
Received 20 September 2022, accepted 4 October 2022, date of publication 10 October 2022, date of current version 17 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213319

Signed Network Node Embedding via Dual
Attention Mechanism
ZEKUN LU 1,2, (Member, IEEE), QIANCHENG YU1,2, (Member, IEEE), XIA LI1, (Member, IEEE),
XIAONING LI1, (Member, IEEE), AND AO QIANGWANG1, (Member, IEEE)
1The College of Computer Science and Engineering, North Minzu University, Ningxia 750002, China
2Laboratory of Graphics and Images of the State Ethnic Affairs Commission, Ningxia 750002, China

Corresponding author: Yu Qiancheng (1999019@nmu.edu.cn)

This work was supported in part by the 2022 University Research Platform ‘‘Digital Agriculture Empowering Ningxia Rural Revitalization
Innovation Team’’ of Northern University for Nationalities under Grant 2022PT_S10, in part by the National Natural Science Foundation
of China under Grant 62062001, and in part by the Major Key Project of School-Enterprise Joint Innovation in Yinchuan 2022 through the
Development and application of Hanas Smart Gas Management Platform and the Innovation Project of North Minzu University under
Grant YCX21097.

ABSTRACT In signed networks, GNNs are used to get node embedding by aggregating node neighbor
information. Most of the existing methods aggregate neighbor information from the node level, and the
different paths between nodes and neighbors will also affect node embedding. The target node and its
neighbors have different link positive,negative signs and link directions, which together constitute different
paths.These different paths have different contributions to the target node.Based on the structural balance
theory and status theory, this paper divides the different paths between nodes and their neighbors into
20 kinds of motifs, which are using to capture the different effects of paths on target nodes. Comprehensive
consideration at the node level and path level, SNEDA (Signed Network Embedding via dual attention
Mechanism) is proposed based on the graph attention Network. The model has two attention mechanisms:
node-level attention captures different influences between nodes at the node level; path-level attention
captures the different influences between motifs at the path level. The final vector representation of nodes
is obtained by aggregating neighbor information selectively based on important motifs, and the vector
representation is applied to link prediction. Experiments on four real social network data sets show that
the network representation obtained by the model can improve the accuracy of link prediction. Experimental
results demonstrate the effectiveness of the proposed framework through a signed link prediction task on
four real-world signed network datasets.

INDEX TERMS Network embedding, graph neural networks, signed network, graph attention, link
prediction.

I. INTRODUCTION
There are a large number of network structures in the real
world, such as social networks, biological protein networks,
citation networks, transportation networks, chemical molecu-
lar networks, and so on [1]. These network structures are huge
and complex, which implies a lot of rich knowledge. Using
complex network analysis methods to study these network
structures will help people better mine the laws hidden in
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network data [2]. However, the network structure has the
characteristics of large data scale and sparse structure, which
cannot be directly analyzed by the network analysis method
[3]. Network representation learning extends deep learning
to network data analysis,aiming to learn low-dimensional
vector representations of network nodes while preserving the
network topology and node properties [4], [5]. The nodes
are represented as low-dimensional, real-valued, dense vector
forms so that the obtained vector representation has the ability
to represent as well as reason in the vector space [6].The vec-
tor representation can be applied to downstream tasks, such
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as link prediction, node classification, community discovery,
and personalized recommendation [7], [8].

Signed network is a two-dimensional network containing
positive and negative antagonistic relations. Positive rela-
tions include positive relations such as a friend, support,
and like, and negative relations include negative relations
such as enemy, opposition, and dislike [9]. In the process
of node embedding in the signed networks, positive edge,
negative edge, and edge direction all pose great challenges
to node embedding [10], [11]. In this regard, researchers use
the special sociological theory of signed networks (structure
balance theory and position theory) to model the network
structure to correctly distinguish positive and negative edges,
and combine it with graph neural networks or deep learning
to learn node embedding [12], [13]. This kind of method also
achieves optimal performance in the field of signed network
embedding. However, these methods focus on the influence
of node neighbors from the node level and ignore the feature
of path information. In terms of paths, different directions
and symbols of links between nodes and their neighbors form
complex paths, and these different paths also affect node
embedding.

In this paper, the SNEDA method is proposed to cap-
ture path information (link different directions and symbols)
by dividing different motifs, to learn the influence between
nodes under each motif with node-level attention, and to
learn the weight between different motifs with path-level
attention. The vector representation of nodes is obtained
based on the aggregated neighbor information of important
motifs. The obtained vector representation integrates node
neighbor information and network structure information. The
experiment proves that the SNEDA model can improve the
quality of node embedding.

The major contributions of this paper are as follows:

1) We propose a path-attentional layer, which estimates
the importance coefficient for different motifs for the
embedding aggregation process.

2) We introduce the HAN to model the signed network
and design a new motif based GNN model for signed
networks named SNEDA.

3) We evaluate the effectiveness of the proposed frame-
work SNEDA on several real world signed network
datasets through the signed link prediction task.

The rest of this paper is organized as follows. In Section II,
related works are given. Section III introduces sociological
theory and motifs. Section IV introduces the SNEDA frame-
work. The experimental studies are shown in Section V.
Finally, the conclusions are given in Section VI.

II. RELATED RESEARCH
The methods of network representation learning include
methods based on matrix decomposition [14], random walk,
and deep learning. DeepWalk [15] and Node2Vec [16] are
learning methods based on random walk network represen-
tation, which have a good effect in dealing with simple

graph structures. However, the real network is sparse and
highly nonlinear. These methods can not capture the struc-
ture information of the network, nor retain the local and
global information of the network. SDNE [5] model uses
an automatic encoder to optimize the first-order and second-
order similarity at the same time. The first-order similarity
of the model is used as supervised information to retain
the local structure of the network; As an unsupervised part,
second-order similarity captures the global structure of the
network. It is a semi-supervised deep learning model. GCN
is a kind of learning node embedding by combining topology
and node attribute information in the graph. It belongs to
direct push learning, but it can not be directly generalized
to nodes that have not appeared in the training process [10],
[17]. Therefore, GraphSage proposed that node embedding
can aggregate the neighbor information of nodes through a
common aggregation function [18]. When training, it only
needs to obtain this aggregation function, which can be gener-
alized to unknown nodes. GCN combines the characteristics
of nearest neighbor nodes and the structure of the graph, and it
is impossible to assign different weights to neighbors during
convolution, which limits the generalization ability of the
trained model in other network structures [19]. Therefore, the
graph attention network GAT is proposed to allocate different
attention weights between nodes independently of the graph
structure and aggregate the neighbor information with differ-
ent weights, to greatly improve the expression ability of the
graph neural network model [20].

However, the above method is designed for unsigned
networks, which have different properties (negative links)
compared with unsigned networks. Therefore, the learn-
ing method of unsigned network representation can not be
directly applied to signed networks.

In recent years, the research on signed network embedding
is mainly based on structural balance theory and status theory
and uses deep learning technology to represent and learn the
network. Shuhan [21] first proposed the SNE model of the
signed network with the method of deep learning. SNE com-
bines the edge symbol information and node representation of
path nodes with log bilinear model; After that, Shuhan [22]
extended the structural balance theory, proposed SiNE model
for signed network modeling, and proposed a triple with
positive and negative triangular relationship to ensure that
the distance between positive relationship node pairs is far
less than that between negative relationship node pairs, and
gave the measure of similarity, which can better represent the
node representation; Tyler derr [23]uses the balance theory
to aggregate and propagate the multi-layer information of
GCN model in signed networks, but this method ignores the
different effects between nodes; After that, Li Yu [24] and
others introduced the attention mechanism into the SGCN]

method, allocated different weight coefficients between node
pairs, and aggregated the neighbor information of nodes
with the structure balance theory; Huang Junjie [25] and
others divided the network structure into different topics and
aggregated the node neighbor information under each topic
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with gat; Subsequently, Huang Junjie [26] designed a new
information dissemination and aggregation mechanism using
the structural balance theory, and used an average sampling
theory to learn node embedding. Most of the above methods
consider the influence between nodes, and different edge
directionswill also affect the nodes to varying degrees. There-
fore, this paper proposes the SNEDA method, which uses a
dual attention mechanism to capture the influence between
nodes and the influence of edge direction, to make the vector
representation of target nodes more rich and complete.

III. THEORETICAL KNOWLEDGE
A. STRUCTURAL BALANCE THEORY
1) STRUCTURALLY BALANCED TRIANGLE
It can be judged by the product of the signs of the three sides
of the triangle: if it is positive, the structure of the triangle is
balanced; otherwise, the structure is unbalanced. The struc-
tural balance [27] of the above triangle is determined from the
perspective of sociology and psychology, and can be simply
summarized into the following four intuitive understandings:
friends of friends are my friends; enemies of friends are my
enemies; friends of enemies are my enemies; The enemy of
the enemy is my friend. Research shows that in real signed
networks, the number of structurally balanced triangles is
much larger than that of structurally unbalanced ones, and
the unbalanced network gradually evolves into a balanced
network over time [28].

2) STRUCTURAL BALANCE CIRCLES
If an L-circles (L>3) contains an even number of negative
edges, the structure is balanced, otherwise the structure is
unbalanced.

FIGURE 1. Schematic diagram of structural balance (left) and structural
imbalance (right).

B. SOCIAL STATUS THEORY
Structural balance theory provides a theoretical basis for the
analysis of unsigned networks, but there is a large deviation
in this theory when it comes to directed signed networks.
Subsequently, Leskovec and Kleinbergand [29] proposed a
social status theory for signed networks, which holds that if
there is a positive edge from A to B, then A has a higher social
status than B. If there is a negative edge from A to B, then B
has a higher social status than A, and this status is transitive.

In a signed network composed of three nodes, the method
to determine whether a triangle conforms to the social status
theory is as follows: First, reverse the direction of all negative
links in the triangle, and convert the signs on the links to
positive signs. If the triangle cannot form a cyclic loop, then
this triangle conforms to the social status theory, otherwise,

FIGURE 2. Status balance (left) and status imbalance (right).

it does not conform. If each member in a system follows
the same position sorting method and there is no conflict in
position, then as long as the direction of the edge is known,
the sign of the edge can be inferred.

C. SIGNED MOTIFS
Discussion based on the above status theory, negative links
have different properties from positive links, and differ-
ent link directions represent different meanings [30], [31].
To distinguish different types of node neighbors, the net-
work structure is divided into different signed motifs to learn
respectively according to different directions and symbols
of links, as shown in Figure 3. The node is the first-order
neighbor of the node, with a total of 4 different motifs. The
node is the second-order neighbor of the node, with a total of
16 different motifs.

FIGURE 3. Signed motifs.

IV. MODEL INTRODUCTION
This section will introduce the SNEDA model in detail.
As shown in Figure 4, different motifs are generated through
different types of node neighbors; Node level attention is used
to learn the weight of neighbors based on motif and aggregate
them to obtain specific node embedding; The importance of
learning different motifs with path level attention; The vector
representation of the node is obtained by aggregating the
neighbor information based on the important motif; Through
the downstream task of link prediction, the embedding quality
of model nodes is detected. Several notations are listed in
Table 1.

A. NODE NEIGHBOR SAMPLING
In real social networks, users’ link behavior will be affected
by neighbor nodes, and each different type of neighbor node
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FIGURE 4. An illustratiion of SNEDA model.

TABLE 1. Notations and explanations.

has a different impact on the target node. To eliminate the
different effects caused by different edge directions and link
symbols, different motifs are divided to learn the influ-
ence between nodes and neighbors under the same motif.
Therefore, motifs are selected to sample node neighbors
information.

Node neighbor sampling specifically refers to sampling
the first-order neighbor and the second-order neighbor of the
target node. The first-order neighbor can be divided into four
motifs. First order neighbor set F = {Fm(vi)vi ∈ V , 1 ≤
m ≤ 4}, represents the first-order neighbor set, V represents
all nodes in the network structure; N(vi) = U4

m=1Fm(vi),
where U represents Union, N(vi) represents the set of first-
order neighbors. The sampling of F is mainly based on the
idea of a random walk:

a) starting from the target node vi, it swims to the node vj
in turn, and vj is satisfied that vi is a neighbor, vj ∈ N (vi);
b) get the value of m according to the link direction and

symbol between the node vi and the node, whichwill be added
to the set Fm(vi).

repeat steps a) and b) until all first-order neighbor nodes
have been swimming away.

Similarly, the second-order neighbors can be divided into
16 kinds of motifs, Sm(vi) representing the second-order
neighbor set, install the super parameter p to control the num-
ber of second-order neighbors. The specific steps of sampling
the second-order neighbor sets are as follows:

c) starting from the target node vi, it walks to the node vj in
turn and satisfies the first-order neighbor of the target node vi;
d) then start from the node vj, swim to the node, vk in turn,

meet the node’s first-order neighbors, determine the motif
according to the direction and symbol of the path, and join

vk into Sm(vi);
Repeat steps c) and d) until all nodes are completed; After

the walk, the nodes in the set are sorted in descending order
according to the Degree of Centrality of the nodes, and the
nodes before ranking P are retained, that is, the sampling of
the second-order neighbor set s is completed.

Through node neighbor sampling, the node first-order
neighbor set and second-order neighbor set Sm(vi) are finally
obtained. φ = {Fm(vi) U Sm(vi)}, {φ1, φ2 . . . φ20} represent
different motifs.

B. NODE LEVEL ATTENTION
Based on the above discussion, we choose node-level atten-
tion to learn the influence between nodes and neighbors.
Node level attention can learn theweight coefficients of nodes
under the same motif and their neighbors, and aggregate the
learned vectors to obtain the vector representation of nodes
under a specific motif. This section will introduce how to
use node-level attention to learn the impact between node
pairs, aggregate these learned neighbor representations, and
generate a new embedded representation of the target node.

The self-attention mechanism can learn the weight
between each node pair. The importance of different node
pairs under different motifs can be expressed:

eφij = attnode(hi, hj;φ) (1)
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Here attnode represents the deep neural network executing
node level attention, and the attention coefficient eφij repre-
sents the importance of nodes to nodes Vi under a specific
motif; hi, hj represents the eigenvector of the node ViVj; used
φ to represent different motifs, that is, motifs can be used to
represent {φ1, φ2 . . . φ20}.

Then, normalize it with softmax, and the relevant attention
coefficient:

aφij =
exp(σ (aTi [hi||hj]))∑

k∈Nφi
exp(σ (aTi [hi||hk]))

(2)

Here, σ represents the activation function, the attention coef-
ficient aφij of the node pair under the specific motif, Nφi
represents the neighbor set of a node Vj under the specific
motif, [] and || both represent the connection operation.

After that, the neighbor information of the sink node Vi can
be aggregated through the feature vector and corresponding
coefficient of the neighbor, which is expressed as follows:

hφi = σ (
∑
j∈Nφi

aφijhj) (3)

After node-level attention learning, nodes vi generate new
feature vectors. In a given set {φ1, φ2 . . . φ20}, all feature
vector sets {hφ1i , h

φ2
i . . . hφ20i } under different motifs of nodes

vi are finally learned by node-level attention.

C. PATH LEVEL ATTENTION
In signed networks, each node contains many types of neigh-
bors, and the node embedding of node attention can only
reflect the node from one side. Based on the above discussion,
node-level attention helps us to better pick out important
node neighbor information. To learn more comprehensive
node embedding, we need to integrate more abundant path
information, Path-level attention helps us choose important
paths better. In this way, our model will selectively aggregate
neighbor information based on important relationship paths,
which enhance the ability to represent features. Note that
node-level attention and path-level attention are not specific
techniques, but we consider the influence of node neighbors
and paths on the target node at the node level and path level
and use the attention mechanism to capture this influence.
This section will introduce how to use path-level attention to
learn the impact of different motifs

Take the node embedding learned by node level attention as
the input, and the learning weight of each motif is as follows

Bφ1 ,Bφ2 . . .Bφ20 = attpath(hφ1 , hφ2 . . . hφ20) (4)

Here attpath represents the depth neural network of execution
path attention and represents the weight of the motif.

Embed the nodes learned by node level attention into non-
linear changes (for example, one layer MLP), average the
importance of all motifs, and the importance of each motif
is represented by:

wφi =
1
|V |

∑
i∈V

qT · tanh(W · hφmi + b) (5)

Here W is the weight matrix, b is the deviation vector, and q
is the path level attention vector. All embedding of different
motifs shares the above parameters. After getting the impor-
tance of each motif, normalize it with the softmax function:

Bφi =
exp(σ (wφi ))∑m
i=1 exp(σ (wφi ))

(6)

Here Bφi represents the weight coefficient of the motif. The
higher the weight, the more important the motif is. Differ-
ent motifs have different contributions to the target nodes.
Through learning, the weight coefficients of different motifs
are obtained to obtain the final target node embedded Z:

Zi =
m∑
i=1

Bφi ·h
φi
i (7)

D. LINK PREDICTION
Through the experiment of link prediction to verify the
embedding quality of model learning nodes, the vector repre-
sentation of each node is learned through the SNEDA model,
and the node vector representation in the training set is input
into the binary classification logistic regression model as the
node feature for the experiment of link prediction. To better
learn the model parameters, SNEDA mode el adopts Cross
Entropy as the loss function, which is defined as follows:

Loss =
∑

v+∈N (u)+
log(σ (ZTu Zv+ ))−C

∑
v−∈N (u)−

log(σ (−ZTu Zv− ))

(8)

Here C is used to adjust the proportion of the number of
positive connections and negative connections. It is the set
of all neighbors of the node’s positive links and the set of all
neighbors of the node’s negative links. The function reflects
that the embedding of friends is similar, while the embedding
of enemies is not. The model parameters are updated by
continuously reducing the loss of cross-entropy. After several
optimizations, when the loss tends to be stable, the final
vector representation of the node Vi is obtained. The specific
algorithm process is as follows:

V. EXPERIMENT
In the experiment, all codes were written in PyTorch pro-
gramming language. The computer is configured with CPU
i7-6700, six cores and twelve threads, the memory of,1GB,
and a graphics card AMD R7 2GB.

The experimental process is shown in Figure 5. Firstly, the
vector representation of nodes is obtained by representing
the learning process; 80% of the connected edges are ran-
domly selected as the training set, and these connected edges
will produce the vector representation of nodes through the
SNEDA model; The remaining 20% of the connected edges
are used as the test set, and the node vector representation in
the training set is used as the node feature, which is input
into the binary logistic regression model for experiments.
Finally, the prediction performance of the connected edge
symbols on the prediction model of the test set is counted.
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Algorithm 1 The Overall Process of SNEMA
Input: signed network diagram G = (V ,E),

node feature {hi,Vi ∈ V},
node neighbor set {φ0, φ1 . . . φm}

Output: node vector final representation Zi
1 procedure begins:
2 for each Vi ∈ V do :
3 Get the set of neighbors of the node {φ0, φ1 . . . φm}
4 for each φi ∈ {φ0, φ1 . . . φm} do :
5 for each Vi ∈ Nφi do:
6 Calculate the weight coefficient aφij with formula (2)

7 Calculate the node embedding hφi with formula (3)
8 end for
9 end for
10 Get the node embedding {hφ1i . . . hφ20i } under each

motif through node level attention:
11 Calculate the importance of the weight coefficient

motif with formula (5) (6)
12 The final vector representation of the node:

Zi =
m∑
i=1

Bφi ·h
φm
i

13 The loss value is calculated by the formula (8)
14 The gradient is calculated by backpropagation to update

the model parameters
15 end for
16 end procedure

A. DATASET INTRODUCTION
In the experiment, four real social network data sets bit-
coin alps, bitcoin OTC, Slashdot, and epinions are used.
These data can be downloaded from Stanford’s large network
dataset1 website.Most of the experimental research on signed
networks is based on these four experimental sets. Each edge
of these data sets has the meaning of positive edge and
negative edge.

Bitcoin-alphs2 and bitcoin-otc3 are interpersonal networks
that use bitcoin for transactions on the platforms of alpha and
OTC. On the network platform, bitcoin users are anonymous.
Maintain users’ reputation records and prevents transactions
with fraudulent and risky users, members of bitcoin alpha and

OTC scores other members on a level of −10 (complete
distrust) to +10 (complete trust). These score values greater
than zero are regarded as positive links, and those at zero are
regarded as negative links to form a signed network.

Slashdot4 is a website of before and technology news.
News can be provided by all users of the website. Users can
choose their ‘‘friends’’ ‘‘enemies’’ here. They regard friends
as positive relations and enemies as negative relations.

1http://snap.stanford.edu
2http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
3http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
4http://snap.stanford.edu/data/soc-sign-Slashdot090221.html

FIGURE 5. Flow chart of SNEDA model experiment.

Epinions5 is a consumer review website. Users can decide
whether to trust another user by evaluating the quality of
products, to users make better choices. All trust relation-
ships and distrust relationships constitute this network, which
regards the trust relationship as a positive relationship and the
distrust relationship as a negative relationship.

B. BASELINES
The SNEMA model proposed in this paper is compared
with the following benchmark methods. The following is an
introduction to the benchmark methods:
•DeepWalk6: a network embedding method based on a

random walk is designed for unsigned networks. Here, the
negative links in the network are treated as positive links, and
the whole signed network is regarded as an unsigned network.
•SiNE7: use the characteristics of the signed network to

sample and model nodes with a random walk method to
obtain node embedding.
•SiGAT8: provides a specific structure mode and uses gat

to learn the nodes in each mode.
•SGCN9: use the structural balance theory to aggregate

and spread information through graph convolution and gen-
erate node embedding.

5http://snap.stanford.edu/data/soc-sign-epinions.html
6https://github.com/phanein/DeepWalk
7http://www.public.asu.edu/%7Eswang187/codes/SiNE.zip
8https://github.com/huangjunjie95/SiGAT
9https://www.cse.msu.edu/%7Ederrtyle/code/SGCN.zip
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•SNEA10: learn the weight coefficients between nodes by
using the self attention mechanism, and aggregate high-order
information by using the balance theory to represent and learn
the nodes.
•SDGNN11: Based on the structural balance theory in

sociology, new information dissemination and aggregation
mechanism is designed, and an average sampling theory is
used to learn node embedding

C. ASSESSMENT METRICS AND EXPERIMENTAL SETUP
In this paper, Accuracy, Macro-F1, F1, and AUC are used
as evaluation metrics to validate the continuous edge sign
prediction results. The higher values of these metrics indicate
the more accurate prediction results of concatenated symbols.

TABLE 2. Statistics of four datasets.

The ratio of positive and negative relations and the num-
ber of neighbors in different social network datasets is not
balanced, and the number of neighbors varies greatly among
nodes in different datasets, as shown in Table3, which gives
the optimal parameter settings in each of the four datasets.

TABLE 3. Experimental parameter setting.

D. ANALYSIS OF EXPERIMENTAL RESULTS
The experimental comparison results of the SNEDA method
and baseline method are shown in Table 4 and Table 5. From
the chart, we can see that SNEDA is superior to the baseline
method in all evaluation indicators on the four data sets,
which indicates that the dual attention mechanism helps to
improve the quality of node embedding. The following is a
specific analysis:

a)The performance of the DeepWalk method, which
ignores negative links for representation learning, is the
worst, which shows that negative links affect the represen-
tation quality of signed networks to a great extent, and the
representation method of unsigned networks is not suitable

10https://github.com/liyu1990/SNEA
11https://github.com/huangjunjie95/SDGNN

for signed networks; SiNE based on sociological theory mod-
eling is better than unsigned network, which shows the feasi-
bility of modeling signed network based on structural balance
theory.

b)SNEA introduces an attention mechanism to capture the
different importance between nodes. The experimental results
are better than SGCN (giving the same weight to node neigh-
bors), which shows that assigning different weights to nodes
through an attention mechanism can improve the quality of
node embedding in signed networks.

c) SiGAT uses multi head attention to aggregate the infor-
mation of first-order neighbors to obtain the embedding of
target nodes, while SNEA aggregates the high-order neighbor
information of nodes based on balance theory and uses the
attention mechanism to learn the different weights between
node pairs. From the experimental results, the SNEDA
method is better in the network with fewer nodes, but not
as good as SiGAT in the network with more nodes and is
more complex. It may be because SiGAT only aggregates
first-order neighbor information, while SNEA can aggregate
higher-order neighbor information.

d)Compared with SiGAT, the SDGNN can capture high-
order structure information withmultiple layers. Experiments
show that two-layer convolution can achieve the best effect;
Both SDGNN and SNEA can process high-order structure
information. SDGNN aggregates high-order structure infor-
mation based on GraphSage, while SNEA aggregates high-
order neighbor information through structure balance theory.
From the experimental results, SDGNN ismore effective than
SNEA in aggregating high-order structure information.

e) Compared with SiGAT and SNEDA methods, which
only focus on the attention weight between nodes, SNEDA

adds path attention and considers the influence of different
motifs. The experimental results show that the effect has
been significantly improved. The results show that selectively
aggregating neighbor information based on important rela-
tionship paths can improve the accuracy of link prediction,
indicating that aggregating node neighbor information with
dual attention can improve the quality of node embedding.

E. ABLATION EXPERIMENTAL ANALYSIS
1) ATTENTION MECHANISM
To verify the necessity of node-level attention and path-
level attention, ablation experiments are carried out on
the core components of the model in this section. The
SNEDA-s method does not use path level attention, but
directly uses node level attention to aggregate neighbor infor-
mation. SNEDA uses node-level attention and path atten-
tion to obtain node embedding. The experimental results are
shown in Table 6,theAUC equivalence of the SNEDAmethod
has been significantly improved compared with SNEDA-S,
which shows that the effect of node embedding is better when
using a dual attention mechanism. The combination of node
level attention and path attention can effectively improve the
quality of node embedding and improve the accuracy of link
prediction.
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TABLE 4. Experimental results.

TABLE 5. Experimental results.

TABLE 6. Ablation experiment (attention).

2) NODE NEIGHBOR ORDER
SNEDA-1 means to aggregate only the information of first-
order neighbors, SNEDA-2 means to aggregate only the
information of second-order neighbors, and SNEDA means
to aggregate the information of first-order and second-order
neighbors at the same time, as shown in Figure. 6. From
the experimental results, it can be seen that aggregating the
information of first-order and second-order neighbors at the
same time can improve the link prediction results, which
shows that aggregating the information of second-order
neighbors can effectively improve the embedding quality of
nodes.

F. SUPERPARAMETRIC ANALYSIS
SNEDA model has two important parameters to control the
effect of the experiment, which are node embedding dimen-
sion d and path attention vector q. This section will analyze
the influence of the selection of super parameters on the
performance of SNEDA. Bitcoin alpha is selected as the
experimental data set. The other parameter values are set to
default values when analyzing specific super parameters.

Figure7 shows the AUC and F1 value of singed link pre-
diction performance of the SNEDA model under different
parameters. Figure7 (a) and 7 (b) show that with the increase
of training rounds, the loss value gradually decreases, the
AUC value increases, then gradually converges, and finally
tends to be stable.

FIGURE 6. Neighbor order analysis.

Figure 8 shows the AUC value of singed link predic-
tion performance of the SNEDA model under different
parameters. Figure 8 (a) shows the influence of node attention
vector d on the experimental results. It can be seen that the
effect of vector dimension reaches the best at about 20. With
the increase of dimension, the experimental effect decreases,
which may be caused by overfitting Figure 8 (b) shows the
impact of path vector dimension q on experimental perfor-
mance. When the vector dimension is about 64, the effect
reaches the best effect, and the effect decreases with the
increase of vectthe or dimension.
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FIGURE 7. Hyperparametric analysis.

FIGURE 8. Hyperparametric analysis.

VI. SUMMARY
In this paper, a graph-based attentional network propagation
SNEDA model is proposed to learn the node representation
of the signed network. The model consists of two layers of

attention mechanism: node level attention learns node level
information and learns different weights between nodes; Path
level attention captures path level information and learns the
importance of different motifs. Through the learning of the
SNEDA model, the characteristic information of the target
node contains both neighbor information and structure infor-
mation, which makes the vector representation of the node
more complete and rich. Compared with the baseline method,
SNEDA achieves better results in the link prediction task,
which shows that combining the path level information helps
to improve the quality of node embedding, and proves the
effectiveness of the SNEDA model. In future work, we will
consider sampling higher-order neighbors, such as a random
walk or GraphSage, to complete the integrity of node vectors.
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