagging. Once this is done the structured and clean data
is now fitted into our encoder-decoder model f;, to perform
predictions.

The rest of the paper is organized as follows. Section II
is devoted to related work on data prediction in WSN and
the identification of the challenges and related solutions.
In section III, we introduce a clear mathematical formula-
tion of the data prediction problem and a proposed model
associated to the latter. We also introduce in this section
the technique used to perform data pre-processing and data
lagging in order to convert the data prediction problem into
a supervised machine learning task. Next, in section IV,
we evaluate the effectiveness of the proposed method through
intensive simulations and quantify the model performance in
terms of several metric score and energy required for data
transmission. Finally, section VI concludes this work and
provides futures directions.

Il. RELATED WORK

There are numerous studies, proposing approaches to the
data prediction problem. As discussed previously, the main
constraint is an inefficient data transmission and energy con-
sumption profile of the network. The related work exposed
below is divided into two classes based on the mechanism
used to remedy this problem.

A. NON-MACHINE LEARNING APPROACHES

Traffic flow analysis that takes into account the nearby envi-
ronment and the trend between the data has been studied
in the field of data prediction. The main property of traf-
fic flow data is that it has a strong spatial correlation with
data just like WSNs data. Thus, in [20], the authors put
forward a model based on an encoder to capture traffic
flow patterns. The experimental setup revealed that, model
learning spatio-temporal data distributions perform better
than normal models. In the same vein, the effectiveness of
implementing the different data prediction models proposed
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in real-world data sets is investigated [21]. The result of
this review revealed that most of the models are too com-
plex to be applied in real life. In [21], a simpler model
known as derivative-based prediction (DBP), which relies
on the hypothesis that the data delivered by sensors can be
computed using a simple linear equation for both short and
long-term predictions is proposed. The aforesaid technique
has an inconvenience that it assumes the sensor data to be rid
of erroneous values which is not always the case.

A Kalman filter algorithm to forecast data loss due to node
disability is proposed in [12]. This algorithm assumes a 1-step
Markov model of the data series {x1, x2, ..., x¢} as follows: 1

ey

where Fj 4 is the Markov transition matrix, Wy is a white
noise process, and G is a noise covariance matrix. Their
experimental results confirm the accuracy of the algorithm.
However, the filtering algorithm is not robust and thus the
predicted values turn out to be very unstable.

In 2017, [16] proposed a solution to solve the problem of
energy consumption during electronic transmission of data by
sensors. The authors described the energy consumption as a
function of the distance to the base station. Sensor nodes far
away from the base station will require more energy for data
transmission.

To overcome this problem, the solution proposed was
based on the Milne-Simpson method equation to predict the
value of a sensor given its four previous states as defined in
(2) and (3)

X1 = Fryrxe + GWy,

£ an -, , /

Yit+1 = Yi-3 + 3 (2yi_2 —Yio1t+ 2y,~) ) @
N h

Yitl = Yi-1 + 3 (YE_l + 4y; +Y§+1) ‘ 3

where 3 represents the corrector formula, y;, y;_,, y;_, repre-
sents 3 sensor data at different time steps, y; 11 the predicted
value at time-step i + 1 and 4 the step-size. Basically at time-
step i, the cluster heads computes the predicted output y; |
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and compare it with the actual sensor value using 4.
yie1 = Jir1| <€ “)

with €, defining the threshold value of the comparison
process. The authors reveal that varying the step size,
considerably improves the prediction accuracy, thus less data
transmission is required. The cons of this approach arise when
the step size is very big as it leads to abnormal predicted
values.

In [15], the authors suggest a method of data prediction
using the Adam Bashforth-Moulton method (ABM) as a tech-
nique to improve energy consumption in hierarchical WSNs
architectures. In the above-mentioned technique, the cluster
head predicts the sensor data using the ABM equation defined
in (5)

R h
Virr =i+ 57 (55y; =59y + 37y, = i3). (5

where, y and j are variables defined exactly as in 2. Once
again, data is only transferred if there is a significant differ-
ence between the predicted value and the observe data value
(defined in 4). The result released by this approach confirmed
a better performance than the Milne-Simpson method, but
it said to have some drawbacks. This method is inefficient
when there isn’t sufficient data for prediction. As an attempt
to improve the lifetime of WSNs, the hierarchical fractional
least mean-square filter is developed in [22] to accurately
predict the sensing data, based on weight coefficient matrices
of two layers sub-filters. Taking the energy consumption and
prediction error as metrics of performance measurement, the
experimental results of the work illustrate a decrease in the
quantity of energy consumed and an increase in the com-
pression rate of the data. This leads to a decrease in data
transmission.

B. MACHINE LEARNING APPROACHES

With the recent advancement in the field of machine
learning [23], established a clustering plan to limit the con-
nection between sensor nodes thereby increasing the network
lifetime [24], [25]. Data clustering was achieved based on
the spatio-temporal correlation of the different sensor nodes.
One possible limitation of this approach is that, in the absence
of a suitable data denoising method to remove any abnormal
values, data correlation could be significantly altered, thereby
impacting the clustering outlook. In [26], the LSTM model
is presented for traffic flow analysis which they further com-
pared with a statistical model called ARIMA, and finally con-
cluded that LSTM has a good prediction performance than
classical statistical models. One year later, [27] established a
model based on the concept of deep learning to solve a traffic
flow optimization problem. The model was defined with two
extraction layers, with the first one extracting features and the
second one defining patterns between the raw data to perform
predictions. A self organizing map (SOM) model is proposed
in [17] to overcome the problem of sensor nodes deterioration
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due to large data transmission in smart city systems. The
authors designed two SOM models with one learning the
time-series patterns between the data at each time-step ¢, and
define it as a regressor. The second SOM model learns the
first difference of the time series, defined as

Vi = Xit1 — Xi. (6)

The authors further implemented a transition matrix that links
the first and the second SOM-models, and from which we
can always obtain the regressor x; 41 at time step i + 1 as the
sum x; + y;. The experimental result of this technique was
measured using the root square mean error (RSME) and the
performance revealed a good prediction accuracy provided
the step size doesn’t exceed the regressor size. Unfortunately,
the proposed method provide prediction results for only one
sensor at a time and doesn’t take into consideration the cor-
relation between the neighbourhood sensors within a given
node.

To improve the results obtained in the previous studies,
the authors in [19] initiated an approach that investigates
the spatio-temporal property of sensing data to solve the
problem of data loss due to node failure during the transmis-
sion process. Based on deep learning techniques, the authors
designed a stacked bidirectional LSTM model with two lay-
ers, capable of predicting in a multi-step fashion, the sensing
data. The overall performance of the model was measured
using several metrics like RSME and the mean absolute error
(MAE), just to name a few. The excellent performance of
this model reveals that time distribution patterns need to be
taken into consideration during data prediction. This is why
similar researchers in [11] proposed an even better approach
to solve the problem of node failure. Using almost the same
neural network architecture, the authors introduced a one-
dimension (1D) convolutional layer which had as role to
extract features from the sensing data before feeding in the
bidirectional LSTM. A comparative analysis was further done
to demonstrate the effectiveness of this model with several
models proposed in [19].

LSTM and AdaBoost (Adaptive Boosting) have been com-
bined in [28], for the prediction of temporal and spatial data
in order to reduce the energy consumption of the network,
and to classify the failed nodes which allows to increase
the quality of the data to be transmitted to the base sta-
tion. To achieve this, three concepts were put forward, node
clustering, early redundant data prediction and classification
of failed nodes. As far as prediction and classification are
concerned, they were carried out in three steps. In the first
step, the LSTM is applied and its prediction result is passed
to AdaBoost. In the second step, AdaBoost reduces classi-
fication errors by detecting weak predictions and assigning
weights to them at each iteration. Finally, the third step is
dedicated to merging the classification results from AdaBoost
and the prediction outputs from LSTM to produce a strong
and efficient classification.
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C. DEEP LEARNING FOR DATA PREDICTION

In this part of the paper, we present other related work asso-
ciated to deep learning to solve the data prediction prob-
lem. Zhang et al. [29] proposed a sequence-to-sequence
imputation model using a Bi-directional LSTM network to
memorize past and future prediction at a given time ¢. The
authors also made used of a sliding window in order to
generate more observations to improve the training process
of the model. The experimental results reveals a good per-
formance of the architecture as compared to other statistical
models like ARIMA. Authors [30], performed a comparative
analysis of deep learning and machine learning techniques on
wireless sensor networks dataset, for intrusion detection and
prevention systems. The result of this experimentation reveals
that, deep learning classifiers perform better than machine
learning classifier as far as intrusion detection results are
concerned. The result of this work show the effectiveness of
deep learning models to solve data prediction problems. As an
attempt to improve energy efficiency in wireless network,
Mohanty et al. [31], proposed a model based on RNN and
LSTM to reduce data transmission by performing data predic-
tion. The experimental results showed a decrease in the signal
overhead average delay with a reduction in the amount of
data transmitted as compared to simple deep neural network.
In the same vein, Weisfeiler-Lehman kernel technique and
Dual Convolutional Neural Network (WL-DCNN) have been
combined in [32], for data prediction of failed links in order
to increase the lifetime of the network while ensuring its
resilience. The studies are conducted in a dense and dynamic
IoT network context. To carry out the prediction task, the
strategy is to use the Weisfeiler-Lehman kernel to extract and
label subgraphs which are then transferred to the WL-DCNN
for prediction.

D. LSTM GENERAL OVERVIEW
A LSTM is composed of a series of repeated cells and one
of them is presented in Figure 3. Unlike RNN, LSTMs are
composed of gates, we have the input, forget and output
gates. Each gate has a weight matrix and a bias vector denoted
as W and b respectively.
« Forget gate: Firstly, the LSTM concludes on which
information to be forgotten from the cell at a given time-
step ¢ (see (7)).

FO_g (Wf [ha—l), xm] I bf) , ©)

The sigmoid function o, is responsible for this decision,
taking as input the previously hidden layer 2*~1 and the
input x®). The forget gate is defined as ).

o Input gate: The sigmoid function of the second layer
(Figure 3), concludes on which inputs to let in ((8)) and
the tanh function weight the input’s level of importance
in the information ((9)).

0= (Wi [1070.x0) + 1) ®)
where i") represents the input gate.
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FIGURE 3. To solve the problem of vanishing gradient descend, LSTM
quantifies how much previous data it should remember or discard
reproduced from [33].

o Cell state:
O = tanh (WC [h(’_l), x(t)] + bc> . ©)

« Output gate: A sigmoid function is again used to com-
pute what portion of the cell state goes to the output o)
((10)) and the tanh function is used to conclude on the
value of the hidden state 42 ((11)).

o = o (W, [V 50 ] +8,). (10)

KD = oDtanh (C(”) . (11)

Ill. SYSTEM MODEL

This section is devoted to the mathematical formulation and
implementation of the solution to study the data prediction
problem in WSNs. We also introduce the Intel indoor data
set [34], necessary for the model implementation, after which
we figure out the techniques used to perform data denoising
and anomaly detection in the data set. Furthermore, a corre-
lation study is also done, in order to check the relationship
between the different sensor nodes

A. PROBLEM FORMULATION
In the following, we formulate the data prediction problem
based on the knowledge of sequence-to-sequence models.
The mathematical proposal is based on the study provided
in [11].
We define variables used in our model as follows:
« V is a set of sensor nodes across the WSN;
e N(v) is the set of neighbouring nodes closest to the
default sensor node;
o {y™},.m is the set of all data value collected by sensor m
of node n at a time ¢;
o (3",30D) is the predicted target sequence of the
default node;
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e En (h(t_l), c _1)) is the vector state of the encoder at
time step t — 1;
e EnDe is the encoder-decoder function.
Consider N-nodes spatially distributed across the coverage
area defined in (12).

V={v....,w} (12)

We assume that each nodes have M -sensors and we further
define the set of data collected by these sensors, as in (13).

0Ym O<n<N,0<m<M,t>0 (13)

Suppose that at time a greater than ¢ a set of nodes doesn’t
transmit information (due to node failure) and at the same
time, we have a set of available nodes. The data prediction
problem aims to reconstruct data loss in after time-step 7.
Assuming that the neighbouring nodes N (v) collect similar
information as the unavailable node, the data reconstruction
is done based on the historical information of the default node
and the neighbouring working nodes.

B. ENCODER-DECODER MODEL

1) PRINCIPLE

The goal of our work is to reconstruct data loss due to node
failure, using the data prediction method. At the node level the
data collected are now compared to the predicted data values.
Any significant difference between the observed value and
the predicted value will lead to a transmission of information
to the base station, otherwise no data is send to the station,
hence limiting data transfer to a certain extend and by so
doing, saving energy consumption by nodes. Our hypothesis
is that increasing the number of predicted values will also
play arole in decreasing the energy consumed by these sensor
nodes [35]. To reach our objective, we rely on predicting
outputs in the form of sequences as well (much input-many
output model). Next, we introduce a notion called encoder-
decoder models [36]. Primarily, the two building blocks of
encoder-decoder models are the encoder and decoder.

« Encoder: It takes in the input sequence and processes it
in the form of an information vector (or state), enclosing
all the knowledge of the entire data set.

o Decoder: The decoder takes as input the context vector
and makes predictions (output).

Each block is composed of a series of LSTMs, intercon-
nected together. The fed inputs from these series of LSTM
cells helps the encoder to encapsulate all the information
which is stored in the hidden state #) and the cell state ¢,
constituting the vector state.

The decoder block is also composed of LSTMs, whereupon
it is activated by the vector state. The output of the decoder
is defined in such a way that, each predicted value at time ¢
represents the " component of the target sequence. To better
demonstrate how encoder-decoder models work, Figure 4,
shows a three-input and two-output sequence-to-sequence
model. The inputs x1, xp and x3 are fitted into the encoder
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block and a vector state composed of the input’s information
is obtained.

At time step 71, the input fed into the decoder is a special
initial state (C(ZO),h(’O)), meaning the start of the output
sequence. The encoder makes use of this input and the inter-
nal state (¢”, i) to produce the first output y;. Then at
time step fp, the output y; at time step 1, is fed as input
in the decoder cell, to obtain the output y,. The process is
performed repeatedly with concern to the number of elements
that constitute the output sequence.

Training in sequence-to-sequence models is performed
in the same way as normal LSTMs or Recurrent Neural
Network (RNN).

a: BASELINE MODELS

In order to showcase the effectiveness of our model,
we decide to develop two benchmarks models, one based on
auto-correlation and the second one is a simple LSTM.

i) AUTO-REGRESSIVE MODEL
A linear regression, models the output value as a linear combi-
nation of the input as defined in equation 14,where y presents
the predicted output, x is the input and by, b; are the set of
weights.

y=bo+ bix. (14)

Similarly, linear regression models can be applied to time
series problems, as they perform very well on predicting next
time-steps  + 1 using information from previous times steps
{t,t—1,....,t—n} (nis an integer) as defined in equation 15.

$ie1 = Do+ biyiet + oo+ bayr. (15)

Because the regression model uses data from the same input
variable at previous time steps, it is referred to as an auto-
regression. An auto-regression model makes an assumption
that the observed values at previous time steps are useful
to predict the value at the next time step. If both variables
change in the same direction, this is described as a positive
correlation. If the variables move in opposite directions as
values change then this is called negative correlation.

2) MODEL DESIGN

In previous section we presented the concept of encoder-
decoder. Based on this principle, the encoder block f in our
model takes as input the passed data for both kinds of nodes
(neighbouring nodes, and default nodes) and a vector state is
obtained as seen in (16).

En (hU—l), c(’_1)> — (yU—U, Ly, N(v)) . (16)

Here H defines the number of time-steps for data

collection.

« Prediction of 3 and $‘*D: The decoder g, takes as
input, the vector state En (2=, ¢~D) and an initial
state (h9, ) to produce the 1 component of the
missing data value ((17)). The predicted output $® is
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FIGURE 4. Figure represents a simple architecture, of proposed model.In the encoder block, the inputs are
discarded and we are left with the hidden h; and cell ¢; states (Encoder vector). In the decoder block, only

the outputs are left y;.

fitted back into the decoder to yield the r#+! component
of the target sequence ((18)).

50 = ¢ (En (ho—l)’ C(t—l)) 7 (h«))’ C<0>)>7 (17)
D — o (En (hu—l)’ c(’—l)) ’9(0) _ (18)

(19) generalizes the formulation and with this approach,
we can predict a sequence of H values per sequence. For
this work, we limit ourselves to predicting two values per
sequence.

(90), 9<t+1>) — EnDe (y<’—“, ey, N(v)) . (19)

C. TEST DATA SET

The data set used in this study [34] was assembled by Intel
Berkeley Research Laboratory with the use of sensors called
Mica2Dot. The raw data is made up of 2.3 million queries
of sensory data accessed from 54 nodes, with each node col-
lecting information on temperature, humidity ranging from
0 — 100%, light with values between the range 0 — 2000 and
voltage varying from 2 to 3 volt. A record of node Id (a num-
ber that identifies the nodes), the date time and the timestamp
were also associated with the data set. The spatial distribution
of the sensor nodes can be found in [19].

From the first observation, some nodes seem to be very
close to one another in locations. For instance nodes (4, 3, 2)
or nodes (4,7, 10), with the hypothesis being that closer
nodes collect similar information (data redundancy). The
WSNss architecture following this node distribution is the
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hierarchical clustering architecture with a central node which
can be considered as node4 where all the information are for-
warded before transferring to the sink. Sensor nodes default
or data transmission abnormalities usually arise with data out-
liers. Also, the location of a node can lead to erroneous data
collection and transmission. In order to get rid of abnormal
values, a good data pre-processing needs to be done.

1) DATA DENOISING

Due to limited resources and the large data set in our posses-
sion, the proposed method for outlier detection of our work
is by the means of Z-score as described in [37].

Z-score quantifies the abnormality of observation when the
data follows a normal distribution. As defined in (20), the
Z-scores are the number of standard deviations above and
below the mean values of the data points.
xX—u

—

Z= (20)

where x represents, a data point, from a given sensor, u
the mean value of the sensor’s data observation and o its
corresponding standard deviation. For example, a Z-score of
+1 signifies that the data value is one standard deviation
above the mean and a score of —1, which means the value is
one standard deviation, below. A standard benchmark value
to detect outliers is a Z-score is £3.

2) ANOMALY DETECTION USING THE MOVING AVERAGE
A moving average (MA) is an indicator that is commonly
used in technical analysis. It helps to smoothen the data over a
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specific period of time by creating constantly updated average
values. Reference [38] has proven that moving average is well
known to detect anomalies. In this paper, we use MA to detect
and remove unnecessary data values so as to improve the
accuracy of our model. For a given matrix of window size
W, we perform a convolution on the original data to obtain
the MA. we proceed by computing the residual res as the
difference between the actual value y and its MA, y,yq. Next
we calculate the standard deviation o of the residual. If the a
data point lies between y,,; == 0 X k, it is considered normal
else it is considered an anomaly. k here represents a constant
value used to vary the length of interval for the anomaly
detection process. Figure 5 illustrates how anomaly detection,
is performed on temperature values of nodel0 with a given
window size of W = 50 and k = 3. The red dotted points,
representing the set of outlier values. Also notice how the
graph moving average of the temperature values (in green),
follows almost the same patterns of the actual observe values
(in black).

3) DATA PRE-PROCESSING
As the sensory data has a different range of values to have an
accurate and smooth model training, the data values are nor-
malized and re-scaled to the range (0, 1) using the min-max
scaler function defined in (21).
min — max(x) = M 21
Xmax — Xmin

where x, represents the data points, X, and x,,,, denote
the minimum and maximum values of the raw data for a
given sensor respectively. The advantage of data normaliza-
tion is that it eases feature extraction to perform better data
correlation.

To quantify the correlation between data we use the
Spearman correlation coefficient defined in (22), which was
proposed in [39].

2
p=1- &. (22)
n (n - 1)
With a’i2 being the squared difference between two variables
of each observation, and n represents the number of data
points. For instance, computing the Pearson coefficient of
temperature and humidity using (22), we have p = —0.405.

Tables 1 and 2 presents examples of the correlation matrix
of the temperature values of nodes (4, 3,2) and (4,7, 10)
respectively.

We notice an overall strong positive correlation between
the temperature of the different nodes. This is probably
because of the closeness of the nodes in terms of spatial
distribution.

4) LAGGING TIME SERIES DATA

To convert a time series problem into a supervised machine
learning problem, we use a lag operator. A lag operator is a
function which shifts data values of time series such that it
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TABLE 1. Correlation matrix of temperature for nodes (4, 3, 2).

Correlation | Temp4 | Temp 3 | Temp 2
Temp 4 +1.000 | 40.859 | +0.964
Temp 3 +0.859 | +1.000 | +0.794
Temp 2 +0.964 | 4+0.794 | +1.000

TABLE 2. Correlation matrix of temperature for nodes (4, 7, 10).

Correlation | Temp4 | Temp7 | Temp 10
Temp 4 +1.000 | +0.968 | +0.929
Temp 7 +0.968 | +1.000 | +0.875
Temp 10 40.929 | +0.875 | 41.000

produces a new set of inputs, matches with the original time
series data.

Lags are very convenient for time series analysis due to
a phenomenon called auto-correlation, defined as a high
tendency that the data value at time step ¢ is strongly cor-
related with the data value at time step + — 1. Generally,
auto-correlation is used to identify trends within time series
data. The lagging operation is described in (23) with the
generalized form defined by (25)

Lyf = Yt—-1, (23)
L (Ly;) = Lyi—1 = y1-2, (24
generally, Ly, = y;—. (25)

where L is the lagging operator, y; is a given observation at
time ¢ and s is the number of shift of an observation.

D. MODEL ARCHITECTURE

As stated in the problem formulation (section III-A), we use
the neighbouring sensor nodes to reconstruct the data val-
ues loss by faulty nodes. The study of the inter-correlation
(correlation between data points of two or more different
sensor nodes) as presented in Table 2, is an argument for the
choice of nodes 4, 7 and 10. To perform our data prediction
study, Figure 6 shows the proposed network architecture.
We choose node 7 and node 10 to aid node 4, during the
prediction process. The architecture therefore takes as inputs
data values from nodes 4, 7, 10 on different models denoted
by the time steps T, T» and T3 respectively. The motivation
behind this architecture is to ensure that the information from
each node can be treated independently.

Inspired by [11], it has been proven that taking data inputs
at different time windows, yields a better performance. The
model architecture is sub-divided into 4 blocks: the inputs
block, convolutional block, the encoder-decoder block and
the output-block.

o The input block is composed of temperature values
(temp) of node A, B and C, at different time windows
(T, T», T3) respectively, which are inserted into the con-
volutional block.

o There after we have our pre-processing block compris-
ing of the Z-score denoiser and the anomaly detection,
to effectively remove outlier values from the data points.
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Anomaly Detection using Moving Average method
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FIGURE 5. Detecting anomalies on the temperature values of node 10.

o The convolutional block (denoted as conv block) is sub-
divided into a 1-dimension (1D) convolutional layer and
a 1D max pooling layer (1D max pool). The choice of 1D
is a result of the dimension of the input signal. Indeed,
1D signals with temporal ordering are better treated
with 1D convolutional filters. By spatial we mean input
signals with an order positioning, which is the case
of time series data. The max pooling filter is used as
a down-sampler to reduce abstract features that could
result in over-fitting.

o The encoder-decoder block as described in section 111-B,
is divided into the encoder and decoder. The encoder
memorizes all the information contained in the input
signal and produces a vector state (h(z), c(t)) for each of
the models (represented by the cell named vector state).
Each vector state is fitted into the respective decoders,
and a sequence of temperature output is produced at time
step t (temp(t)) and time step ¢ + 1 (temp(t + 1)).

o To unify the predicted output, a merging layer is intro-
duced which is fitted by the two inputs of each model,
which in turn is flattened and becomes the input, of a
fully connected layer (FC) to produce two outputs. Takes
6 inputs and produces 2 outputs

1) SUMMARY OF SIMULATION SET-UP

We made use of the intel indoor dataset. Initially we started,
by performing the data pre-processing, data denoizing, data
lagging. Next we did a rigorous anomaly detection check-
ing to remove outlier values from the data set. We finally
transformed our cleaned data into a supervised machine
learning problem using data lagging, were the objective
was to predict the sensing data at two time step interval
(tand (t+1)).
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IV. EXPERIMENTAL RESULTS

In the final section, we present and analyze the result simu-
lation of our experimentation. That being the case, we start
by describing in Section IV-A, the hyper-parameters nec-
essary for training the encoder-decoder model. In addition,
we describe in Section IV-B, the variable selection process
which account for the best fit of the model. We proceed by
representing graphically the predicted output and compare
it with the actual observations, for a set of selected nodes,
described in the Intel data set. We conclude, by assessing our
proposed model in terms of error metric performance.

A. MODEL TRAINING

Having built our model, we describe in this section the fixed
parameters necessary for the training process. The data set is
divided such that 20,000 data points are used for training and
prediction is performed in 3000 observations. The established
parameters are:

« Epoch : The epoch defines how many times the overall
data set passes inside the model during the training
phase. The number of epochs used to train the model
is the epoch number = 10.

« Batch size: It measures the total number of observations
that are processed after one iteration of training. The
model utilises a batch size of 200 during the learning
phase.

o Optimizer: We used the Adam optimizer due to its
smooth and fast convergence rate.

We also define the different error metrics necessary to evalu-
ate the model performance.

¢ Mean Absolute Error (MAE), defined as the error
quantifying the average magnitude of errors in a set of
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FIGURE 6. Model architecture.
forecast values.
1 n
MAE (Y’ Ypred) = ; Z |Yi - pred,i| . (26)
i=1

o The Mean Absolute Percentage Error (MAPE) is a
percentage measure of the difference between the actual
output and the predicted output divided by the predicted
output. Both MAE and MAPE are used in regression
problems.

Yi - Ypred,i

100%
MAPE(Y, Y, =
( pred) n Z

i=1

. @D

Ypred,i

o The RMSE is a measure of the prediction error which
defines how far the predicted values are from the
observed values ((28)).

n - 32
RMSE (Y, Ypred) = | w (28)

i=1

B. PARAMETERS SELECTION

The parameters required to be altered are the time step 7T,
the dimension of the convolutional and pooling filters f, and
finally, the number of neurons in the encoder-decoder layer.
As already described, we take historical data for node 4,
7 and node 10 to predict the unavailable temperature value
of node 4. As such, a variety of parameters can be obtained.
Table 3 presents the set of fine-tuned parameters used during
the training process.

The column named input is subdivided into 3 time steps
denoting node 4, 7 and 10, respectively. The RMSE defines
the average error of the overall 3000 predictions. For exam-
ple, when the time step equal (30, 10, 10) with kernel size 5,
number of filter 1, pooling size 2 and number of neurons
32, the RMSE = 0.5741. We observe also that, the RMSE,
is highly affected by the size and the number of filters. The
highlighted time step (20, 10, 10) yields the smallest RMSE.
This is because sensing data with moderate time steps turn to
have better auto-correlation (correlation between the previous
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and the next sensing data value) than bigger or smaller time
steps. Smaller time steps sensing data, are not able to capture
patterns between values in a very short interval, and result
to low auto-correlation. On the other hand larger time steps
sensing data have a bigger time interval to study the trend
in the data and result to low auto-correlation as well,which
causes a higher RMSE.

C. NODE SELECTION

We select the nodes via the linear relationship that exist
between the default node and its corresponding neighbour-
ing hood nodes. The Spearman correlation defined in (22),
revealed a good coefficient score for node-4, 7, 10, as pre-
sented in Table 1.The reason been that,closer nodes turn
to collect almost similar information (provided they have
the same sensor types). Figure 7 reports the data prediction
result of node 4, for the temperature values. The green line
represents the predicted data points while the red-crossed line
represents the actual observed values. Notice a deviation of
the predictions(peaks) around the 2300 and 2750 observa-
tions. Despite the closeness of the three sensor nodes, some
abnormality in the prediction could arise due to the presence
of other noise in the historical data. Also, the distribution
of the nodes around near by obstacles could account for
erroneous data points.

Various node combinations are performed, to evaluate our
model and the prediction error is computed based upon the
MAE the MAPE and the RMSE defined in (26), (27) and (28)
respectively. Table 4 and 5 describe the error for predicting
humidity and temperature values respectively. The notation
Nodes(A.B.C) simply gives the ordering of the sensor nodes
to perform prediction. For example Nodes(4.3.2) signify that
the prediction of node 4 is guided upon by nodes 3 and 2.

Based on the results obtained in, tables 1 and 2, we can con-
clude that, sensor nodes with high correlation coefficient turn
to have a low prediction error. Indeed, Table 2 showcases the
correlation matrix of the set of nodes-4, 7 and 10. To further
demonstrate the effectiveness of the proposed model, Figure 8
illustrates a comparison with our first baseline model built
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TABLE 3. Output dimension of layers in encoder-decoder model.

Input Conv Pool Encoder-Decoder Error
Time steps | Kernel | Filter | Pool Size | Stride Neurons RMSE
10,10,10 5 1 2 1 32 0.5913
40,10,10 5 1 2 1 32 0.6199
30,10,10 5 1 2 1 32 0.5741
20,10,10 5 1 2 1 32 0.4079
20,10,10 5 1 K} 1 32 0.4258
20,10,10 6 1 5 1 32 0.4788
20,10,10 4 1 5 1 32 0.4571
20,10,10 5 3 5 1 32 0.5410
Temperature of node 4 at time step t
28 =
A
26 . /
g M \ I i
£ 24 1 i ‘\ I
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FIGURE 7. Predicted temperature value for node 4(in green) aided by node 3 and node 2.

TABLE 4. Error with humidity.

Nodes(A.B.C) | MAE MAPE | RMSE

4.3.2 0.1975 | 0.6540 | 0.4043

4.7.10 0.0822 | 0.2137 | 0.1279
TABLE 5. Error with temperature.

Nodes(A.B.C) | MAE MAPE | RMSE

4.3.2 0.1975 | 0.6540 | 0.4043

4.7.10 0.1731 | 0.5214 | 0.3452

under the concept of a simple LSTM. The blue line represents
the temperature predicted values using our proposed model,
the green line stands for the simple LSTM model and the red
lines represents the actual temperature observations. The dark
curve on the other hand represent the predicted output of our
encoder decoder model using only the default temperature
value of node 4. Notice how closed the predictions are to
the predictions obtained using neighbouring node data values
(in blue).The last 500 values of the data point are so closed
together that, it becomes quite difficult for both models to
capture this trends unless we decrease the lags consider-
ably(so as to get more auto-correlated values). To reinforce
our argument on model performance, Table 6 presents the
prediction error of temperature, associated to the set of
nodes 4, 3 and 2, for different models. For more evidence,
we add our second benchmark model on auto-regression
(AutoReg), represented graphically in figure 9. Note that,
each model was trained under the same conditions as the
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proposed model. We remark that, for the last 500 values, the
auto-regressive model, turn to perform very well. We con-
clude that despite a higher RMSE, auto-regressive models,
capture very well the auto-correlation at very small time
interval than deep-learning models. In conclusion, we can
say that our proposed model provides better results with
decent error values within medium time steps interval and
auto-regressive models turn to generalize well on smaller
time lags.

In the same vein, Figure 10 and Figure 11 presents the
prediction values of humidity for node 4, aided upon by
nodes 7 and 10. The latter figure emphasizes more on the
model comparison aspect of the results. Table 7 shows the
humidity error measure of the three models as well and again,
the performance of our proposed model, yield smaller error
values.

The particularity of our proposed architecture is that the
model can predict two-time steps simultaneously. The con-
cept of encoder decoder model lies on the fact that, it,maps
sequences of different length together. In our proposed
model, we map three set of inputs and produce two output.
This type of architecture is therefore able to predict outputs
of different length as compared to fixed length producing
outputs models.

V. STEP TOWARD IMPROVING ENERGY EFFICIENCY

One objective of our work is to ensure an efficient data
transmission process, capable of saving an important amount
of energy in order to sustain the life time of the WSN. As such,
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FIGURE 8. Temperature prediction results of node 4, for with the actual observed temperature. The dark curve
showcase the predicted temperature value using only default data of node 4 .
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FIGURE 9. Predicted output of node 4 for the auto-regression model,for temperature.

TABLE 6. Model comparison of prediction error for temperature.

Models MAE MAPE | RMSE
EnDe 0.1975 | 0.6040 | 0.4079
AutoReg 0.2275 | 0.7079 | 0.4431
LSTM 0.2188 | 0.6342 | 0.4284
BiLSTM | 02026 | 0.6203 | 0.4321

TABLE 7. Model comparison of prediction error for humidity.

Models MAE | MAPE | RMSE
EnDe 0.615 0.7540 | 1.3241
AutoReg | 1.4741 | 09517 | 2.3631
LSTM 09314 | 0.8336 | 2.1047

we quantify the effectiveness of our proposed model in terms
of energy. In [35] the author proposed a radio model which
defines the energy required for data transmission. Assuming
the sensor nodes have the same communication radius R¢
and an initial energy €, to transfer /-bit of information over
a given distance d, the radio-energy transmission model is
defined in (29) like adopted in [14], [40], and [41].

leeiee + lefd?,  ifd < dy

Erx (I, d) =
rx () lectec + leampd®. if d > do

(29)
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where e,/ defines the energy dispersed per bit of the trans-
mitter, €5 and €4,y is based on the transmitter amplifier
model used. Keeping €, €4mp and d constant, we notice
that an increase in the number of bits /, transmitted, requires
a high amount of energy for the process. In figure 14 we
consider a set of nodes(in red). Using the data prediction
approach described in section III, recovering the data from
the nodes becomes easy. Also from the correlation tables
(Tables 1 and 2), the set of studied node almost have the same
information. If we consider clustering these sets of nodes into
small clusters as shown in Figure 14, Instead of sending the
information of all the nodes inside each clusters, we may
consider only sending the data for a node with the smallest
amount of energy possible such that the life-time of the net-
work is maintained. Let’s formulate this idea mathematically:

From the subsection III-A, we have V nodes across the
WSN and N (v) the set of neighbouring nodes closest to the
default node. Lets consider ¢(v) the cluster associated to this
neighbouring nodes, that is :

cv) =N v} (30)

where vo represents our default node (basically we create
a cluster composed of both the default node and the set of
neighbouring nodes). Since in such cluster the data collected
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FIGURE 10. Graph presents the distribution of the first 3000 predicted values of humidity (in %RH) on the

y-axis against the number of data points on the x-axis. Notice a regular pattern of the predicted values in
green which follow almost the same pattern as the observed values (in red).
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FIGURE 12. Number of living sensor nodes decreases over time (number of rounds). With an increase in number
of rounds the our proposed model (in red), always have a higher number of living nodes than the LEACH model.

of each node is almost the same, then the energy required for
transmission (using the radio model) will be slightly the same.
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One can therefore consider the energy of a cluster as been
the minimum energy of the set of sensor nodes in the cluster.
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FIGURE 14. Red nodes represents the sets of nodes in which we want to perform data prediction [34].

Let e.;) be the energy of cluster c(v) and {e(vi)}o<i<n the
energies of each node in the cluster c¢(v), then

(€29

Considering that, we have k-clusters in the WSN, the total
energy required for transmission will be E(c(v)):

ec(v)y = min ({e(vi)}o<i<n)

E(c() =Y ecw 32)
i=0
where e.(,), represents the energy of cluster i. Moreover, the
life-time of a WSN decreases as the energy required for
transmission increases.
We designed an experimental setup to show the effective-

ness of our proposed model. In the experiment we consider
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a approximately 300 nodes that we decide to spread across a
1000 x 1000 grid. Using our proposed algorithm, we study
the evolution of the life-time of the sensor nodes over time
as well as the residual energy of the WSN. Studying the
life-time simply means counting the number of active nodes
in the network over time. We also compare our algorithm
with a well known algorithm in the field called LEACH [42].
Figure 12 shows how the number number of lives sensor
nodes decreases with an increase in the number of rounds
(for a total of 18 rounds). Initially both models have the same
number of active sensor nodes, but our proposed model turns
to have more living nodes than the LEACH algorithm. For
example at round number 2, the number of living nodes for
our proposed model is 286 nodes and that of the LEACH
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algorithm is around 267. We further quantify our approach
in terms of energy saved by the WSN. We define the residual
energy as the energy left over in the WSN when an amount
of node die (or get faulty). A high residual energy simply
means that a small number of nodes got destroyed and as a
result, the life-time of the network is maintained to a high
level. As time goes on, many nodes die due to over-activity,
hence the residual energy decreases. Figure 13 presents how
our proposed model (in red) conserve energy better than the
LEACH algorithm at each round.

VI. CONCLUSION

Different type of sensing data are collected by sensor nodes
in wireless network. In our work, we attempted to study the
variability and correlation between the different sensing data
to reconstruct data loss due to node failure. We achieved
the aforesaid task by building a one dimension convolutional
neural network and an encoder-decoder model to effectively
predict two sensing data output, per sequence of information.
The idea behind this approach is that, predicting two times
more output, considerably reduce data traffic flow across
wireless network, which will directly account to a decrease
in the energy required for data transmission.

The use case Intel indoor data set, was initially processed
and re-scaled using a Z-score denoising and a min-max scal-
ing function to prevent over-fitting during the learning phase
of our model. The next step was to perform an operation
called lagging to convert the data prediction problem into a
supervised machine learning task. The inter-correlation study
between the sensor node reveal a strong positive correlation
between the set of nodes 4, 3, 2, 7, 10, which we used as a
benchmark to implement the data prediction problem. After
a rigorous set of parameter tuning, the experimental result
showed that, our proposed model perform very well dur-
ing the prediction phase with a considerably low root mean
square error as compared to the previous related work. The
encoder-decoder model is therefore capable of capturing both
the spatial and the temporal feature of the sensing data.

Furthering the study of data prediction can rely on two field

« Data Compression: Based on the concept of principal
component analysis, we could eventually reduce the
dimension of the sensing data while keeping the most
informative principal component to perform more accu-
rate predictions.

o Predicting N-ouputs: In this work we predicts two
output per sequence. This can therefore be extend to
an N-output data prediction problem, which will again
result to an abrupt decrease in the data traffic flow across
the network and make the WSN to be energy efficient.
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