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ABSTRACT Orthogonal sequences can be assigned to a regular tessellation of hexagonal cells, typical for
synchronised code-division multiple-access (S-CDMA) systems. The sequences within any cell should both
be orthogonal in the adjacent cells and require a sufficient number of users in each cell. However, for binary
sequences, the capacity of communication system is limited. So, a new family of non-binary orthogonal
sequences is constructed, which has more sequences per cell than binary sequences in the network. Next,
an efficient assignment of these orthogonal sequence sets to a regular tessellation of hexagonal cells is
given, and also the sequence sets have large re-use distance. Finally, based on above the construction,
we construct a family of orthogonal sequences with zero correlation zone (ZCZ) property which can reduce
the interference among users in a multi-path environment. The constructed ZCZ sequences can be applied
to the quasi-synchronous CDMA (QS-CMDA) spread spectrum systems. And the assignment of sequences
has the same re-use distance.

INDEX TERMS Orthogonal sequences, zero correlation zone, Boolean functions, semi-bent functions.

I. INTRODUCTION
Orthogonal sequences are used in many applications, such
as synchronous code division multiple access (S-CDMA)
spread spectrum systems, detection signals in satellite com-
munications and mobile devices in cloud computing [1], [2].
To prevent interference from the neighboring cells, the regu-
lar tessellation of hexagonal cells be used as a model [3], [4],
[5]. The sequences within any cell should both be orthogonal
in the adjacent cells and require a sufficient number of users
in each cell [6]. Employing correlation-constrained sets of
Hadamard matrices to construct spreading codes in these sys-
tems are a usual way such that the maximal cross-correlation
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of sequences lies in the range [2m/2, 2b(m+2)/2c] [7], [8].
Akansu et al. presented a class ofWalsh-like nonlinear binary
orthogonal sequence sets which can be used in asynchronous
direct sequence CDMA communications system [9]. How-
ever, the number of binary sequences in each cell is 2m−3 or
2m−2 and it is difficult to increase in S-CDMA systems. This
raises a challenge to how to increase the capacity of each cell
in S-CDMA systems. In order to increase the number of users
in each cell, we propose a class of sequences over GF(p)
such that each cell has more sequences. To more sufficient
using the sequence sets, the re-use distance was proposed.
The so-called re-use distance D reflects the ability to use the
same codewords in non-adjacent cells that are far away from
the cell where these codewords have originally been placed.
At the same time, to prevent interference from the users in
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neighbouring cells, a standard requirement for the assignment
of orthogonal sequences in the network is that the sequences
within any cell should be orthogonal to the sequences in the
neighbouring cells.

In S-CDMA systems, orthogonal sequences, such as
well-known Walsh sequences, can guarantee that the cor-
relation of any pairwise sequence is zero without shifting.
However, whenever there is a relative shift between the
sequences which will loss their orthogonality. To reduce
the interference among users in a multipath environment or
in a qusai-synchronised CDMA (QS-CDMA) system, Fan
et al. proposed the concept of so-called zero correlation zone
(ZCZ) property [10]. Tang and Fan obtained the lower bound
of the sequence set of ZCZ [11]. Tang and Mow presented
a systematic construction of new families of sequences with
zero correlation zone [12]. In these systems it is of importance
that two sequences have zero cross-correlation within a cer-
tain range time-shifts. Such the the time-shifts are called ZCZ
width of the sequences. Tang and Wai proposed a new sys-
tematic construction of zero correlation zone sequences based
on interleaved perfect sequences [13]. Tang et al. obtained
a class of ZCZ sequences based on complete complemen-
tary codes [14]. Hu and Gong provided a construction ZCZ
sequence sets based on interleaving technique [15]. Li and Xu
presented a construction of ZCZ sequence sets over Gaussian
integers [16], [17]. Zhou et al. proposed a class of optimal
ZCZ sequence sets based on interleaving technique and per-
fect nonlinear functions [18], [19]. Gu et al. constructed a
new family of polyphase sequences with low correlation [20].
Wang et al. obtained a class ofM-sequences, which have good
auto-correlation properties [21], [22].

The main contribution this paper is an efficient method
to construct a large set of p-phase orthogonal sequences,
using (vectorial) semi-bent functions such that there are pm−1

sequences (users) in each cell. The problem of allocating
these cells of orthogonal sequences to a regular tessellation of
hexagonal cells is also addressed, thus allowing an efficient
practical implementation of our method. Based on the results
above, a family of p-phase ZCZ sequence sets is constructed
based on p-phase complementary triads and p-phase com-
plete complementary codes. We also compare the results with
those of previous results. Our constructed ZCZ sequence sets
have new parameters. And the assignment of sequences has
the same re-use distance.

This article is organized as follows. In Section II, the useful
notations are given. In Section III, we construct a new class
of p-ary orthogonal sequences, and a family of orthogonal
sequences with ZCZ is presented in Section IV. Finally, the
conclusion is presented in Section V.

II. PRELIMINARIES
For a prime p, let Fpm and Fmp denote the finite field GF(pm)
and the corresponding m-dimensional vector space, respec-
tively. Let Bm denote the set of all functions in m-variables.
The set of all linear functions in m variables is defined by
L = {λ · x | λ ∈ Fmp }, where λ = (λ1, · · · , λm) ∈ Fmp , x =
(x1, · · · , xm) ∈ Fmp .

The Fourier transform of function f at λ is denoted by
Wf (λ) and it is computed as

Wf (λ) =
∑
x∈Fmp

ωf (x)−λ·x, (1)

where ω = e2π i/p.
The function f is called a bent function if |Wf (λ)| = pm/2

for any λ ∈ Fmp . If |Wf (λ)| ∈ {0, pb(m+2)/2c} for all λ ∈ Fmp ,
then f is called semi-bent function.

Let f1, f2, · · · , fp be p functions with length pm. The con-
catenation of f1, f2, · · · , fp, denoted by f = f1‖f2‖ · · · ‖fp, is a
function with length pm+1. The true table of the function f is
divided into p equipartitions such that the first part of function
f corresponds to f1, the second part to f2 and the last part to
fp, the rest can be done in the same manner.
The sequence of a function f ∈ Bm is defined as

f =
(
ωf (0,··· ,0,0), ωf (0,··· ,0,1), · · · , ωf (p−1,··· ,p−1,p−1)

)
, (2)

where the period of sequence is pm.
Definition 1: Let f1, f2 be the sequences of functions f1 and

f2 over the vector space Fmp , sequences f1 and f2 are called
orthogonal, denoted by f1⊥f2, if

f1 · f ∗2 =
∑
x∈Fmp

ωf1(x)−f2(x) = 0, (3)

where f ∗ denotes the conjugate of f .
Noticing that

Wf1−f2 (0m) = 0⇔
∑
x∈Fmp

ωf1(x)−f2(x) = 0,

so we have

Wf1−f2 (0m) = 0⇔ f1 · f ∗2 = 0, (4)

then the following important characterization of orthogonal
sequences is obtained.
Lemma 1: Let f1, f2 be the functions over the vector space

Fmp , then f1⊥f2 if and only if Wf1−f2 (0m) = 0.
According to the Lemma 1, it is easily deducing that the set
of linear functions Lm over the vector space Fmp is a set of
orthogonal sequences.
Definition 2: Let a = (a0, a1, · · · , aN−1) and b =

(b0, b1, · · · , bN−1) be two complex sequences, the aperiodic
correlation function of a and b at shift τ is given as follows:

Ra,b(τ ) =


N−1−τ∑
i=0

aib∗i+τ , 0 ≤ τ ≤ N − 1,

0, τ ≥ N .

(5)

Ra,b(τ ) is called aperiodic cross-correlation function (ACCF)
if a 6= b; otherwise, it is called the aperiodic auto-correlation
function (AACF). For simplicity, the AACF of awill be writ-
ten as Ra(τ ).
Definition 3: Let A = {A1,A2, · · · ,AK } be a sequences

set, let the length of each sequence of A is L,

Ai = (ai0, a
i
1, · · · , a

i
L−1), 1 ≤ i ≤ K .
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A is said to be a zero correlation zone (ZCZ) sequence
set with ZCZ width Z if and only if the set A satisfies the
following two conditions: i)
1) RAi (τ ) = 0 holds for any 1 ≤ i ≤ K and 1 ≤ |τ | ≤ Z ;
2) RAi,Aj (τ ) = 0 holds for any i 6= j and 0 ≤ |τ | ≤ Z .

III. CONSTRUCTION OF A LARGE FAMILY OF p-ARY
ORTHOGONAL SEQUENCES
In this section we obtain the orthogonal sequences such that
the number of users equals pm−1 per cell based on linear
functions.
Construction 1: Let m, s and t be three positive integers

with m = s+ t , where s = b(m−1)/2c and t = b(m+2)/2c.
Let p be a prime with p ≥ 3. Let γ be a primitive element
of Fpt−1 , and {1, γ, · · · , γ

t−2
} be a polynomial basis of Fpt−1

over Fp. Define the isomorphism π : Fpt−1 7→ Ft−1p by

π (b1 + b2γ + · · · + bt−1γ t−2) = (b1, b2, · · · , bt−1).

Let φc : Fsp→ Ft−1p be a mapping defined by

φc(y) =

{
0t−1, y = 0s

π (γ [y]+c), y ∈ Fsp\0s
(6)

where [y] denotes the integer representation of y, and
c ∈ {1, 2, · · · , pt−1} is an integer. For y ∈ Fsp, x ∈ Ftp, the
semi-bent functions can be obtained as follows,

fc(y, x)= φc(y) · x = 0t · x‖(π (γ c), 0) · x‖

× (π (γ c+1), 0) · x‖ · · · ‖(π (γ c+p
s
−2), 0) · x. (7)

Let (β, α1, α) ∈ Fsp×Ft−1p ×Fp, for any fixed α ∈ Fp, define

Lα = {l = (β, α1, α) · (y, x) | β ∈ Fsp, α1 ∈ Ft−1p }. (8)

We denote H0 = L0, H1 = L1, · · · ,Hp−1 = Lp−1. For
any c ∈ {1, 2, · · · , pt−1}, pt disjoint sequence sets are con-
structed as follows:

Sc,i = {fc + l | l ∈ Hi}, for i ∈ {0, 1, · · · , p− 1}. (9)

According to (7), note that the fc(y, x) is the concatenation
of ps t-variable functions, the length of the function fc(y, x)
is ps · pt = pm. These sequences can be easily assigned to
hexagonal cells in such a way that the sequences assigned
to adjacent cells is orthogonal, while the correlation between
sequences assigned to non-adjacent cells is small.
Theorem 1: Let the sequence set Sc,i be defined by (9) as

in Construction 1. Then, we always have
1) For c ∈ {1, 2, · · · , pt−1}, #Sc,i = pm−1, where #S

denotes the number of a sequence set S;
2) All the sequences in Sc,i are semi-bent sequences;
3) Let c, c′ ∈ Fpt−1 , i, i

′
∈ {0, 1, · · · , p − 1}. If i 6= i′,

Sc,i⊥Sc′,i′ holds.
Proof:

1) Note that #Lα = pm−1, which implies that 1) hold.
2) For the sequence set Sc,i, without loss of generality,

we only consider the case of i = 0. Then the sequence set
Sc,0 = {fc+ l | l ∈ H0}, where fc is the sequence of a function

fc, and l is the sequence of a linear function l. For a nonzero
c ∈ {1, 2, · · · , ps} and for y ∈ Fsp, x ∈ Ftp,

fc(y, x) = 0t · x‖(π (γ c), 0) · x‖(π (γ c+1), 0) · x‖

· · · ‖(π (γ c+p
s
−2), 0) · x.

According to (7), note that the fc(y, x) is the concatenation
of ps t-variable linear functions, the length of the function
fc(y, x) is ps · pt = pm.
For any (β, α1, α) ∈ Fsp × Ft−1p × Fp, we have

|Wfc (β, α1, α)| = |
∑

(y,x)∈Fmp
ωfc(y,x)−β·y−(α1,α)·x | (10)

From (10), β · y + (α1, α) · x is an m-variable linear func-
tion, where (β, α1, α) ∈ Fmp . An m-variable linear function
β · y + (α1, α) · x can be regarded as the concatenation of
a t-variable linear function (α1, α) · x and the corresponding
affine functions (α1, α) · x + c, where c ∈ Fp.

In order to get the magnitude of the fourier transform
of the function fc(y, x), we just need to know if the linear
function (α1, α) · x appears in the function fc(y, x). When
α1 = π (γ c+k ), and α = 0, where k ∈ {0, 1, · · · , ps − 2},
|Wfc (β, α1, α)| = pt holds; otherwise, |Wfc (β, α1, α)| = 0.
Then all the sequences in Sc,i are semi-bent sequences.
3) Let fc + l ∈ Sc,i and fc′ + l ′ ∈ Sc′,i′ , where l = β · y +

(α1, α) · x ∈ Ti and l ′ = β ′ · y+ (α′1, α
′) · x ∈ Ti′ . To analyze

the orthogonality between fc + l and fc′ + l ′, we consider

h = (fc + l)− (fc′ + l
′) = fc−c′ + (l − l ′). (11)

From the analysis of the 2), when i 6= i′, we can obtain α 6=
α′, thenWh(0m) = 0. From Lemma 1, we have Sc,i⊥Sc′,i′ . �
Remark 1: The assignment of the sequences is consistent

with the above assignment such that the correlation between
sequences assigned to adjacent cells is zero.
Example 1: Let m = 4, p = 3 and γ ∈ F32 be a root of

the primitive polynomial z2+ z+ 2. Define the isomorphism
π : F32 7→ F2

3 by

π (b1 + b2γ ) = (b1, b2).

For y ∈ F1
3, x ∈ F3

3, then the function fc(y, x) can be denoted
as follows,

fc(y, x) = 03 · x‖(π (γ c), 0) · x‖(π (γ c+1), 0) · x,

where c ∈ {1, 2, · · · , 9}. We can get 9 semi-bent functions.
For simplicity, we only list two functions f1 and f2 as follows,

f1(y, x) = 0t · x||x2||x3,

f2(y, x) = 0t · x||x3||2x3 + x2,

where y ∈ F3, x = (x3, x2, x1) ∈ F3
3.

For c ∈ {1, 2, · · · , 9} and i ∈ F3, a set of orthogonal
sequences can be defined as follows,

Sc,i = {fc + l | l ∈ Hi}, (12)

where H0 = {α1x3 + α2x2 | α1, α2 ∈ F2
3}, H1 = {α1x3 +

α2x2 + x1 | α1, α2 ∈ F2
3}, and H2 = {α1x3 + α2x2 +

2x2 | α1, α2 ∈ F2
3}.
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From (11), then we have

Sc,i⊥Sc′,i′ ⇔ fc−c′⊥Hi−i′ . (13)

The orthogonality between fc andHi is shown in the following
Table 1. Then we construct 27 sets of orthogonal sequences
{Sc,i | c ∈ {1, 2, · · · , 9}, i ∈ F3}. All the 27 sets of orthogonal
sequences can be used to get an assignment with the re-use
distance D =

√
27 as depicted in Fig. 1.

TABLE 1. Orthogonality between fc and Hi .

Construction 2: Let m, k ≥ 2 be two positive integers
with m = 2k + 2. Let γ be a primitive element of Fpk ,
and {1, γ, · · · , γ k−1} be a polynomial basis of Fpk over Fp.
Define the isomorphism π : Fpk 7→ Fkp by

π (b1 + b2γ + · · · + bkγ k−1) = (b1, b2, · · · , bk ).

For i = {1, . . . , pk}, let φi : Fkp → Fkp be a bijective mapping
defined by

φi(y) =

{
0k , y = 0k
π (γ [y]+i), y ∈ Fkp\0k

(14)

where [y] denotes the integer representation of y. Let y ∈ Fkp,
x ∈ Fk+2p . For i = 1, . . . , k , let

fi(y, x) = (φi(y), 00) · x. (15)

For any fixed α ∈ F2
p, linear function can be defined as

follows,

Lα = {lβ = (β, α) · (y, x) | β ∈ Fm−2p }. (16)

Let H0 = L00 ∪ L01 ∪ · · · ∪ L0(p−1), H1 = L10 ∪ L11 ∪ · · · ∪
L1(p−1), · · · ,Hp−1 = L(p−1)0 ∪ L(p−1)1 ∪ · · · ∪ L(p−1)(p−1).
We construct disjoint sequence sets as follows:

Si,j = {fi + l | l ∈ Hj}, for i ∈ Fpk , j ∈ {0, 1, · · · , p− 1}.

(17)

Theorem 2: Let the sequence set Sc,i be defined by (17) as
in Construction 2. Then, we always have

1) For i ∈ Fkp, #Si,j = pm−1, where j ∈ {0, 1, · · · , p− 1};
2) All the sequences in Si,j are semi-bent sequences,

where c is nonzero;
3) Let i, i′ ∈ Fpt−1 , j, j

′
∈ {0, 1, · · · , p − 1}. Si,j⊥Si′,j′ if

and only if j 6= j′.
Proof: 1) Note that #Lα = pm−2, and #Si,j = pm−2 ·p =

pm−1, which implies that 1) holds.

2) For the sequence set Si,j, without loss of generality, con-
sidering the case of i = j = 0, we have S0,0 = {f0+l | l ∈ H0}.

f0(y, x) = (φ0(y), 00) · x.

For any (β, α1, α2) ∈ Fkp × Fkp × F2
p and (y, x1, x2) ∈ Fkp ×

Fkp × F2
p, we have

Wf0 (β, α1, α2) =
∑

(y,x1,x2)∈Fmp

ωfc(y,x)−β·y−(α1,α2)·x

=

∑
y∈Fkp

ωβ·y ·
∑
x1∈Fkp

ω(φ0(y)−α1)x1 ·

×

∑
x2∈F2p

ωα2x2 . (18)

Noticing that

|

∑
x2∈F2p

ωα2x2 | =

{
p2, α2 = 0,
0, otherwise.

(19)

Note that π is bijective and there exists a unique y ∈ Fkp such
that φ0(y) = α1, we have

∑
x1∈Fkp

ω(φ0(y)−α1)x1 = pk . For

α2 = 0, then |Wf0 (β, α1, α2)| = pk+2 holds, which implies
that 2) holds.

3) Let fi + l ∈ Si,j and fi′ + l ′ ∈ Si′,j′ , where the Boolean
function corresponding to the sequence l is l = β · y +
(α1, α2) · x ∈ Hj and the Boolean function corresponding
to the sequence l ′ is l ′ = β ′ ·y+ (α′1, α

′

2) ·x ∈ Hj′ . To analyze
the orthogonality between fi + l and fi′ + l ′, we consider

h = (fi + l)− (fi′ + l
′) = fi−i′ + (l − l ′). (20)

When j 6= j′, then Wh(0m) = 0 holds. From Lemma 1,
we have Si,j⊥Si′,j′ . �

The orthogonal sequences can be applied to the S-CDMA
systems successfully. But orthogonal sequences can not be
applied to the QS-CDMA systems directly. This problem is
solved in the next section by constructing large sets of orthog-
onal sequences with ZCZ property.

IV. A FAMILY OF ORTHOGONAL SEQUENCES WITH ZCZ
Based on the orthogonal sequences obtained in Section III,
we next construct a family of sequences satisfying ZCZ prop-
erties, which implies that the sequences can be applied to
QS-CDMA systems. Furthermore, the re-use distanceD is the
same with the orthogonal sequences obtained in Section III.
Definition 4: Let b = (b0, b1, · · · , bN−1) be a sequence

with length N , and A = (A0,A1, · · · ,AN−1) be a row vector
consisting of N sequences Ai, 0 ≤ i < N . We define

b⊗A = (b0 · A0, b1 · A1, · · · , bN−1 · AN−1)

is the Kronecker product operation.
Definition 5 ([24], [25]): A length N sequence A =

(a0, a1, · · · , aN−1) is a 3-phase sequence if for 0 ≤ i <
N , ai ∈ {1, ω, ω2

}, where ω = e2π i/3. The set of three
3-phase sequence triad {A,B,C} is a Golay complementary
triad (GCT) ifRA(τ )+RB(τ )+RC (τ ) = 0, for 1 ≤ τ ≤ N−1.
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FIGURE 1. Assignment of orthogonal sets to a lattice of regular hexagonal cells.

Table 2 gives the total number of 3-phase GCTs and total
number of sequences available till date for various lengths.
For example, for N = 5, A = (1 1 1 ω 1), B = (1 ω ω2 ω2 ω)
and C = (1 1 ω2 ω ω2), we have RA(τ )+RB(τ )+RC (τ ) = 0,
for 1 ≤ τ ≤ 4; For N = 6, A = (1 ω2 1 1 ω2 1),
B = (1 ω ω2 ω2 ω2 ω) and C = (1 ω ω ω 1 ω2), we have
RA(τ )+ RB(τ )+ RC (τ ) = 0, for 1 ≤ τ ≤ 5.

TABLE 2. Existing 3-phase GCTs.

Suppose that both {A1,B1,C1} and {A2,B2,C2} are
3-phase GCTs with length N . 3-phase sequence triad
{A2,B2,C2} is called the mate of GCT {A1,B1,C1}, if for
all 0 ≤ τ ≤ N − 1, RA1,A2 (τ )+ RB1,B2 (τ )+ RC1,C2 (τ ) = 0.

For example, for {A1,B1,C1} and {A2,B2,C2} are 3-phase
length N = 7 GCTs, we have

A1 = (1 1 ω 1 ω2 ω2 1)

B1 = (1 1 1 ω2 1 ω ω)

C1 = (1 1 ω2 1 ω 1 ω2)

A2 = (1 ω ω ω 1 ω ω2)

B2 = (1 ω 1 ω2 ω 1 1)

C2 = (1 ω ω2 ω2 ω2 ω2 ω)

then we can obtain RA1,A2 (τ ) + RB1,B2 (τ ) + RC1,C2 (τ ) = 0,
for 0 ≤ τ ≤ 6.
Construction 3: Let Sc,α be the sequence set generated by

the section III, where p = 3. Let {A1,B1,C1} be a GCT with
length N defined as in Definition 5. The sequence set A =
(A1,A1, · · · ,A1) is pm-tuples, B = (B1,B1, · · · ,B1), C =
(C1,C1, · · · ,C1). We construct 3k+1 disjoint sequence sets
of (3m+1N + 2N − 2)-length with ZCZ width N as follows:

Tc,α = {T ic,α | 0 ≤ i ≤ 3m−1 − 1}

= {(S ic,α ⊗ A, 0N−1, S
i
c,α ⊗ B, 0N−1, S

i
c,α ⊗ C)|

× 0 ≤ i ≤ 3m−1 − 1}, (21)

Theorem 3: Let p = 3, for c ∈ {1, 2 · · · , 3k}, α ∈ F3, let
the sequence set Tc,α be defined by (21) as in Construction 3.
Then Tc,α forms a (3m+1N+2N−2)-length ZCZ sequence set
with Zcz = N . Let T ic,α , T

j
c′,α′ be two sequences taken from the

sequence sets Tc,α and Tc′,α′ , respectively. Thenwe can obtain

RT ic,α,T
j
c′,α′

(τ ) = 0, if 0 < τ < N ,

RT ic,α,T
j
c′,α′

(0) = 0, if c = c′, α = α′ and i 6= j.

When Tc,α and Tc′,α′ are in two adjacent cells, we have

RT ic,α,T
j
c′,α′

(0) = 0.

When Tc,α and Tc′,α′ are in two non-adjacent cells, we have

|RT ic,α,T
j
c′,α′

(0)| ≤ 3b(m+2)/2c+1N .

Proof: Let S ic,α = (s0, s1, · · · , s3m−1) and S jc′,α′ =
(s′0, s

′

1, · · · , s
′

3m−1) be the sequences defined as Construc-
tion 3. For τ = 0, the correlation of T ic,α , and T

j
c′,α′ is denoted

as follows,

RT ic,α,T
j
c′,α′

(0) = 3N
3m−1∑
i=0

sis′i
∗
. (22)

Note that si and s′i are orthogonal,
∑3m−1

i=0 sis′i
∗
= 0 holds,

where l ∈ Lα , l ′ ∈ Lα′ .
For τ = 0, according to (22), we have

RT ic,α,T
j
c′,α′

(0) = 0

if Tc,α and Tc′,α′ are in two adjacent cells.
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If Tc,α and Tc′,α′ are in two non-adjacent cells, then

|RT ic,α,T
j
c′,α′

(0)| ≤ 3b(m+2)/2c+1N .

When τ 6= 0, we consider the following case, T ic,α =
(S ic,α ⊗ A, 0N−1, S ic,α ⊗ B, 0N−1, S ic,α ⊗ C) and T jc′,α′ =

(S jc′,α′ ⊗ A, 0N−1, S
j
c′,α′ ⊗ B, 0N−1, S

j
c′,α′ ⊗ C).

Note that

RT ic,α,T
j
c′,α′

(τ )

=

3m−1∑
i=0

sis′i
∗RA1 (τ )+

3m−2∑
i=0

si+1s′i+1
∗RA1 (N − τ )

+

3m−1∑
i=0

sis′i
∗RB1 (τ )+

3m−2∑
i=0

si+1s′i+1
∗RB1 (N − τ )

+

3m−1∑
i=0

sis′i
∗RC1 (τ )+

3m−2∑
i=0

si+1s′i+1
∗RC1 (N − τ ) (23)

Since the set {A1,B1,C1} is a three 3-phase Golay triad, for
0 < τ < N , and 0 < N−τ < N , RA1 (τ )+RB1 (τ )+RC1 (τ ) =
0 holds. Then for 0 < τ < N , we can deduce

RT ic,α,T
j
c′,α′

(τ ) = 0.

We can determine that Tc,α is a ZCZ sequence set with
Zcz = N . �
Remark 2: The pk+1 sets Tc,α , c ∈ {1, 2, · · · , pk}, α ∈

Fp, can be arranged as Fig. 1 in a similar way, where we just
replace Sc,α with Tc,α . At the same time, the orthogonality is
updated to ZCZ property accordingly. Note that the number
of sequences is pm−1 in each Tc,α .
Example 2: Let N = 6, the set of three 3-phase sequences
{A1,B1,C1} is a Golay sequence triad defined in Definition 5,
where A1 = (1 ω2 1 1 ω2 1), B1 = (1 ω ω2 ω2 ω2 ω) and
C1 = (1ω ω ω 1ω2). We have RA1 (τ )+RB1 (τ )+RC1 (τ ) = 0,
for 1 ≤ τ ≤ 5.
Let m = 4, p = 3 and γ ∈ F32 be a root of the primitive

polynomial z2 + z + 2. We can obtain 27 sets of orthogonal
sequences {Sc,α | c ∈ {1, 2, · · · , 9}, α ∈ F3} as in Example 1.
Then a ZCZ sequence set Tc,α is obtained with length N =
35 · 6+ 10 = 1468 as follows,

Tc,α = {T ic,α | 0 ≤ i ≤ 33 − 1}

= {(S ic,α ⊗ A, 0N−1, S
i
c,α ⊗ B, 0N−1, S

i
c,α ⊗ C)|

× 0 ≤ i ≤ 33 − 1}. (24)

The constructed sequence set Tcα has ZCZ width N , and also
can be arranged as Fig. 1 in a similar way with the re-use
distance D =

√
27, where we just replace Sc,α with Tc,α .

Corollary 1: Let Sc,α be the sequence set generated by
the section III, where p = 3. Let {A1,B1,C1} be a GCT
with length N , and {A2,B2,C2} be a mate of {A1,B1,C1}.
We define a new sequence triads as follows:

A = (A1,A2,A1,A2, · · · ,A1,A2)

B = (B1,B2,B1,B2, · · · ,B1,B2)

C = (C1,C2,C1,C2, · · · ,C1,C2).

TABLE 3. Parameters of ZCZ sequences.

We construct 3k+1 disjoint sequence sets of (3m+1N + 4N −
2)-length with ZCZ width 2N as follows:

Tc,α = {T ic,α | 0 ≤ i ≤ 3m−1 − 1}

= {(S ic,α ⊗ A, 02N−1, S
i
c,α ⊗ B, 02N−1, S

i
c,α ⊗ C)|

× 0 ≤ i ≤ 3m−1 − 1}. (25)

Corollary 1 has a similar proof to Theorem 3 and is therefore
omitted here.
Remark 3: Corollary 1 obtain a class of ZCZ sequence sets

with Zcz = 2N , which has larger ZCZ width compared with
Theorem 3.
Definition 6: ( [26], [27]) Let the sequence set A =

{A0,A1, · · · ,AM−1}, and Ai = {ai,0, ai,1, · · · , ai,M−1},
where ai,l is a sequence with length N . We call A a
(M ,M ,N )-complete complementary code (CCC), if

RAi,Aj (τ ) =
M−1∑
l=0

Rai,l ,aj,l (τ )

=

{
0, 0 < τ ≤ N − 1, i = j,
0, 0 ≤ τ ≤ N − 1, i 6= j.

Corollary 2: Let Sc,α be the sequence set generated by the
section III. Let A = {A0,A1, · · · ,Ap−1} be a (p, p, p)-CCC,
and Aj = {aj,0, aj,1, · · · , aj,p−1}, where aj,l is a sequence
with length p, and 0 ≤ j, l ≤ p − 1. Defining Aj,l =
(aj,l, aj,l, · · · , aj,l) with pm-tuples, we construct pk+2 disjoint
sequence sets of (pm+2+(p−1)2)-lengthwith ZCZ as follows:

Tc,α = {T ic,α,j | 0 ≤ i ≤ p
m−1
− 1, 0 ≤ j ≤ p− 1}

= {(S ic,α ⊗ Aj,0, 0p−1, S ic,α ⊗ Aj,1, 0p−1, · · · ,

× S ic,α⊗Aj,p−1) | 0≤ i ≤ p
m−1
− 1, 0 ≤ j ≤ p− 1}.

In each ZCZ sequence set, we have pm constituent sequence.
Corollary 2 has a similar proof to Theorem 3 and is therefore
omitted here.
Remark 4: Corollary 2 obtains a class of ZCZ sequence

sets with Zcz = N , and the number of constituent sequences
is pm in each sequence set, which has a larger number of
sequences compared with Theorem 3.
Remark 5: In Table 3, we compare the main parameters of

ZCZ sequence. Comparison with the literature [12] and [23].
A class of p-phase ZCZ sequence sets is constructed, which
the length of sequence is 3m+1 ·N+2N−2 in Theorem 3. This
is the first time we obtain a ZCZ sequence with new length.
In Corollary 1, a class of ZCZ sequence sets is presented with
ZCZwidth 2N of 3m+1·N+4N−2 length. The ZCZ sequence
sets in Corollary 1 have larger ZCZ width than sequence sets
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in Theorem 3. In Corollary 2, a family of ZCZ sequence sets
is proposed based on p-phase CCC, which has pm+2 + (p −
1)2 length.
In regular tessellation of hexagonal cells, the constructed

ZCZ sequence sets have the same reuse distance as orthogo-
nal sequence sets constructed in Theorem 1.

V. CONCLUSION
In this article, we construct a class of orthogonal sequences
over GF(p), and assign them to a tessellation of hexago-
nal cells. The method increases the number of sequences
to be pm−1 per cell in the network. Compared with binary
sequences, non-binary sequences have more sequences
in each sequence set. Next we extended the orthogonal
sequences to ZCZ sequences which can be applied to
QS-CDMA system, and analyzed the properties of the new
sequence sets. For the sequence set in each cell, the ZCZ
sequence sets not only have the same re-use distance as the
orthogonal sequences, but also have large zero correlation
zone which can be applied to QS-CDMA system.
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