
Received 15 September 2022, accepted 6 October 2022, date of publication 10 October 2022, date of current version 13 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213280

Characteristics of Peak and Cliff in Branch Length
Similarity Entropy Profiles for Binary Time-Series
and Their Application
SANG-HEE LEE AND CHEOL-MIN PARK
Division of Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon 34047, South Korea

Corresponding author: Sang-Hee Lee (sunchaos.sanghee@gmail.com)

This work was supported by the National Institute for Mathematical Sciences.

ABSTRACT A binary time series can be transformed into a Branch Length Similarity (BLS) entropy profile
by being mapped to a circumference called a time-circle. In this study, we explored how peaks and cliffs
are formed and how they relate to time series. Peaks and cliffs are defined as spike shapes in their entropy
profile and are called peaks (or cliffs) when their shape is symmetric (or asymmetric). We found that when
signal bands with different signal densities are in the same time series, peaks or cliffs are formed on the side
of the band with lower signal density. In addition, we found that when the signal density is moderately high,
the distribution of peaks and cliffs appears as a global increase-decrease tendency of the entropy profile.
The tendency appeared as a barrier in the entropy profile of the image. As an application of our findings,
we successfully detected specific patterns in binary images using peaks, cliffs and the barriers.

INDEX TERMS Classification, data structure, discrete transforms, entropy, shape detection, signal analysis,
signal processing algorithms, time-series analysis.

I. INTRODUCTION
In modern times, various digital devices connected to the
internet have a great influence on social system stability.
These devices produce a lot of information. In particu-
lar, a large portion of this information is occupied by the
time series data. Therefore, collection and analysis of the
time series data is essential in modern society [1], [2],
[3]. A time series data is the information obtained in a
chronological order. It has applications in various fields
such as medical care, medical science, finance, economics,
government, industry, environment, and socioeconomic [4],
[5]. Several techniques for time series analysis have been
developed to understand the systems in the field. The tech-
niques include (1) finding similarities between time series
[6], [7], (2) searching for subsequences in time series [8],
(3) reducing dimensionality [9], [10] and subdivision [11].
In these techniques, the representation of the time series
data is a fundamental problem that remains to be solved.
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Many literatures deal with various types of representation,
and the purpose of the representation is to analyze the sim-
ilarity between time series in various fields such as earth-
quake prediction [12], terrestrial ecosystem dynamics [13],
stock price data, exchange rate analysis [14], medical pattern
analysis [15], etc.

The similarity between time series data obtained in most
fields is often measured using Euclidean Distance (ED) [16]
or Dynamic Time Warping (DTW) algorithm [17]. ED is
often used when comparing two time series of the same
length. This measure computes the square root of the sum
of squared differences between elements in the same time
period. Although ED is intuitively clear, it has the disadvan-
tage of being overly sensitive to outliers. In particular, this
algorithm cannot compare time series of different lengths.
To overcome this problem, the DTW algorithm was devel-
oped [18]. DTW performs nonlinear mapping by minimizing
the total distance between the time series, followed by simi-
larity search and detection [19]. DTW tends to cause singu-
larity problems, which has the disadvantage of poor accuracy
between time series and misalignment. For example, a single
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point in one time series can be aligned with a large division in
another. To overcome this problem, Keogh and Pazzani [20]
estimated the derivative from the values of three temporally
neighboring points in the time series. After obtaining the
trend information on the original data based on derivatives,
they proposed a differential DTW method to find new warp-
ing paths in outliers. Discrete Fourier Transform (DFT) and
Discrete Wavelet Transform (DWT) algorithms are mainly
applied to the time series of highly nonlinear patterns that do
not have periodicity and simple trends. The DFT algorithm
is a way to represent a time series as a set of sine and cosine
functions in the frequency domain. The degree of similarity
is measured by comparing the first few coefficient values
of the function sets for the two time series. DWT provides
multi-resolution signal decomposition capabilities. For this
reason, DWT is used to accurately cluster homogeneous
groups in time series with high similarity [21], [22], [23].

The abovementioned methods calculate the relative sim-
ilarities of the two time series through comparison. Addi-
tionally, self-similarity, calculated from a time series itself,
was newly introduced. Lee and Park [24] proposed a method
to compute the branch length similarity (BLS) entropy pro-
file by mapping the signal of a binary time series to a cir-
cumference called as time source. The authors defined the
self-similarity of the time series from the entropy profile.
The concept of self-similarity is completely different from
the existing similarity in terms of information regarding the
signal distribution structure of the time series itself. The self-
similarity based on the BLS entropy profile has the strength
to detect small structural changes in time series [25], [26].
To concretely demonstrate the practicality of the strength,
they showed that there was a difference in self-similarity
between the behavioral trajectories of Caenorhabditis ele-
gans exposed to very low concentrations of toxic sub-
stances and the normal behavioral trajectories. In addition,
the authors argued that there is a need to develop new indi-
cators other than self-similarity for the characterization of
entropy profiles. As an example, the authors mentioned a
peak on the entropy profile. As a follow-up to the study,
we explored peaks and cliffs formed on entropy profiles
that reflect changes in signal distribution over time. Peaks
and cliffs refer to the spike shape on the entropy profile.
We classified the peaks and cliffs based on whether the shape
is symmetrical or asymmetrical, respectively. We dealt with
the problem of detecting anomalies in spatial distribution
maps based on our findings on peak and cliff properties.
This method is not only an algorithm for detecting a specific
area of an image, but it can also be a method for detect-
ing anomalies in a time series. In the discussion section,
we briefly mentioned the idea of sophisticated detection of
shapes consisting of closed curves.

II. PRELIMINARIES
A. BRANCH-LENGTH SIMILARITY ENTROPY
Branch length similarity (BLS) entropy and derivation statis-
tics were proposed to provide a universally applicable means

FIGURE 1. Examples of networks with different branch length similarity
(BLS) entropy values.

to characterize spatial network patterns [27]. The entropy
was defined on a simple network consisting of one node and
multiple branches (edges). The ‘‘length’’ of a branch can
be an actual distance measure, but it can represent a unit
measure such as time, area, probability, etc., or it can be
a comparable character state such as a binary code, DNA
sequence, character or behavioral state, etc. This indicates
that the BLS entropy can be applied to a wide variety of
problems. The ratio of the length of each branch to the sum
of the lengths of all branches is defined as the probability of
each branch, as follows:

pj = Lj/
∑n

k=1
Lk , (1)

where n is the number of branches in the network, and Lk
represents the length of the k th branch (k = 1, 2, 3,. . . , n), the
BLS entropy can be mathematically represented as

S = −
∑n

j=1
pjlog

(
pj
)
/log (n) . (2)

In the BLS entropy definition, the more similar the lengths
of all branches, the closer the entropy value is to 1.0, and
the larger the length deviation, the closer the entropy value
is to 0.0 [28]. To better visually understand the concept of
BLS entropy, we compared three networks with one node
with different branch lengths (Fig. 1). One of these networks
had 300 branches with a length between 0.1 and 1.0. In this
case, the S value was 0.9008. Another one had branch lengths
between 0.9 and 1.0 and had an S value of 0.9997. In the other,
the length of all branches was 1.0 and the value of S was 1.0.
The higher the branch length similarity, the closer the entropy
value was to 1.0.

B. STUDIES ON BRANCH LENGTH SIMILARITY ENTROPY
We encounter multi-node networks more frequently than
single-node networks. For this reason, studies using entropy
profiles, which are a set of entropy values, have been mainly
conducted rather than studies using only a single BLS entropy
value. Lee et al [27] obtained BLS entropy profiles from
networks created by connecting each pixel on the battle tank
shape outline with all other pixels on the edge of the shape.
The network formation order was counterclockwise. The
authors compared entropy profiles for different tank shapes
using correlation coefficient values. They showed that the
coefficient values successfully discriminate the shapes from
each other, which indicates that the entropy profile effec-
tively characterizes the shape of an object. Lee [28] showed
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FIGURE 2. Process of constructing a time-circle from a binary time series
and obtaining a BLS entropy profile.

that the entropy profile is also robust against noise. Kwon
and Lee [29] used the BLS entropy profile to classify leaf
shapes that have more complex shapes than battle tanks. The
authors defined new descriptors based on entropy profiles:
roundness, symmetry, and shape boundary roughness. The
descriptors allowed us to successfully classify leaves of vari-
ous species. Kang et al. [30] successfully classified different
butterfly species using BLS entropy profiles. They obtained
the entropy profile along the butterfly wing-shaped boundary
line. The authors compared the results of applying the entropy
profile to three machine learning techniques: Bayesian clas-
sifiers, multilayer perceptrons, and support vector machines
with other well-known descriptors such as Fourier descrip-
tors. The authors showed that the BLS entropy descrip-
tor outperforms other well-known descriptors. Choi et al.
[31] characterized the crawling behavior of Caenorhabditis
elegans under (1) controlled conditions and (2) conditions
treated with toxic substances (formaldehyde, toluene and
benzene) using BLS entropy profiles. They showed that the
entropy profile can be effectively used for state definition
when constructing a hidden Markov model. In the model,
the authors quantified the crawling behavior patterns as BLS
entropy values, and showed that the patterns were classified
into 5 groups using a self-organizing map.

Similarity is one of the main analysis methods in the
field of shape classification. However, similarity is a rel-
ative quantity that indicates how similar two shapes are.
If similarity could be defined based on the information of
the shape itself rather than comparison, the existing method
could be improved. Lee et al. [25] proposed a new measure
(0) to quantify the degree of shape self-similarity using
BLS entropy. The difference between 0 and other entropy
application is that the 0 reflects the information of the entire
entropy profile, whereas other entropy application studies
previously used a specific value or a simple statistical value
in the entropy profile. The authors calculated 0 values for
groups of 70 individuals (20 shapes in each group) from the
MPEG-7 shape database. Shapes belonging to each group
had similar 0 values, and shapes belonging to groups that
were geometrically (or topologically) similar also showed
relatively similar 0 values.

C. TIME-CIRCLE FOR A BINARY TIME SERIES
We introduced the term, time-circle, to extend the BLS
entropy concept defined for spatial networks to temporal data
(time series). A binary time series is a sequence of signals
indicated by signal ‘‘1’’ or ‘‘0’’ for the case in which an event
occurs or not according to a discrete time flow. Figure 2 shows
a binary time series consisting of 400 randomly distributed

FIGURE 3. Process Peak generation mechanism. (A) A binary time series
consisting of 200 consecutive ‘‘1’’ signals and their corresponding BLS
entropy profile, (B) a time series in which all signals within the time
interval [ta, tb] were removed and its BLS entropy profile.

‘‘1’’ signals and the normalized entropy profile in the [0, 1]
range for the time series. To obtain the entropy profile,
we mapped the binary time series to the circumference of
a circle called the time-circle [24]. Then we connected each
signal ‘‘1’’ with all other signals on the time-circle to form
a network and calculated the entropy value for the network.
That is, the distance between the two signals in the time
series is converted into the distance between the two points
on the time-circle. Except for the concept of the time-circle,
it would difficult to find an appropriate way to calculate the
BLS entropy profile for a time series. If we define the distance
between signals in a time series as a branch length, the BLS
entropy profile is dominated by some very distant signals
regardless of the distribution of the entire signal. That is,
information about the overall structure of the time series is
diluted by some signals.

III. OUR IDEAS AND FINDINGS
A. PEAK OCCURRENCE IN THE BLS ENTROPY PROFILE
The BLS entropy profile for a time series, Q(t), consisting
of 200 consecutive ‘‘1s’’ and 1800 ‘‘0s’’ has central axial
symmetry (Fig. 3A). In this study, since the characteristics
of the entropy profile were determined by the high and low
levels rather than the actual entropy values, we normalized
each profile to values in the range of [0, 1]. Here, the last
signal of Q(t) is changed from ‘‘0’’ to ‘‘1’’ for time-circle
construction. t1, t2, . . . , tn on the time series correspond to
t̃1, t̃2, . . . , t̃n on the entropy profile. The profile was centrally
convex. This is because there is only one signal band, and the
center of the band has the highest entropy value due to left-
right symmetry.

Next, we removed the time span [ta, tb] of equal length left
and right from the center (Fig. 3B). Since the two endpoints
ta and tb of the span are symmetrically equidistant from
the center of the time series, the entropy values of t̃a and
t̃b on the entropy profile are the same. It can be intuitively
understood that the peak is formed by removing the part
corresponding to the span from the entropy profile (see the
red dotted line). Since the entropy profile has the property
that partial strain affects the overall profile structure [25], the
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FIGURE 4. BLS entropy profile change as a function of distance d
between two signal bands.

central peak height is increased and the height at both ends
of the profile is relatively decreased (Fig. 3B). In summary,
a peak is formed when the distribution of the left and right
signals is the same for the time domain center where there
is no signal. In addition, we can clearly infer that even if a
bandwith a relatively low signal density replaces the removed
domain, the peak is generated even though the height of the
peak is slightly different compared to that for the removed
domain.

B. PEAK HEIGHT CHANGE WITH DISTANCE BETWEEN
SIGNAL BANDS
To understand the peak shape change on the BLS entropy
profile, we investigated the entropy profiles for two signal
bands�1 (w1 = 1,000 and δ1 = 20) and�2 (w2 = 1,000 and
δ2 = 20) separated by a distance d . (Fig. 4). wi and δi (i = 1,
2) represent the band length and inter-signal distance in the
signal band, �i, where the ‘‘1’’ signals are equally spaced.
For this, we measured the peak height (Hpeak) according to
the change of d value. Here, the total length of the time series
is L (=10,000). No peak was generated on the entropy profile
when d = 0 (see red circle A). When 500 ≤ d ≤ 2,000,
Hpeak was 1.0, and when d = 5000, three peaks with anHpeak
value of 1.0 were formed (red circle B). In fact, the two peaks
at both ends are combined on the time-circle to become one
peak. The Hpeak value of the central peak decreased sharply
when d = 8,000 (red circle C). As the d value increases from
8,000 to 9,000, the Hpeak value increases again. The peak
height change can be understood by considering the signal
distribution on the time-circle (bottom left in Fig. 4). Let us
consider the case where �1 is at arc AC and �2 is at arc AD.
Here, the entropy values of the red nodes within each band
have the same entropy value because they are symmetric with
respect to the line segment AB. In this case, as illustrated in
Fig. 3, the entropy profile generated by the two bands has a
sharp peak in the center. Even when �2 is in arc BD, a peak
occurs in the center of the entropy because �1 and �2 are
symmetric with respect to the line CD.

Figure 5 shows the change in Hpeak for d and δ (=10,
20,. . . , 50). Hpeak was significantly affected by d and rela-
tively small in w. In order to show the effect of w in more
detail, we investigated d∗, which is the d value that min-
imizes the Hpeak value, and h∗, the minimum Hpeak value
(Fig. 6). As w increased, d∗ decreased almost linearly and

FIGURE 5. Change of peak height Hpeak with separation distance d of
two signal bands �1 and �2. Here, δ and w indicate the distance between
the signals of �1 and �2 and the band length, respectively.

FIGURE 6. Distance d∗ between the two signal bands that minimizes the
peak height and the minimum height h∗ of the peak.

FIGURE 7. BLS entropy profile change as a function of distance d
between two signal bands.

h∗ decreased and increased. This indicates that the mutual
influence between the bands is less complicated than what
was anticipated.

Figure 7 provides a qualitative understanding of the results
of Fig. 5. t1, t2, t1’, and t2’ of the time series correspond to
p1, p2, q1, q2 on the time-circle, respectively. When the two
bands shown in Fig. 5 are close to each other (d ≤ 4,000),
a peak is formed between p1 and p2 (top of Fig. 7).
Here, since the entropy values at p1 and p2 are relatively

higher than those at q1 and q2, a peak with an Hpeak value of
1.0 occurs in the center of the entropy profile. When d =
4,000, p1, p2, q1, and q2 all have the same BLS entropy
value. Therefore, in this case, two peaks with Hpeak = 1.0,
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FIGURE 8. Case where signals within the time interval [101, 100+r ] are
removed from the time series (w = 1000, δ = 1) with L = 1000 and ‘‘1’’
signals; the difference between two entropy values S1 (for t = 100) and
S2 (for t = 99), S1-S2, against r . Here, r = 1, 3, 5, . . . , 599.

shown in circle B of Fig. 4, are generated (middle of Fig. 7).
When d > 4,000, since the entropy values of p1 and p2
are smaller than the entropy values of q1 and q2, peaks with
Hpeak = 1.0 appear at both ends of the entropy profile, while
peaks with Hpeak < 1.0 are created in the center (bottom of
Figure 7).

C. UPWARD PEAKS
All the peaks formed in the various binary time series we
created were directed upwards. The shape of the peak con-
tains information about the time series structure; thus, the
direction of the peak can be used to understand the time series.
As described earlier, a peak occurs when the ‘‘1’’ signals
are removed for a time interval on a time series, and the
time-circle for the time series makes the signal distribution
symmetrical in a clockwise-counterclockwise direction with
respect to the central axis of the interval. Thus, to prove
that the peak is always upward, it must be mathematically
demonstrated that the peak still points upward if consecutive
‘‘1’’ signals of any length are removed. The mathematical
proof for removing one signal is included in Appendix A.
However, it is not easy to prove when more than one sig-
nal is removed. Although this topic is very interesting for
understanding peak characteristics, it is out of the scope of
this study; thus, we leave it as a topic for future research.
Instead of the mathematical proof, we numerically showed
that the peak direction does not change even after the removal
of consecutive signals (as shown in Fig. 8).

We created a binary time series with L = 1000 that
included ‘‘1’’ signals at all times and ‘‘0’’ signals in the time
interval [100, 100+r]. A peak was generated on the entropy
profile for the time series. To verify whether the peak points
upward, we calculated the entropy values S1 and S2 corre-
sponding to t = 100 and 99. The difference value, S1-S2, was
always positive, and as the r value increased, the difference
value also increased. This means that the peak is upward
irrespective of r .

D. CLIFF OCCURRENCE IN THE BLS ENTROPY PROFILE
For the signal distribution on the time-circle, if there were
symmetry axes for the clockwise and counterclockwise direc-
tions, a peak was formed. Here we can ask the question what

FIGURE 9. Mechanism by which a cliff is formed. The red arrow indicates
the direction of the cliff.

FIGURE 10. Mechanism for cliff direction determination. (A) Two cliffs
created by two sections [t1, t2] and [t3, t4] between the three signal
bands. The arrow points in the direction of the cliff. (B) Band positions on
the time circle to understand the cliff direction. Here, t1, t2, t3, and t4 on
the time series correspond to a, b, c , and d on the time-circle,
respectively.

would happen to the entropy profile if there was no axis of
symmetry.

Figure 9 shows the time series with length L = 10,000,
Q(t), consisting of the two signal bands without the axis of
symmetry �1 (w1 = 6,000, δ1 = 10) and �2 (w2 = 6,000,
δ2 = 10). The range of 6,000 ≤ t ≤ 8,000 has no signal.
The entropy profile for Q(t) has two concave parts. This is
caused by the different entropy values of p and q for t = 6,000
and 8,000. We called this difference a cliff and defined the
direction of the cliff as perpendicular to the direction of the
height (see red arrow).

In our previous study [47], we mathematically proved that
when two signal bands are on one time series, the entropy pro-
file corresponding to the high signal density band is relatively
more concave, whereas the entropy profile corresponding
to the low signal density band is relatively less concave.
Therefore, we can easily deduce that the entropy profile of
�1 is more concave downward compared to that of �2.

E. CLIFF DIRECTION AND HEIGHT
Figure 10 shows a time series with L = 10,000 containing
three signal bands. Each signal band has w = 1,000 and δ =
10. When the time intervals in which the signal bands are
separated from each other are [t1, t2] and [t3, t4], the interval
does not have a symmetrical axis for the signal distribution on
the time-circle. Thus, two cliffs are created. Here, we investi-
gated the direction of the cliff by comparing the magnitudes
of entropy values for a, b, c, and d corresponding to t1, t2, t3,
and t4 in the time series (Fig. 10B). From comparing nodes
a and b, we can easily infer that the entropy value of node a
is higher than that of node b due to the fact that the position
of node a is closer to the center of the time series than that
of node b. Therefore, the cliff formed between nodes a and
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FIGURE 11. Changes in cliff height and direction for distance d between
two signal bands of different lengths.

FIGURE 12. Cliff direction change on time-circle when the distance d
between two signal bands is (A) relatively large and (B) small.

b points to the left. Comparing the entropy values at nodes c
and d , node c has a relatively larger number of long branches
while node d has shorter branches. In this case, based on the
definition of entropy, Eq (2), it can be seen that the entropy
value of node c is higher than that of d . That is, the cliff
created between nodes c and d faces to the right.
To further understand the cliff orientation, we constructed

a time series consisting of two signal bands, �1 (w1 = 1,000
and δ1 = 10) and �2 (w2 = 500 and δ2 = 10), separated
by a distance d from each other (Fig. 11). We investigated
the shape of the cliff by decreasing the d value from 8,500
to 0. For d = 8,500, no cliff was created because �1 and �2
are interconnected in the time-circle (see red circle A). When
�1 was fixed and �2 shifted to the left (d = 8,000), a left-
facing cliff was formed (see circle B). When d = 4,000, the
direction of the cliff remained to the left and the height, hc,
increased. For d = 500, the cliff direction turned to the right
and hc decreased (see circle D). When the two bands made
contact (d = 0), the cliff disappeared.

Figure 12 explains the cause of the change in direction of
the cliff. For the case where the two bands are far apart, let the
entropy values of the nodes on the time-circle corresponding
to nodes 1, 2, 3, and 4 be S1, S2, S3, and S4, respectively
(Fig. 12A). Let the entropy values for nodes 1’, 2’, 3’, 4’ be
S1’, S2’, S3’, S4’, respectively, when the two bands are close
(Fig. 12B). Comparing the entropy values of the two cases,
we can see that S1 = S2’, S2 = S1’, S3 = S4’, S4 = S3’. That
is, the change in the direction of the cliff is a result caused
by the relative change of the node position with respect to the
flow direction of time.

FIGURE 13. Plot of the cliff height, hc, against the distance, d , between
the two signal bands. Here, one band has length w1 and inter-signal
spacing, δ1, and the other band has w2 and δ2.

FIGURE 14. Peak, cliff, (see red boxes) and the global increase-decrease
tendency (see yellow line) on BLS entropy profiles for time series with
three different signal densities.

Figure 13 shows how the cliff height hc varies with the
spacing, d , between the two signal bands. One signal band
�1 has w1 = 1,000, δ1 = 10 and the other band�2 has w2 =

200, 400, 600, 800, δ2 = 10. For d < 2,000, hc showed a
small increase-decrease tendency. This is considered an effect
caused by the nonlinear structure of the BLS entropy defini-
tion, Eq (2). When the value of d increased (2,000 < d <

8,500), hc showed an increasing-decreasing trend regardless
of the value of w2. The symmetry structure for the tendency
is due to the change in the relative positions of the nodes,
as mentioned in Fig. 12.

F. PEAKS, CLIFFS, AND THE GLOBAL INCREASE-DECREASE
TENDENCY ON BLS ENTROPY PROFILE
Figure 14 shows that changes in signal density are well
captured through peaks, cliffs, and global increase-decrease
tendencies of the entropy profile.We constructed a time series
with L = 10,000 containing 40 randomly distributed signal
bands (w = 40, δ = 1) (Fig. 14A). Peaks and cliffs occurred
in time intervals filled with ‘‘0’’ signals. Global informa-
tion on the time series structure is reflected in the increase-
decrease tendency (yellow dotted line) on the entropy profile,
and local information is reflected in peaks and cliffs (red
rectangle). When we increased the number of signal bands
to 300 (Fig. 14B), many cliffs (or peaks) disappeared. This
is because, as the distances between the bands decreased, the
cliff (or peak) height decreased (see Figs. 5 and 13). On the
other hand, the global increase-decrease tendency was more
pronounced. When the number of signal bands was 1400
(Fig. 14C), most of the cliffs (or peaks) disappeared.

To better understand the global increase-decrease ten-
dency, we investigated the entropy profiles for two simple
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FIGURE 15. Time series consisting of connections of signal bands with
different signal densities and their BLS entropy profile: (A) When two
different signal bands are connected (B) When three different signal
bands are connected. Here, each band has w1 = 1000 and δ1 = 10, w2 =
500 and δ2 = 20, and w3 = 500 and δ3 = 40, respectively.

FIGURE 16. Three kinds of entropy for (A) a time series consisting of
signal bands with different signal densities: (B) BLS entropy,
(C) Multiscale sample entropy, and (D) Permutation entropy. Here, each
band has w1 = 500 and δ1 = 10, w2 = 500 and δ2 = 20, and w3 =
500 and δ3 = 40, respectively.

time series (Fig. 15). One time series consisted of two signal
bands with different signal densities. One band had w1 =

1000 and δ1 = 10 and the other band had w2 = 500 and
δ2 = 20. A relatively low signal density band formed a barrier
(global increase-decrease tendency) in the entropy profile.
If the low signal density band had a non-uniform signal,
peaks and cliffs would be created on the barrier. To confirm
this, we added one more signal band (w3 = 500, δ3 = 40)
(Fig. 15B). As expected, we could see that a right-biased
structure was built above the third barrier (red circle). Due
to the structure, the height of the other two barriers was
relatively low.

The BLS entropy differ from existing entropies in that it
contains both global and local properties for a given time
series structure. To demonstrate this clearly, we calculated
the BLS entropy profile, multiscale sample entropy [32] and
permutation entropy [33] for a binary time series consisting
of three different signal bands with different signal densities
(Fig. 16). In the figure, the rectangles with the same color
have the same time domain. In the time series (Fig. 16A),
the red rectangle indicates the two bands with the lowest
signal density, whereas the green and black rectangles indi-
cate the band with the medium signal density. The BLS
entropy profile showed that the profile values within the green
and black rectangles are very different even though the two
rectangles have the same signal density. This is due to the
global information reflecting that the signal density around
the green rectangle is higher than that around the black rectan-

FIGURE 17. Detection of specific regions in binary images using BLS
entropy profiles. (A) an image containing a check pattern and a random
pattern, (B) BLS entropy profiles for two binary time series obtained by
concatenation of images into rows and columns, Sxy, where the green
rectangle indicates the selected section with a relatively low entropy
profile value. (C) BLS entropy profiles obtained through row and column
concatenation of images, Sx (by row) and Sy (by column), and Sxy (by Sx
and Sy), (D) Permutation entropy (PE) profile obtained through row and
column concatenation of images, PEx (by row) and PEy (by column), and
PExy (by PEx and PEy). The degree and order values for PEx and PEy are
1 and 3, respectively.

gle (Fig. 16B). On the other hand, multi-scale sample entropy
is limited in capturing the dynamic characteristics of time
series (Fig. 16C). Since the permutation entropy (delay =
1, order = 3, time window size = 200) contains only local
information for the time series, the values within the green
and black rectangles are the same (Fig. 16D).

IV. APPLICATION
A. DIRECTION OF A SPECIFIC REGION IN A SPATIAL
DISTRIBUTION PATTERN
We applied our findings mentioned in the previous sections
to the problem of detecting a specific region within a binary
image. To this end, we generated a binary image with a grid
size of 40× 40 consisting of 4 random patterns and 4 checked
patterns (Fig. 17A). The yellow and blue grids in the image
represent 1’s and 0’s, respectively.

To detect a check pattern in an image, first we connect
the second column of the image to the end of the first col-
umn and the third column to the end of the second column.
We performed this process up to the 40th column to construct
a binary vector (time series),Qy, with L = 1,600. By applying
the same method to the rows of the image, we obtained a
binary time series, Qx. Then, entropy profiles Sx and Sy were
computed for the two time series Qx and Qy, respectively.
Then we defined the BLS entropy profile for the image as
below:

Sxy = Sx × Sy (3)
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FIGURE 18. Check pattern detection in binary images‘ containing random
noisy backgrounds. Here the yellow and blue grids represent ‘‘1’’ and ‘‘0’’
respectively.

where ‘‘×’’ is the element-wise product of two vectors of
equal length Sx and Sy. The formation of two large periodicity
barriers in Sxy indicates that the image has two periodic
patterns (Fig. 17B).

From the fact that the check pattern has a higher signal den-
sity compared to the random pattern, we manually selected
a region with a low entropy value between the two barriers
(indicated by the green rectangle). The position on the image
corresponding to the selected area is marked with a red dot.
We successfully detected two of the four check patterns. The
remaining two check patterns were detected by selecting a
region with a low entropy value on the right side of the
entropy profile. In this problem, we can see two advantages
of the ‘‘element-wise product’’ of the Sxy definition.
One advantage is the containment of the phase differ-

ence information of Sx and Sy. In other words, as shown in
Fig. 17C, if we only take either Sx or Sy, it becomes difficult
to determine the boundary of the pattern we are looking for.
The other advantage is that Sxy has a steeper barrier than that
of Sx or Sy. This means that regions with different signal
densities can be more easily distinguished. We compared our
approach with the permutation entropy (PE) approach, which
captures the dynamic properties of time-series. The compar-
ison showed that the PE approach is limited in detecting the
check pattern area (Fig. 17D). Here, the PExy was obtained
by using the PE instead of S in Eq. (3). The PExy successfully
captured regular regions (dotted circles) in the image, but
showed difficulties in performing optimized thresholding to
detect the check pattern regions. The difficulty is more likely
to increase for more complex patterns. For the detection,
it would be necessary to use a new thresholding algorithm
or a formula different from Eq. (3).

To confirm that our method also works for more complex
images, we created a random image of size 50 × 50 con-
taining one check pattern of size 10 × 10 (see Fig. 18).
We described the method in Appendix B. We first computed
Sxy for this image (bottom left in Fig. 18). Since the signal
density of the check pattern is relatively high compared to the
other regions, wemanually selected the regionwith the lowest
entropy profile (green square). This selection successfully

FIGURE 19. Triangle pattern detection in images with noisy backgrounds.
Here the yellow and blue grids represent ‘‘1’’ and ‘‘0’’respectively.

separated the vertical area containing the check pattern from
the other areas. The detected area is marked with a red dot on
the image (top center in Fig. 18).We computed Sxy once more
for the selected region (bottom right of Fig. 18). The check
pattern (upper right in Fig. 18) was successfully detected by
reselecting the regions with relatively lower values in the
entropy profile.

V. CONCLUSION AND FUTURE WORK
In this study, we explored the main features of the BLS
entropy profile: peaks, cliffs, and global increase-decrease
tendency. We found that peaks or cliffs are formed on the
entropy profile when signal bands with different signal densi-
ties are adjacent to or separated from each other. Here, peaks
and cliffs are created in the region of the entropy profile
corresponding to the band of relatively low signal density.
To understand more fundamentally, when a time series is
mapped to a time-circle, a peak is formed if there are symmet-
rical axes in the clockwise and counterclockwise directions,
otherwise a cliff is formed. When we consider both peaks and
cliffs for the entire time series, we can see the global increase-
decrease tendency on the entropy profile.

The tendency shown in the entropy profile of an imagewith
spatially non-uniform signal density visualizes the density
difference as a barrier (Fig. 17). Therefore, a barrier can be a
useful indicator for determining a specific pattern boundary.
However, as shown in Fig. 17, when we manually determined
the inter-barrier interval, we missed a small part of the check
pattern. Accurately detecting a specific pattern in an image is
one of the most important issues in engineering and medical
fields. Therefore, our method is novel and has advantages, but
in order to increase its practicality, the problem of determin-
ing the interval between barriers needs to be explored more
specifically. Through our preliminary study, it seemed that
the distribution of signals ‘‘1’’ and ‘‘0’’ at the boundary of
the pattern could affect the interval determination. Exploring
this problem would be very interesting and worthwhile.

In Fig. 18, we successfully detected the check pattern
through two entropy profile calculations. The two calcula-
tions were possible because the check pattern had a rectan-
gular boundary. Furthermore, there is a need for a solution
to detect a desired specific area, which is not a rectangle
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but an area surrounded by a closed curve. Figure 19 shows
a noise image containing a triangular pattern. We performed
two entropy profile calculations to detect a rectangular region
(indicated by red dots) containing a triangular pattern. As a
solution to this problem, we propose to divide the whole
image into multiple images and detect the area of the tri-
angular part in each image. Then, the triangular region can
be extracted by summing all the partially detected regions.
However, too many divisions may result in increased com-
putational cost and reduced resolution of the signal density.
Therefore, it is necessary to study division optimization.

This study is not only meaningful in that it provides an
understanding of the entropy profile characteristics based on
the concept of peaks and cliffs, in addition, it suggests a new
method for detecting specific patterns in images. We believe
that the BLS entropy profile has the potential to be applied
to various problems in the field of pattern recognition by
overcoming the above-mentioned problems.

APPENDIX A
Let P0, P1,. . . , Pn be the nodes on the time-circle corre-
sponding to the ‘‘1s’’ in the time series in which the signal
‘‘1s’’ is distributed consecutively. Let li for i=1,. . . ,n be the
distance between P0 and Pi. Let L = l2 + l3 + . . . ln and
L ′=l1 + l3 + . . . ln (See Fig. 19).

We consider the situation in which the first signal P0 is
removed. The entropy value of P1 can be written as:

S1 = −
[
l2
L
log

(
l2
L

)
+
l3
L
log

(
l3
L

)
+ . . .

ln
L
log

(
ln
L

)]
× /log(n− 1) (4)

Similarly, the entropy value at the P2 is as follows:

S2= −
[
l1
L ′
log

(
l1
L ′

)
+
l3
L ′
log

(
l3
L ′

)
+ . . .

ln
L ′
log

(
ln
L ′

)]
× /log(n− 1) (5)

Therefore, the difference between S1 and S2 can be written
as follows:

(S1 − S2)log(n− 1)

= −

[
l2
L
log

(
l2
L

)
−
l1
L ′
log

(
l1
L ′

)]
−

[
l3
L
log

(
l3
L

)
−
l3
L ′
log

(
l3
L ′

)]
−

[
l4
L
log

(
l4
L

)
−
l4
L ′
log

(
l4
L ′

)]
− · · · −

[
ln
L
log

(
ln
L

)
−
ln
L ′
log

(
ln
L ′

)]
(6)

If n is sufficiently large, it can be said that L≈L ′. Therefore,
all terms after the second term can be all 0. Also, L2 is always
greater than L1, l1 < l2. Therefore, if the following inequality
is satisfied, the peak must always point upward.

l2
L
log

(
l2
L

)
<
l1
L
log

(
l1
L

)
(7)

FIGURE 20. Illustration of peak pointing upwards. p1, p2. . . , pn denote
nodes located on the time-circle with uniform intervals, and the distance
between pi and pi+1 is li+1. In addition, p0 is the removed node. x
denotes l1 and l2, and y represents the function of (x/L)log(x/L).

The above inequality condition is satisfied as long as the
function below increases.

y =
x
L
log

( x
L

)
(L> 0), (8)

The function for x is shown in Fig. 20. The range over
which the function always increases must be greater than the
point (x∗) where x is zero in the first derivative.

y
′

=
1
L
log

( x
L

)
+

1
L
= 0 (9)

x∗ =
L
e

Finally, we get the following condition

l2 <
L
e

(10)

Since L = l2 + . . . 2r + . . .+ln−2+ln−1+ln, 2r is greater
than n2, and Ln−1 is the same as L2. Therefore, el2< 3l2 < L
always holds. As a result, we proved that the peak generated
when one signal is removed from a time series of evenly
distributed signal ‘‘1s’’ always points upward.

APPENDIX B
Pseudo-code for an algorithm to find a specific ‘‘1’’ signal
density region in a binary image

DATA: Binary image consisting of ‘‘0’’ and ‘‘1’’.
RESULT: A rectangular area for a specific density distri-

bution of a ‘‘1’’ signal in a binary image.
1: U (i, j)← binary image
2: Concatenate each row (column) in U (i, j) to form a

binary time series Qx (Qy).
3: Create time circles for Qx and Qy respectively (Fig. 2)
4: Generation of entropy profiles, Sx and Sy from two time

circles (Fig. 2)
5: Calculate Sxy = Sx× Sy (Eq. (3))
6: Select a specific section∗ in Sxy
7: Extract the image area �(i, j) corresponding to the

section from step 6 (Fig. 17)
8: Set U (i, j /∈ �) = 0 and then obtain U ′ = rotate(U ,

90 degrees).
9: Repeat step 1 ∼ step 8 for U ′.
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10: Output the intersection of the two domains � and �′
obtained in step 7 and step 9.
∗ Specific section: (Example) When finding the region

corresponding to the maximum signal density in the image,
it is better to select a section close to 0 in Sxy, whereas in the
case of the minimum signal density, select a section in which
Sxy is close to 1.
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