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ABSTRACT Time-aware spatial keyword queries in traffic networks (TSKQT ) aim to retrieve top-k result
objects based on the ranking score considering spatial proximity, textual relevance, and temporal similarity
simultaneously. However, due to inappropriate query parameter settings, the query result set may contain one
or more objects not expected by the user. To improve the usability of query results, we propose and study
the why question on time-aware spatial keyword queries in the traffic network (WhyTSKQT ) for the first
time. Specifically, a hybrid index structure, TTG-tree, is proposed to effectively organize the traffic network
information and the positional, textual, and temporal information of objects. Moreover, several pruning
strategies are presented to filter out massive objects irrelevant to the query. By analyzing the keywords
contained by original result objects and studying the relationship between the time intervals of why objects
and the query time interval, we can reasonably construct the candidate query keyword set and query time
set to form the candidate refined queries, so as to minimize the refined queries to be evaluated. In addition,
several optimization techniques are proposed to further speed up the acquisition of the lowest-cost refined
query. Finally, extensive experiments are carried out on two traffic networks to verify the efficiency of the
proposed method.

INDEX TERMS Time-aware spatial keyword query, why question, query refinement, traffic network.

I. INTRODUCTION
With the increasing popularity of location-based services and
continuous improvement of location-related technologies,
spatial keyword query, as the core technology of location-
based services, has become a research hotspot. Due to the
continuous progress of information collection technology, the
location-textual data in web space is becoming increasingly
rich and diverse. For example, an object in web space contains
not only location-textual information, but also temporal infor-
mation, direction and other numerical attribute information,
which undoubtedly makes spatial keyword queries more per-
sonalized. The time-aware spatial keyword query is one of the
representatives of personalized queries. It considers not only
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the location and textual information of queries and objects but
also their temporal information.

In practical applications, the query user and the object
are located on the road of the traffic network, and the dis-
tance between them depends on the traffic network struc-
ture, that is, the length of the shortest path between them.
Therefore, we focus on the Time-aware Spatial Keyword
Query in Traffic networks (TSKQT ), which aims to retrieve
top-k objects based on a ranking function taking into account
spatial proximity, textual relevance, and temporal similarity
simultaneously.

Figure 1 illustrates an example of TSKQT , and 12 objects
are located on the roads of the traffic network. The textual
and temporal information of objects is shown in Table 1.
The temporal information of an object o is its effective time
interval in the form of [o.starttime,o.endtime]. Suppose the
user issues a query q with the keywords ‘‘bar’’ and ‘‘pop’’,
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FIGURE 1. An example of the TSKQT query.

TABLE 1. Information about objects in Figure 1.

and the query time is 10:00-13:00. Firstly, o7 and o9 are
pruned because they do not contain any query keyword, and
o3, o5, o6, o10, o11 and o12 are ignored since they violate
the temporal constraints. The remaining objects o1, o2, o4,
and o8, which contain some query keywords and satisfy the
temporal requirements, are regraded as candidate objects.
Then, by calculating the comprehensive similarity based on
the network distance, textual relevance and temporal similar-
ity between candidate objects and the query, the current top-3
result objects (o1, o2, and o4) are obtained.
Unfortunately, after issuing a TSKQT query, the user may

find that the query result set contains one or more data objects
he does not expect, which will confuse him and cause him to
question the query result. Continuingwith the above example,
assume that in the current Top-3 result set, o4 is an unexpected
object, called a why object. The user may wonder why the
result set contains object o4? How to adjust query settings
to make o4 disappear from the result set while preserving
the non-why result objects as much as possible? The above
problems are called why questions. If the query system can
reasonably explain the why question raised by the user, and
provide he with a refined query that can be obtained only by
slightly modifying the original query, so as to exclude the
why-object from the query result, it will greatly improve the

usability of query results and the satisfaction of users with
query results.

At present, there are relatively few studies on the why ques-
tion. Gao et al. [1] studied the why-not and why questions in
reverse Top-k queries. Their solution to why questions adopts
the same method as the why-not question, that is, query
refinement. However, so far, there are no relevant research
results to solve the why question of spatial keyword queries.
Considering that in the practical application, 1) objects are
usually located on the roads the traffic network and their
mutual distance depends on the specific structure of the
underlying traffic network; 2) in addition to some keywords,
the object description also contains some temporal informa-
tion, we propose and study the why question of TSKQT
queries in traffic networks for the first time.

SinceQuery Refinement is suitable for solving the why-not
question and has achieved good processing results, this paper
also uses Query Refinement to answer why questions on
TSKQT queries (WhyTSKQT). An intuitive way to deal with
this issue is to keep the original query keywords and query
time interval and shrink the value of k until all why objects are
absent from the result set, thus obtaining the so-called basic
refined query qb. However, this may greatly reduce the num-
ber of returned results and/ormake querymodification expen-
sive. If the refined query is obtained by modifying query
keywords and query time to exclude why objects, too many
keyword sets and query time intervals can be selected to form
large amounts of candidate refined queries, which involves
massive useless similarity calculations. To efficiently answer
the WhyTSKQT query, there are two main challenges to be
overcome. 1) How to reasonably organize the comprehensive
information of the traffic network and its objects to prune
great amounts of of unpromising objects and refined queries,
thus speeding up the TSKQT query processing; 2) How to
reasonably construct the query keyword set and query time set
to form the candidate refinement queries so that the number
of candidate refinement queries need to be checked will be as
few as possible.

To meet the first challenge, a new hybrid index called
TTG-tree is designed to organize the location, textual, and
temporal information of objects in an efficient way. Firstly,
the G-tree index is used to divide the traffic network, and
the distance measurement of each traffic network area (sub
graph) is retained, so as to facilitate the network distance cal-
culation. Secondly, for each subgraph, a textual and temporal
component that reasonably organizes the textual and temporal
information of its objects is constructed. Thirdly, according to
the occurrence frequency, keywords are divided into frequent
and infrequent keywords, which are indexed in different ways
to facilitate textual information processing. Moreover, four
lemmas are proposed to reduce massive unqualified objects
to further accelerate query processing.

Another important issue to be addressed is how to obtain
possible query keyword sets and query time intervals to
form candidate refined queries. Considering that adding key-
words irrelevant to the original query result set may exclude
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non-why objects in the result set and add more new result
objects, we only consider the keywords existing in the orig-
inal result objects. In particular, we sequentially extract new
keywords from original result objects and add them to the
original keyword set, and remove old keywords of why
objects from the keyword set to form candidate keyword
sets. In addition, in order to obtain the candidate query time
intervals, so as to minimize the overlap rate between the time
interval of why objects and the query time on the premise of
minimizing the cost of query time modification, we analyze
the relationship between the query time and the time intervals
of why objects, and discuss it in four cases. The following are
the main contributions of this paper:
• This paper identifies and formulates the why question

on time-aware spatial keyword queries in the traffic
network (WhyTSKQT). As far as we know, this is the
first time to study the why question on such queries.

• A new hybrid index named TTG-tree is designed. TTG-
tree mainly includes three components, the G-tree for
the traffic network, the keyword list & the Bloom
buffer for distinguishing, and the textual & temporal
part for each node of the G-tree. Moreover, four lem-
mas are presented to prune massive objects unrelated to
WhyTSKQT queries.

• An efficient TTG-tree-based query processing method
is presented, and several optimization techniques are
also proposed to further improve the performance of
this method. In addition, we study the possibility of
extending this scheme to deal with the why question on
regional queries and ordinary SKQ queries.

• Extensive experiments are carried out on two real traf-
fic networks, and the experiment result shows that the
proposed methods are efficient and scalable.

The rest of this paper is organized as follows. Section II
reviews the relevant work, and Section III introduces the
definition and preliminaries of the problem. In Section IV,
we detail the hybrid index TTG-tree, and then Section V
presents the TTG-tree based solution and three optimization
techniques. SectionVI studies the possibility of extending our
method to handle the why question on other types of queries.
Section VII introduces the experimental study. Finally, the
conclusion is given in Section VIII.

II. RELATED WORK
A. SPATIAL KEYWORD QUERIES
In recent years, the spatial keyword query has attracted
widespread attention and become a research hotspot, and
many research results have been proposed. Felipe et al. [2]
constructed IR2 tree to solve such queries in Euclidean space.
Huang et al. [3] studied the processing of continuous spatial
keyword queries. In addition, several well-known indexing
technologies, such as S2I , I3, and IL quadtree [4], have
been proposed. Variants of spatial keyword query have also
been studied, such as reverse spatial-textual kNN search,
best keyword coverage search [5], Clue-based spatio-textual
queries [6], semantic-aware spatial keyword queries [7],

interactive spatial textual queries [8], location-aware fault-
tolerant keyword search [9], collective spatial keyword
queries of moving objects [10], etc.

Carlsson et al. studied spatial keyword query processing
in the traffic network and designed the RNI index structure.
Then, a composite indexing structure was designed [11],
including the road network R-tree, the adjacent B-tree, the
mapping B-tree, and inverted files. Keywords and road
network distance information can be considered in query
processing, which is conducive to improving processing effi-
ciency. Guo et al. [12] discussed the continuous kNN search
of spatial keywords on the traffic network, and realized the
continuous monitoring of query result objects by establish-
ing a safe section on the traffic network. Zhang et al. [13]
discussed differentiated spatial keyword queries in the traffic
network. Moreover, the reverse Top-k geo-social keyword
query [14] and time-aware spatial keyword query [15] in
the road network were studied, and two novel index struc-
tures GIM tree and TG were designed. Sheng et al. [16]
discussed the Top-k paradigm trajectory search problem and
proposed a framework using incremental extension and point-
wise similarity. Li et al. [17] discussed such queries in the
wireless broadcasting environment and designed a new air
index named SKQAI to facilitate the effective processing of
queries. Recently, the time-interval augmented spatial key-
word query on the road network has also been discussed and
processed [18].

B. WHY-NOT QUESTIONS
To improve the availability of database query results, Chap-
man and Jagadish [19] first proposed the why-not ques-
tion. The existing methods to solve why-not questions can
be divided into three categories: 1) manipulation identifi-
cation [19]; 2) database modification [20]; 3) query refine-
ment [21]. However, manipulation identification can only
identify the operations that result in the exclusion of missing
objects from the result set, but can not make those objects
into result objects. Although databasemodificationwill make
the missing object become the result object, in real life,
users usually do not have permission to access the data in
the database. Query refinement can not only prompt users
to modify the query according to their own needs, but also
make thewhy-not objects expected by users become the result
object with the least cost. Therefore, query refinement is
widely used to solve the why-not question of various types
of queries. Chen et al. [22] discussed why-not questions on
spatial keyword queries, and modified the score calculation
function and the input keyword information to include miss-
ing objects in the query result. Then they dealt with the same
problem by modifying the query keyword and the preference
parameter between spatial distance and text similarity [23].
Chen et al. [24] studied the why-not question on direction-
aware spatial keyword queries, and solved this problem by
adjusting the query direction and k value. In addition, the
researchers also studied the why-not question on various
types of queries, such as, direction-aware spatial keyword
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FIGURE 2. An example of bloom filter.

TABLE 2. Symbols and definitions.

queries [25], [26], the group spatial keyword queries [27], the
geo-social keyword queries in the road network [28], range-
based skyline queries [29], and reverse kNN queries [30].

C. WHY QUESTION
At present, there are few research results on the why question.
Gao et al. [1] discussed the why-not and why question on
reverse Top-k queries. Their solution to why questions adopts
the same method as the why-not questions, namely query
refinement. However, there are no relevant research results
to solve why questions of SKQ queries. Therefore, We first
propose and study why questions of SKQ queries in traffic
networks. Since the query refinement method is widely used
to solve various kinds of why-not questions, we also adopt
query refinement to deal with our why question.

III. PRELIMINARIES AND PROBLEM DEFINITION
This section first defines the time-aware spatial keyword
query, and then formalizes the why question of such queries.
Table 2 summarizes the commonly used symbols and their
descriptions.

A. BLOOM FILTER
Bloom filter is an effective data structure proposed by
B.H. Bloom in 1970. It can quickly determine whether an
element belongs to a set W = {w1,. . . , wn}. The bloom filter
is composed of an m-bit binary vector and k mutually inde-
pendent hash functions Hi (i ∈ [0, k − 1]), which is recorded
as BF(m,k). The initial state of the binary vector is 0, and
the hash function is mapped to a bit of the binary vector, that
is, Hi = {0,1}* → [0, m-1]. Fig. 2 shows an example of
Bloomfilter BF(m,k) withm= 10, k = 3,W = {bar, pub} and

mapping bar and pub to BF(m,k), that is,W is represented by
binary vector [1,1,0,0,1,1,0,1,0] and recorded as VW

BF(m,k).
The process of using Bloom filter BF(m,k) to find an

element t is as follows: 1) execute the above k hash functions
for t to obtain k positions corresponding to the bit array; 2) If
one of the k positions is 0, t must not be in the set, which is

marked as t
BF(m,k)
→ 0; If all k positions are 1, t may be in the

set, which is marked as t
BF(m,k)
→ 1.

B. TIME-AWARE SPATIAL KEYWORD QUERIES IN TRAFFIC
NETWORKS (TSKQT )
Suppose that a traffic network is an undirected weighted
graph G = (V ,E), where V and E represent the node set
and edge set of the traffic network, respectively. A node
v ∈ V represents the intersection or terminal node of the road
segment in the traffic network. An edge e(vi, vj,w) ∈ E is
the road segment between nodes vi and vj (vi, vj ∈ V &&
i 6= j), and w is a non-negative weight representing the
length of e.
definition 1: Spatial-textual Object
A spatial-textual object o in the traffic network can be

denoted as o = (o.loc,o.doc,o.TI ), where o.loc is the object
location on an edge of the traffic network, o.doc is a set of
keywords describing this object, which is formally defined
as o.doc = {key1, key2, . . ., keyn}. o.TI is the effective time
interval of o, modeled as o.TI = [o.st, o.et], where o.st and
o.et are the start and end time of o, respectively.
definition 2: Query point in traffic network
A query q in a traffic network can be denoted as q= (q.loc,

q.doc, q.TI ), where q.loc, q.doc, and q.TI have the same
meaning as o.loc, o.doc, and q.TI .
definition 3: Keyword Matching
Given a query q and an object o, q and o are keyword

matching if and only if they share one or more keywords,
i.e., q.doc

⋂
o.doc 6= �.

definition 4: Temporal Matching
Query q and object o are temporal matching if and

only if there is an intersection between their time intervals,
i.e., q.TI

⋂
o.TI 6= �.

definition 5: Comprehensive Matching
Query q and object o are comprehensive matching if

and only if they are both keyword and temporal matching,

i.e., q
cm
→ o = (q.doc

km
→ o.doc) ∧ (q.TI

tm
→ o.TI ).

Hereinafter, q.doc
km
→ o.doc, q.TI

tm
→ o.TI , and q

cm
→ o

are used to represent keyword, temporal, and comprehensive
matching, respectively.

Next, our scoring function is given below to calculate the
comprehensive similarity between query q and object o as
in (1), shown at the bottom of the next page, where 0 ≤
α, β, γ ≤ 1 are query preference parameters, which represent
users’ preferences for spatial proximity, textual similarity,
and temporal similarity, respectively, and α + β + γ = 1.
To simplify the discussion, the values of these three param-
eters are assumed to be 1

3 . The spatial proximity between o
and q is denoted as Dsim(q, o). We know that the Sigmoid
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function value changes quickly at small variables and slowly
at large variables, which conforms to users’ intuition, that is,
short-distance driving is usually more sensitive to distance
than long-distance driving. Thus, the sigmoid function is used
to standardize the spatial proximity to the range [0,1], where
ρ ∈ (0.1] is the distance adjustment parameter, and DN (q, o)
is the network distance from q to o.

Dsim(q, o) = 2−
2

1+ e−ρ×DN (q,o)
, (2)

The textual similarity Ttsim(q, o) can be calculated by
the Jaccard function, language model, and Cosine similarity
function. In particular, the ratio of the sum of the weights
of the keywords common to the query and the object to the
sum of the weights of query keywords is used to calculate
Ttsim(q,o), as shown in Equ. 3.

Ttsim(q, o) =



∑
t∈(q.doc∩o.doc)

t.w∑
t∈q.doc

t.w , others

−∞, if o.doc ∩ q.doc = φ,

(3)

where the weight of each keyword t is calculated according to
its occurrence frequency in the system, and the global ranking
of keywords is given according to the decreasing order of the
weight.

The temporal similarity Tisim(q, o) can be expressed by
the overlap rate between the time interval of q and the time
interval of o, as shown in Equ. 4 below.

Tisim(q, o) =


|q.TI∩o.TI |
|q.TI | , others,

−∞, if q.TI ∩ o.TI = φ

(4)

The comprehensive similarity score of the object can be
calculated through the above scoring function (Equ. 1). The
higher the score of the object, the higher its ranking. In par-
ticular, the ranking of object o can be obtained from its score
as follows:

R(q, o) = |{o′ ∈ O|STT (q, o) < STT (q, o′)}| + 1, (5)

definition 6: Time-aware Spatial Keyword Queries in the
traffic network, TSKQT for short.
Given an object set O, a TSKQT query q =

(q.loc, q.doc, q.TI , q.k) retrieves a set RS containing k
objects from O, such that ∀o ∈ RS && ∀o′ ∈ O − RS,
STT(q, o′)<STT(q, o).

C. THE WHY QUESTION ON TSKQT QUERIES
1) WHY OBJECTS AND REFINED QUERIES
When the user issues a TSKQT query q =(q.doc,q.loc,
q.TI ,q.k) in the traffic network, he may find that the result

set includes some unexpected objects, which are called why
objects W = {w1,w2, . . . ,wj}. Then, the user may initiate a
subsequent why question with the why object setW to find a
refined query q′ = (loc, doc′,TI ′, k ′), whose result set does
not contain any why objects.

Assuming that all objects and queries are stationary, and
users’ preferences for the network distance, textual similarity,
and temporal matching are fixed during query processing.
In order to ensure that all unexpected objects are discarded
from the result set of the low-cost refined query, while pre-
serving as many other original result objects as possible,
candidate refined queries can be obtained by changing the
query keyword set, query time interval, and value k .

2) COST FUNCTION
By modifying the query keyword set q.doc, the query time
interval q.TI , and the number of result objects q.k , many
qualified refined queries that can exclude why objects may
be generated. The refined query with the least modification
relative to the original query is preferred. Therefore, a cost
function is defined to quantify the modification cost of the
refined query. Specifically, it is expressed as the weighted
sum of 1k , 1doc, and 1TI , where 1k , 1doc, and 1TI are
the modification to q.k , q.doc, and q.TI , respectively. For a
refined query q′, its modification cost relative to the original
query q can be formally defined as follows:

cost(q, q′)= δ1 ·
1k

k0 − R(W , q)+ 1
+ δ2 ·

1doc∑
t∈(q.doc∪W .doc)

t.w

+δ3 ·
1TI
1TImax

(6)

where δ1, δ2, and δ3 are user preference parameters for
modifying q.k , q.doc, and q.TI , respectively. δ1, δ2, δ3 ∈
[0,1] and δ1 + δ2 + δ3 = 1. For q′, the ranking of the
why objects R(q′,W ) = minwi∈WR(q

′,wi), the number of
query results k ′ = R(q′,W )-1, and 1k (the modification
of k) = |min(0, k ′ − k0)|, where k0 is the k value of q.
A basic refined query qb is to reduce k to R(q,W )-1, while
retaining other parameters of the original query; For other
refined queries obtained by modifying query parameters and
whose cost is lower than that of qb, 1k does not exceed
k0 − R(q,W ) + 1. Similar to the why-not question, 1k is
normalized with k0 − R(q,W )+ 1.
1doc is the sum of the weights of the changed keywords

adjusted from q.doc to q′.doc′,W .doc = ∪ji=1wi.doc, and we
normalize 1doc with

∑
t∈(q.doc∪W .doc) t.w. The why object

can be excluded from the result set by modifying the query
start time and end time, and 1TI represents the time modifi-
cation from q.t to q′.t ′. Note that modifying the start and/or
end time of the query may change the length and position of

STT (q, o) =

{
α · Dsim(q, o)+ β · Ttsim(q, o)+ γ · Tisim(q, o) q

cm
→ o;

0, otherwise.
(1)
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the original query interval, so 1TI is represented by Equ. 7
below.

1TI = ξ · (

∣∣∣∣q′.et − q′.st2
−
q.et − q.st

2

∣∣∣∣)
+(1− ξ ) ·

∣∣(q′.et − q′.st)-(q.et − q.st)∣∣ (7)

The first part of Equ. 7 represents the interval position
shift, the second part represents the length modification of
the time interval, and ξ is used to balance the importance
of interval position shift and interval length modification.
1TImax represents the maximum modification of the time
interval, which is used to normalize 1TI to the range [0, 1].
In particular,1TImax = ξ · (|

max(W .et)−min(W .st)
2 −

q.et−q.st
2 |)+

(1− ξ ) · |(max(W .et)− min(W .st))-(q.et − q.st)|.
definition 7: The why question of time-aware spatial

keyword queries,WhyTSKQT .
Given an original time-aware spatial keyword query

q = (q.loc, q.doc, q.TI , q.k), and a why object set
W = {w1,w2, . . . ,wj}, the why question on time-aware
spatial keyword queries aims to return a refined query
q′ = (q′.loc, q′.doc, q′.TI , q′.k) with the lowest penalty cost
according to Equ. 6, so that any why object wi ∈ W can be
discarded from the result set of the refined query q′.

IV. TTG-TREE INDEX
Like other similar studies, the traffic network is represented
by a weighted graph composed of a vertex set and an edge
set. In addition, the traffic network also includes a group of
objects and TSKQT queries distributed on its edges. Due to
the large number of data objects in the traffic network, the net-
work space and objects irrelevant to the TSKQT query should
be pruned asmuch as possible. To this end, a new hybrid index
TTG-tree is proposed, which can support distance pruning,
text pruning and time pruning at the same time. As shown in
Fig.3, TTG-tree is mainly composed of three parts, namely,
the G-tree & its DM Metrices of the traffic network, the
Keyword list & the Bloom buffer for distinguishing, and the
Text&Time part.

A. THE G-TREE & ITS DM METRICES OF THE TRAFFIC
NETWORK
G-tree [31] is an assembly-based index which can efficiently
support location-based queries on the traffic network. In par-
ticular, we use the multi-level partitioning algorithm [32]
to recursively partition the traffic network (graph G) into
subgraphs of equal size and minimize the number of border
vertices at the same time (the partition result of the traffic
network in Fig. 1 is shown in Fig. 4), and use a G-tree to
keep the partition result (as shown in Fig. 3 (a)). Then we pre-
calculate and keep the distance metrics (DM) which include
the shortest-path distance between border-border pairs (or
border-vertex pairs), so as to accelerate the distance calcu-
lation during query processing. As shown in Fig. 3 (a), the
DM of each subgraph (or graph) is also given.

B. KEYWORD LIST & BLOOM BUFFER FOR
DISTINGUISHING
Each keyword in the system is given a weight according to
the frequency of occurrence, and a global ranking is given
according to the order of weight from large to small. In addi-
tion, keywords are divided into frequent keywords and infre-
quent keywords according to the occurrence frequency, which
can be distinguished by a bloom filter, as shown in Fig. 3(b).
As discussed in Section III-A, the bloom filter is composed

of an m-bit binary vector and k mutually independent hash
functions Hi (i ∈ [0, k − 1]), which is recorded as BF(m,k).
It can quickly determine whether an element belongs to a set
W = {w1,. . ., wn}. However, the bloom filter may give some
false positives, that is, it is possible to judge the elements
that do not belong to a set as belonging to the set. For
BF(m,k) and set W = {w1,. . ., wn}, the false positive rate is
(1 − (1 − 1

m )
kn)k ≈ (1 − e−

kn
m )k , and when k = (n/m)ln2,

the misjudgment rate is the lowest, equal to (1 − 1
2 )
k
=

2−ln2(n/m) ≈ 0.618m/n. For example, when m/n = 9, the
misjudgment rate is 0.013.

C. TEXT&TIME PART FOR SUBGRAPH (NODE)
Finally, we construct the Text&Time part as shown in
Fig. 3 (c), i.e., the textual & temporal index of the objects
in the node.

For each non-leaf node ci, we keep the following items:

• the id of node ci;
• pointers to the child-nodes of ci.
• the bloom filter for the frequent keywords contained by

the objects in the nodes ci, which can be used to quickly
determine whether a frequent keyword is included in ci.
Considering the large number of objects containing fre-
quent keywords in each non-leaf nodes, in order to save
storage space and comparison time, a bloomfilter is used
to represent the keyword inclusion of objects in the node.

• inverted lists of infrequent keywords (ILk ). This is
because the number of nodes and objects satisfying
infrequent keywords is relatively small, and the inverted
file occupies relatively small storage space. Moreover,
considering that the bloom filter has a certain false-
positive rate, the inverted file is directly used to improve
the filtering efficiency, taking into account the space
utilization and pruning effect.

• inverted lists of time intervals (ILt ). Specifically, a day
is divided into 24-hour intervals. For an hour interval,
if node ci contains objects open for business during
this period, the list of sub-nodes containing those open
objects is recorded.

For each leaf node ci, the following items are kept, i.e.,

• the id of ci;
• inverted lists (ILk ) of all the keywords contained in ci.
• inverted lists of time intervals (ILt ). In particular, a list

of objects opened during each hour interval is recorded.
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FIGURE 3. The structure of the TTG-tree Index.

FIGURE 4. The partition result of the traffic network in Fig.1.

V. TTG-TREE INDEX BASED METHOD
This section discusses the TTG-tree based solution to
WhyTSKQT queries in detail.

A. PRUNING TECHNIQUES
Firstly, we proposed four lemmas to prune the irrelevant
search space and ineligible objects of the traffic network in
an efficient way.
lemma 1: For aTSKQT query q = (q.loc, q.doc, q.TI , q.k)

and a node ci of TTG-tree, ci can be safely pruned if

dLowN (q, ci) > −
1
ρ
ln(

2

2− STT (q,ok )−β−γ
α

− 1),

where ok is the top-k result object of q, and STT (q, ok ) is the
comprehensive similarity score between ok and q.

Proof: It is proved by contradiction. Suppose

dLowN (q, ci) > −
1
ρ
ln(

2

2− STT (q,ok )−β−γ
α

− 1)

&& ∃o ∈ ci, STT (q, o) > STT (q, ok ).

Thus for any object o in ci, certainly

dLowN (q, o) > −
1
ρ
ln(

2

2− STT (q,ok )−β−γ
α

− 1).

Through transformation, we have

Dsim(q, o) <
STT (q, ok )− β − γ

α
.

According to Equ. 2, we know that

STT (q, o) = α × Dsim(q, o)

+β × Tesim(q, o)+ γ × Tisim(q, o),

and since

Tesim(q, o),Tisim(q, o) ∈ [0, 1],

we have

STT (q, o) ≤ α × Dsim(q, o)+ β + γ.

Thus,

STT (q, o) < α ×
STT (q, ok )− β − γ

α
+β + γ < STT (q, ok ),

which contradicts with our hypothesis. As a result, ci can be
safely ignored.
lemma 2: For a TSKQT query q = (q.loc, q.doc,

q.TI , q.k) and a node ci of TTG-tree, if ci.ILt .TI ∩ q.TI = φ,
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where ci.ILt .TI is the union of time intervals having a
non-empty list in ci.ILt , ci will be pruned.

Proof: Suppose for node ci, ci.ILt .TI ∩ q.TI = φ and
ci includes the result object o. Thus, q.TI

tm
→ o.TI , which

means o.TI ∩ q.TI 6= φ. Certainly, ci.ILt .TI ∩ q.TI 6= φ,
which contradicts the hypothesis.
lemma 3: For aTSKQT query q= (q.loc, q.doc, q.TI , q.k)

and a node ci of TTG-tree, if ∀(frequent keyi ∈ q.doc)

keyi
BF(m,k)
→ 0 && ∀(infrequent keyi ∈ q.doc) !∃ci.ILk .keyi),

then node ci will be pruned.
Proof: Assume that ∀(frequent keyi ∈ q.doc)

keyi
BF(m,k)
→ 0 && ∀(infrequent keyi ∈ q.doc) !∃ci.ILk .keyi,

and ci includes the result object o. Thus, q.doc
km
→ o.doc,

certainly, ∃keyi ∈ o.doc. If keyi is a frequent keyword,

we have keyi
BF(m,k)
→ 1; otherwise ci.keyi.ILk exists. This

contradicts the hypothesis, thus the lemma is proved.

1) UPPER BOUND SIMILARITY CALCULATION
In view of the relatively limited pruning intensity of these
above lemmas, to further reduce the irrelevant region,
STTUB(q, ci) is calculated for each node ci:
• To calculate DsimUB(q, ci), if q is not within ci, the

shortest network distance from q to the boundary of ci
is used; otherwise DsimUB(q, ci) equals 0.

• To calculate TtsimUB(q, ci), we divide the sum of
weight values of all query keywords existing in ci by
the sum of weight values of query keywords, that is,

TtsimUB(q, ci)=

∑
t∈(q.doc∩ci .ILk )

t.w∑
t∈q.doc

t.w . Note that for non-leaf

node ci, if keyi is a frequent keyword, the bloom filter in
ci is used for judgment; Otherwise, the inverted lists will
work. If ci is a leaf node, it is all judged by the inverted
file.

• To calculate TisimUB(q, ci), we use the ratio of the over-
lapping length between the effective time interval of
ci and the query interval to the query interval length,
i.e., TisimUB(q, ci)=

|ci.ILt .TI∩q.TI |
|q.TI | .

Finally, STTUB(q, ci) = α × DsimUB(q, ci) + β ×

TtsimUB(q, ci) + γ × TisimUB(q, ci).
lemma 4: For aTSKQT query q = (q.loc, q.doc, q.TI , q.k)

and a node ci of TTG-tree, if STTUB(q, ci) < STT (q, ok ),
where ok the current top-k result object of q, and STTUB(q, ci)
is the upper bound of the comprehensive similarity between
q and any object in ci, ci is safely pruned.

Proof: For any object o in ci, because STTUB(q, ci) <
STT (q, ok ), at least k objects are more similar to query q than
o. Thus, o cannot be one of the top-k result objects.

B. THE BASIC WhyTSKQT QUERY PROCESSING METHOD
The goal of this subsection is to obtain candidate refined
queries by modifying query keywords and the query time
interval, thus obtaining the least expensive refined query.
Its result set does not contain any why objects, and retains

as many original query result objects as possible. For each
refined query to be explored, the above lemmas will be used
to reduce massive ineligible objects.

1) PREPARATION OF CANDIDATE QUERY KEYWORD SETS
AND CANDIDATE QUERY TIME INTERVALS
Considering that adding a keyword unrelated to the original
query result set may exclude non-why result objects and
insert more new result objects, we only consider the keywords
belonging to the original result objects. Firstly, the keywords
of all the original result objects are divided into three subsets,
namely SKWR, SKWR and SKWR. SKWR represents the set
of keywords contained only by the why objects but not by
other result objects, SKWR includes the keywords contained
by both the why objects and other result objects, and SKWR
is the set of keywords not contained by the why objects
but by other result objects, i.e., SKWR =

⊎
o∈W o.doc −⊎

o′∈q.results−W o′.doc
SKWR =

⊎
o∈q.results−W o.doc

⋂⊎
o′∈W o′.doc;

SKWR =
⊎

o∈q.results−W o.doc−
⊎

o′∈W o′.doc
Then, we use the list AKL to keep the keywords to

be added, which is an ordered list of keywords in SKWR,
arranged in descending order by keyword weight. Similarly,
the list DKL is used to keep the keywords to be deleted.
It consists of two parts, the first part is an order list of
keywords in SKWR, and the second one is an order list of
keywords in SKWR. Both SKWR and SKWR are arranged in
descending order by keyword weight. These two lists are
built before the query processing, and the checking order
of candidate keywords is very important to obtain the least
expensive refined query in an efficient manner.

As for the time interval of the refined query (q′.TI ), we will
discuss how to obtain the appropriate q′.TI by modifying the
original query time interval q.TI in the following four cases.
The ordered list QTL is used to keep the candidate query
intervals.
• Case 1: when W .st < q.st < W .et < q.et . Accord-

ing to the previous discussion, the smaller the overlap
rate between the time intervals of query q and the why
objects ofW , the lower the similarity between q andW ,
and the more likely why objects are excluded from the
query result set. Therefore, the overlap rate between the
time intervals of q and W can be reduced by increasing
the query interval length or reducing the length of the
interval where the query interval intersects with the
time interval of W (i.e. increasing the query start time).
Considering that the query modification of the user’s
intention should be minimized as much as possible, the
method of fixing the query time length (i.e., q.et-q.st)
and synchronously increasing q.st and q.et is adopted
here. When q.st increases to approachW .et , the overlap
rate between the time intervals of the query and why
objects decreases. Therefore, in case 1, the value range
of the query start time is (q.st ,W .et], and the query end
time changes synchronously. In order to facilitate the
enumeration of q.st , 0.5 h is used as the step to increase
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the value of q.st . In this way, we can get an ordered
query time listQTL, i.e., {[q.st, q.et], [q.st+0.5, q.et+
0.5], . . . , [q.st + (W .et − q.st), q.et + (W .et − q.st)]}.

• Case 2: when W .st < q.st and W .et > q.et , i.e. q.TI ∈
W .TI . If the method of reducing |q.TI | is adopted, not
only the ranking of W will not be increased, but also
1t > 0, which increases the cost of query modification;
If |q.TI | is increased, 1) the number of objects retrieved
for query processing will be increased; 2) since q.TI is
included in W .TI , the increase of |q.TI | will not have a
higher impact on the similarity of why objects than on
non-why result objects, so it will not increase the ranking
of W . In conclusion, reducing or increasing |q.TI | will
not get the optimal refined query q′, so the query time
remains unchanged and is fixed to the original query
time. At this time, QTL contains only one element, that
is, the original query time q.TI .

• Case 3: when q.st < W .st < q.et < W .et . It is similar
to Case 1, but the processing method is just the opposite
of Case 1. That is, we fix the query time length and
reduce the value of query end time. The value range
of query end time is (q.et , W .st], and the query start
time changes synchronously. In this way, we can got the
query time listQTL, i.e., {[q.st, q.et], [q.st−0.5, q.et−
0.5], . . . , [q.st − (q.et −W .st), q.et − (q.et −W .st)]}.

• Case 4: when q.st < W .st and q.et > W .et , i.e.W .TI ∈
q.TI . Similar to Case 2, reducing or increasing |q.TI |
will not obtain the optimal refined query. Therefore, the
processing method is the same as that of Case 2, and the
query time list QTL can be obtained.

2) TTG-TREE BASED ALGORITHM
Algorithm 1 details the TTG-tree based method to deal with
the why question on TSKQT queries. It outputs the least
expensive refined query q′, and takes as inputs the TTG-tree
index, the original query q, the why object setW , the penalty
pb of the basic refined query qb, the cardinality km of the result
set of qb, and the lowest ranking RW of why objects among all
the result objects of qb. As for pb, it equals cost(q,qb) by using
equation 6. Recall that qb is the basic refined query discussed
before.

Queue D, pointer TNode, and set RRS, are initialized to
empty, to keep the qualified TTG-tree nodes (subgraphs),
the tree node being accessed, and the objects satisfying
the refined query requirement, respectively. The variable pc,
whose initial value is pb, is used to keep the cost value of the
current best-refined query.
Remember that we have built three lists AKL, DKL, and

QTL beforehand. Next, the keyword set q′.doc of the refined
query q′ is initialized to q.doc0. In the following, each candi-
date refined query q′ is obtained by parameter modification,
and these refined queries are explored to obtain the least
expensive refined query until all three lists are empty. In par-
ticular, the first keyword in AKL is extracted and added to
q′.doc, and the first keyword in DKL is taken out and deleted
from q′.doc. The first element in QTL is taken as the query

time of q′, i.e., q′.TI , and k ′ is set to be k0. Here function
DeQueue() gets and returns its first element. Also, the cost
of q′, cost(q, q′), is computed according to Equ. 6, so as to
eliminate the refined queries with a higher cost than pc as
soon as possible. If cost(q, q′) is less than pc, we start the
process of q′ by initializing STT (q′, ok ) to zero and locating
the leaf node (subgraph) where q is located.

For each object o in leaf(q), it pushes o together with
its STT (q′, o) into heap D if its STT value is not less
than STT (q′, ok ), and updates STT (q′, ok ) accordingly. Then,
it uses pointer Tnode to keep the upper-most node (subgraph)
visited of D and uses variable PUB to keep the upper bound
of its STT score, i.e., STTUB(q′,Tnode). We let Tnode point
to leaf(q) and PUB be STTUB(q′,Tnode), and then visit the
TTG-tree in a bottom-up manner. If D is empty, the Regulate
function (shown in Algorithm 2) is called to move Tnode to
its parent node and update PUB accordingly.

Next, a tuple (c, stt) is popped-out from heap D. Note that
(c, dis) is the head element of D, and D is ordered by the
(upper bound of) STT scores of its elements with respect to
query q. If dis, which is the (upper bound of) STT score of
head element c, is smaller than PUB, then the query answer
may be existed in the parent node of Tnode, thus Regulate
function is called to move Tnode to its parent node and update
PUB accordingly. Otherwise (dis>= PUB), there are three
cases: 1) c is an object. c is a result object since it is the object
with themaximumSTT value; 2) c is a non-leaf subgraph. For
each unvisited subgraph s of c, we use Lemmas 1, 2, 3, and 4
to check if s is a qualified subgraph. If true, s together with
its upper bound STT score is inserted intoD orderly; 3) c is a
leaf node.We calculate the STT score of each qualified object
o of c, and insert o together with its STT score intoD orderly.
Let k ′ be the smaller of k ′ and R(w, q′). If k ′ is larger than

RW , the cost of q′ is calculated. Then, if cost(q, q′) < pc, pc
is updated with cost(q, q′). After the qualified refined queries
are processed, the lowest-cost refined query is returned.

Algorithm 2 details the Regulate function. It first moves
TNode to its parent node. Then, for each unvisited child-
node s of TNode, if it is not pruned by lemmas 1, 2, 3, and 4,
then it is a promising subgraph and s together with its upper
bound STT score is inserted into D orderly. Note, the value
of PUB is updated accordingly.

C. THE IMPROVED TTG-TREE BASED ALGORITHM
The above TTG-tree based algorithm retrieves the possible
candidate keyword set and query time interval set according
to the increasing order of cost influence to form the candidate
refined queries, and then executes each candidate query to
determine whether all the why objects are excluded from
the returned query result set. Although the above algorithm
only enumerates the keyword sets and query time intervals
that have a positive effect on the query results, filters the
refined queries obtained according to the cost value to form
the candidate refined queries, and adopts several pruning
techniques in each candidate refined query processing to

107756 VOLUME 10, 2022



X. Jia et al.: Why Questions on Time-Aware Spatial Keyword Queries in Traffic Networks

Algorithm 1 TTG-Tree Based Algorithm

Input: the TTG-tree, q, W , pb, km, RW ;
Output: the lowest-cost refined query
q′ = (loc, doc′,TI ′, k ′);

begin

Init_Queue(D,D′);TNode,RRS=�; pc = pb;
obtain lists AKL, DKL, and QTL; q′.doc = q.doc0;
while AKL 6= �||DKL 6= �||QTL 6= � do

q′.doc = q′.doc
⋃

DeQueue(AKL) - DeQueue(DKL);
q′.TI = DeQueue(QTL); k ′ = k0; calculate cost(q, q′)
according to Equ.6;

if cost(q, q′) < pc then
float STT (q′, ok ) = 0; Locate the leaf
node (subgraph) leaf(q) where q lies;

for each object o ∈ leaf(q) do

if STT (q′, o) ≥ STT (q′, ok ) then
InQueue(D, o, STT (q′, o));

TNode=leaf(q); PUB = STTUB(TNode, q′);
while |RRS| < k ′ && (D 6= ∅ || TNode 6= R0) do

if D=∅ then

Regulate(TNode,PUB,D);

c, stt=D.pop();
if stt < PUB&TNode 6= R0 then

Regulate(TNode,PUB,D);
else

if c is an object then

insert c into RRS;
else

if c is a non-leaf subgraph then
for each unvisited & qualified child

node s ∈ c do
InQueue(D, s, STTUB(q′, ns));

else

for each qualified object o ∈ c do
if STT (q′, o) ≥ STT (q′, ok )

then
InQueue(D, o, STT (q′, o));

k ′=min(k ′,R(q′,W ));
if k ′ ≥ RW then

calculate cost(q, q′) according to Equ.6;
pc=cost(q, q′) if cost(q, q′) < pc;

return q′ = (loc, doc′,TI ′, k ′);

speed up the query processing, there is still the possibility of
further optimization.

1) EFFECTIVE DIVISION OF TIME INTERVAL
Considering that people always go out to work during the day
and have much fewer activities at night, most places serving

Algorithm 2 Regulate Function (TNode, PUB, D )

begin
TNode=TNode.Parent;
for each unvisited child node s of TNode do

if s is not pruned by lemmas 1, 2, 3, and 4 then
InQueue(D, s, STTUB(q′, s));
PUB= max(STTUB(q′, s),PUB);

return TNode ;

people (point of interest, POI) are open during the day and
less after midnight. Therefore, when building the temporal
inverted list, we divide the time domain into m time periods
for daytime to keep the temporal information of objects and
set a longer time period formidnight. For example, set 18 time
periods from 6:00 to 24:00, and a longer time period from
0:00 to 6:00.

2) EARLY TERMINATION STRATEGY FOR CANDIDATE
REFINED QUERIES I
For the refined query q′ = (loc, doc′,TI ′, k ′), according to
Equ. 6, we have,

cost(q, q′) = δ1 ·
1k

k0 − R(W , q)+ 1
+ δ2 ·

1doc∑
t∈(q.doc∪W .doc)

t.w

+δ3 ·
1TI
1TImax

If q′ is the lowest-cost refined query, then

cost(q, q′) < cost(q, qb) = δ1 ·
1kb

k0 − R(W , q)+ 1

thus,

1k ′ < 1kb

i.e.,

R(q′,W ) > R(q,W )

Therefore, during the execution of q′, if the ranking of the
why object does not conform to Equ. 8, the processing of q′

can be ended immediately, and the refined query q′ can be
safely excluded.

3) EARLY TERMINATION STRATEGY FOR CANDIDATE
REFINED QUERIES II
Next, we further consider the impact of the modification of
query keywords and query time, that is,1doc and1TI , on the
lowest ranking of why objects. The basic idea is shown in
Fig.5. Suppose in the original query q = (loc, doc,TI , 6),
q.k0 = 6 and the why object ranking R(q,W )= 4, we project
the cost function into a plane and treat each refined query
as a point on the plane. The plane Pmin passes through the
point q′0 = (loc, doc,TI , 3) (the current best refined query
whose cost is cost(q, q′0). Note that, initially, it is a basic
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FIGURE 5. The illustrate of Early termination strategy II.

refined query qb.), and all refining queries located on this
plane have the same modification cost as q′0. For refined
queries above the plane Pmin, such as q′2, the modification
cost is greater than Pmin. Based on the above observations,
we first determine the upper bound of 1k , that is, 1kU ,
according to the current1doc and1TI , and then calculate the
corresponding lowest ranking of the why objects (R(q′,W )L),
so as to terminate the query process earlier. The details are as
follows:

1kU = (Pmin − δ2 ·
1doc∑

t∈(q.doc∪W .doc)
t.w

−δ3 ·
1TI
1TImax

) ·
k0 − R(W , q)+ 1

δ1

R(q′,W )L = k0 −1kU

As the query progresses, the modification cost Pmin of
the current best refined query is continuously reduced. For
example, after executing q′1, the Pmin is reduced to cost(q, q

′

1)
which is less than Pmin, and the plane Pmin is also updated to
the planeP′min passing through the point q

′

1. AsPmin continues
to shrink,1kU will also become more smaller, and the lower
bound of the ranking of the why object will increase with
the decrease of 1kU , which enables more refined queries to
terminate earlier, thus shortening the time required to find the
best refined query.

4) EARLY TERMINATION STRATEGY FOR CANDIDATE
REFINED QUERIES III
During the processing of q′, if the number of result objects
currently retrieved reaches k0 and the why object does not
appear, the processing of the refined query q′ can also be
ended immediately. If k ′ = k0, then 1k = 0. At this time,
the cost(q, q′) of the refined query q′ is the smallest, and its
value equals the sum of the last two terms of the cost function,
as shown below.

cost(q, q′) = δ2 ·
1doc′∑

t∈(q.doc∪W .doc)
t.w
+ δ3 ·

1TI ′

1TImax
(8)

5) ALGORITHM OPTIMIZATION
According to the above optimization strategies, we optimize
the algorithm based on TTG-tree. Specifically, lines 22-23 of
Algorithm 1 are modified as follows:

if c is an object then
if c is a why object && (R(q′, c) > R(q, c)||R(q′, c) >

R(q′,W )L) then
break; //early termination strategy I && II

if R(q′, c) >= k0 then
break; //early termination strategy III

insert c into RRS;

D. TIME COMPLEXITY ANALYSIS
Theorem 1: Suppose |C| is the number of leaf nodes in

the system, |Cremain| is the number of nodes left after pruning
with Lemmas 1, 2, 3, and 4, |q.doc| is the average number of
query keywords, |q.TI | is the length of the query time interval,
NILK (NILTI ) is the average number of keyword inverted lists
(hour-interval inverted lists) in a node, LILk (LILTI ) is the
average length of the inverted list for a keyword (an hour
interval) of a node, and m is the size of RRS, then the time
complexity of our algorithm is O(min(max(l1, l2), l3) · (|C|×
(|q.doc| + |q.TI |)+ |Cremain| × (

NILK+1
2 · |q.doc| +

NILTI+1
2 ·

|q.TI |+
|q.doc|×LILk+|q.TI |×LILTI√

w +(|q.doc|+|q.TI |)·min(LILk ,

LILTI ))+ τ × logτ + logf
|V |
τ
× log22f ×|V |+mlogm)), where

l1, l2, and l3 are the number of elements in AKL, DKL, and
QTL, respectively.

Proof: Firstly, the loop from line 7 to 36 runs
min(max(l1, l2), l3) times to obtain the best-refined query.

Secondly, for a refined query, it takes O(|C| × (|q.doc| +
|q.TI |) + |Cremain| × (

NILK+1
2 · |q.doc| +

NILTI+1
2 · |q.TI |+

|q.doc|×LILk+|q.TI |×LILTI√
w + (|q.doc|+|q.TI |) ·min(LILk ,LILTI )))

for obtaining the candidate result objects. The first O(|C| ×
(|q.doc| + |q.TI |)) is for using the lemmas to prune the
unpromising nodes.

For each remaining node ci, the time cost of retrieving
the candidate objects includes two parts. The first is to
retrieve the matching keyword inverted lists and the match-
ing hour-interval inverted lists, with a time complexity of
O(

NILK+1
2 ·|q.doc|+

NILTI+1
2 ·|q.TI |). The second part is to cal-

culate the intersection results of up to (|q.doc|+ |q.TI |) (sub)
inverted lists in node ci to get the candidate results of query q,
with the time complexity of O(

|q.doc|×LILk+|q.TI |×LILTI√
w +

(|q.doc| + |q.TI |) · min(LILk ,LILTI )) [33], where |q.doc| ×
LILk+|q.TI |×LILTI is the upper limit of the number of distinct
objects in these lists, min(LILk ,LILTI ) is the intersection size,
and w is the number of binary bits of the machine word.

Thirdly, it takes O(τ × logτ + logf
|V |
τ
× log22f × |V |)

[31] for distance computation since the G-tree is adopted to
calculate the shortest path distances, and O(mlogm) time is
used to organize all candidate objects in descending order of
STT values. Here |V | is the cardinality of the vertex set in
graph G, f is the fan-out of the G-tree for graph G, and τ is
the maximum number of vertices per leaf of G-tree.
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Overall, the time complexity is O(min(max(l1, l2), l3) ·
(|C| × (|q.doc| + |q.TI |) + |Cremains| × (

NILK+1
2 · |q.doc| +

NILTI+1
2 · |q.TI |+

|q.doc|×LILk+|q.TI |×LILTI√
w + (|q.doc| +

|q.TI |) · min(LILk ,LILTI )) + τ × logτ + logf
|V |
τ
× log22f ×

|V | + mlogm)).

VI. DISCUSSION
A. THE WHY QUESTION ON TIME-AWARE REGIONAL SKQ
QUERIES IN THE TRAFFIC NETWORK
The TTG-tree based method can be used to deal with
time-aware regional spatial keyword queries. Firstly,
we assume that the search region of a regional query q covers
all points whose network distance to the location q.loc of q
does not exceed a prescribed distance value q.r . In particular,
for any node ci of the TTG-tree, if the query region does
not intersect with the traffic network area covered by ci,
ci together with its descendant nodes can be pruned safely.
Therefore, based on the above discussion, only the relevant
parts of Lemma 1 and Algorithm 1 need to be modified
accordingly for range query processing.

B. THE WHY QUESTION ON ORDINARY SKQ QUERIES IN
THE TRAFFIC NETWORK
Our proposed method is also suitable for the why question on
ordinary spatial keyword queries in traffic networks. In par-
ticular, when calculating the object similarity value and the
modification cost of refined queries, the temporal similarity
and time modification cost are ignored; In addition, when
accessing a related node (subgraph) of the TTG-tree, the
temporal inverted lists of the node are not used. Therefore,
in order to process ordinary SKQ queries, we make the fol-
lowing two modifications: 1) delete the time-related parts of
Equ. 1 and Equ. 6; 2) In the query processing of Algorithm 1,
Lemma 2 and time-dependent pruning are ignored.

VII. EXPERIMENTAL STUDY
A. EXPERIMENT SETUP
1) DATASETS
In the experiments, two datasets, California (CA for short)
and San Francisco Bay (SF for short),1 are used to evaluate
algorithm performance. CA consists of the traffic network of
California, and a set of objects whose description information
comes from GNIS.2 For SF, we use the real traffic network
data of San Francisco Bay in the United States, and object
information is extracted from Twitter.3 For each object in
the traffic network, 3-5 keywords are allocated and a random
location on the edge of the traffic network is given. Moreover,
a gaussian-compliant time interval in the range of [0,24] is
generated for each object. The detail of the datasets is showed
in Table 3.

1www.cs.fsu.edu/ lifeifei/spatialdataset.htm
2geonames.usgs.gov/domestic
3www.twitter.com

TABLE 3. The characteristics of the dataset.

TABLE 4. Parameter settings.

A group of TSKQT queries are also generated, including
the query location, keywords, and the query interval. Query
keywords are also obtained from Twitter. The number of
query keywords varies from 2 to 5, and 3 is its default
value. The query time interval is within the range of [0,24]
hours, and follows the Gaussian distribution. We give the
performance evaluation of our methods to deal with TSKQT
queries by varying the number of query keywords (|q.doc|),
the number of query result objects (k0), the number of Why
objects (|Why|), the ranking R(q,W ) of why objects, prefer-
ence parameters of similarity (α, β, and γ ), and preference
parameters of cost function (δ1, δ2, δ3, and δ4), which are
listed in Table 4.

2) ALGORITHMS
As far as we know, there is no other research on the why
question of time-aware SKQ queries in traffic networks in
the literature. As a result, the TTG-tree method is compared
with the fixed partition-based method (FPB) and the adaptive
partition-based method (APB). In FPB, the traffic network
is divided into grid cells of equal size; while in APB, the
traffic network is divided by the adaptive partition method,
so that the number of objects contained in each grid cell
obtained is almost the same, and a kd-tree is used to maintain
the division results. For each grid cell in FPB and APB, the
textual inverted file and temporal inverted file are constructed
to index the textual and temporal description of the objects
within the cell. In addition, for the sake of fairness, we calcu-
late andmaintain the lower and upper distance bounds of each
cell pair in the traffic network for FPB and APB methods,
which facilitates distance based pruning.

B. EXPERIMENTAL RESULTS
1) VARYING k0
The first set of experiments mainly evaluate the impact of
varying k0 in the initial query on the three methods. Fig. 6
shows that the runtime of these methods increases as the
value of k0 increases, and the TTG-tree method performs
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FIGURE 6. Varying the value of k .

FIGURE 7. Varying |q.doc|.

better than the comparison methods. The FPB algorithm and
APB algorithm perform a TSKQT query for each candidate
keyword set and each candidate time interval. When the
value of k0 increases, the number of query results and the
comparison and calculation required to obtain result objects
increase, which increases the time cost of each TSKQTquery;
Secondly, the increase of k0 value enlarges the number of
candidate keyword sets and candidate time intervals, which
increases the execution times of TSKQT queries. Therefore,
the execution time of FPB and APB increases significantly
with the change of k0. However, due to the strategy of
examining candidate refined queries in ascending order of
modification cost and the early termination strategies of query
processing, thus our TTG-tree is less sensitive to the change
of k0 value. In general, the running time of TTG-tree is about
12.62% of APB for the CA dataset.

2) VARYING THE NUMBER OF QUERY KEYWORDS (|q.doc|)
Fig. 7 shows that with the increase of the number of query
keywords, the processing time required by these algorithms
will also show an increasing trend. The increase of |q.doc|
will affect algorithm performance in two ways. First, it will
increase the number of candidate keywords, thereby increas-
ing the number of candidate keyword sets; Second, the cost
spent in calculating the textual similarity will also increase.
In addition, the TTG-tree method based on incremental enu-
meration is still superior to its competitors, and the query
performance of TTG-tree is more stable than that of the
comparison methods from the perspective of the growth trend
of runtime.

3) VARYING THE QUERY LENGTH OF THE ORIGINAL
QUERY (|q.t |)
We then evaluate the impact of different query time lengths
|q.t| on the query performance of the methods. By observing

FIGURE 8. Varying |q.t |.

FIGURE 9. Varying the number of why objects (|W |).

the two groups of histograms in Fig. 8, it is found that when
the query time interval becomes longer, the required time
to exclude why objects in W using these algorithms also
tends to increase. The reason is that the larger the |q.t|,
the more objects that meet the TSKQT query requirements,
and the higher the query cost; Second, the larger |q.t|, the
larger the optional range of candidate time intervals and the
more candidate time intervals, which increases the number
of refined queries to be investigated. Fig. 8 also shows that
when |q.t| increases, the processing time of the TTG-tree
method for excluding why objects increases slower than that
of the other two methods on CA and SF data sets, indicating
that TTG-tree is more stable than other two methods when
modifying the length of |q.t|.

4) VARYING THE NUMBER OF WHY OBJECTS (|W |)
Then, the number of why objects is changed from 1 to 4 to
verify the impact on the algorithms using CA and SF datasets.
Fig. 9 shows that the total running cost of all algorithms
increases gradually when |W | ascends. This is because the
larger the value of |W | is, the larger the number of optional
keyword sets and query time intervals of refined queries are,
resulting in the larger number of candidate refined queries to
be evaluated. When |W | is small, the TTG-tree method has
certain performance advantages over the other two methods;
When there are more why objects, the optimization strategies
of our TTG-tree scheme have a greater impact on its perfor-
mance, so that the query time required by TTG-tree is much
less than that of the reference methods.

5) THE EFFECT OF R(q,W )
The influence of the ranking of why objects under the original
query, R(q,W ), on these methods is also studied. Since the
top-10 TSKQT query is the default setting of the original
query, four queries are launched, and the ranking of the
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FIGURE 10. The effect of R(q,M).

FIGURE 11. The effect of α, β, and γ .

why object is 3, 5, 7 and 9, respectively. The experimen-
tal result is shown in Fig. 10. Since there is no obvious
change in the candidate keyword sets and the candidate time
intervals, the query time of FPB and APB methods remains
almost unchanged. However, the running cost of the TTG-tree
method is affected by the value of R(q,W ) and decreases with
the increase of R(q,W ). The reason is that when the ranking
of the why object is closer to k0, the cost Pmin of the initial
optimal refined query will be smaller, resulting in stronger
algorithm pruning ability.

6) THE EFFECT OF α, β, and γ.

We then study the influence of STT scoring function param-
eters on these three methods, whose results are reported in
Fig. 11(a) and Fig. 11(b). Remember that α, β, and γ are the
weight of spatial proximity, textual similarity, and temporal
similarity on the STT scoring function, respectively. The STT
function is to measure the comprehensive similarity between
queries and objects. According to Equ. 6, a smaller α shows
that spatial proximity does not play a great role in STT
scoring function. Therefore, objects far away from the query
point may also become result objects because of their high
textual similarity with query keywords, the spatial pruning
ability of index structures will be reduced, and a larger query
space needs to be explored to find the most relevant k objects.
If the value of β is small, the textual pruning ability of the
algorithms will be reduced. Therefore, when α and β take
the intermediate value, the query time of the three methods is
less. In addition, the effective time interval of objects follows
the Gaussian distribution, and the change of parameter γ has
no obvious effect on algorithm performance.

7) THE EFFECT OF δ1, δ2 AND δ3
We explore the impact of cost function parameters on
algorithm performance, whose result is shown in Fig. 12.

FIGURE 12. The effect of δ1.

FIGURE 13. Why questions of regional SKQ queries.

Note that δ1, δ2, and δ3 are users’ preference parameters
for modifying q.k , q.doc, and q.TI , respectively. Since these
parameters are only used to calculate the cost of the candidate
refined query after executing the query to determine the
ranking of why objects, δ1, δ2, and δ3 have little impact
on the performance of FPB and APB algorithms. How-
ever, in the TTG-tree algorithm, the basic refined query is
used to initialize the optimal refined query, and the cur-
rent optimal refined query together with its cost are always
recorded, so as to end the query processing as soon as pos-
sible. Therefore, the performance of TTG-tree is affected
by δ1 value. According to Equ. 6, the cost of the basic
refined query is δ1, and a small δ1 will result in a small
initial Pmin value, which can cut down the cost of algorithm
execution. Therefore, the running cost of TTG-tree increases
with δ1. Since the other two parameters have little impact
on algorithm performance, only the impact of δ1 is given
in Fig. 12.

8) THE PERFORMANCE ON WHY QUESTIONS OF
TIME-AWARE REGIONAL SKQ QUERIES
We also evaluate the performance of these methods in dealing
with the why question of time-aware regional SK queries by
varying the diameter of the query region from 5.0% to 15.0%
of the traffic network width. As shown in Fig. 13, the process-
ing time of the methods shows an upward trend as the query
scope expands. The reason is that the larger the query range,
the more qualified objects within the query area, and the more
objects need to be explored. Overall, the TTG-tree performs
significantly better than its competitors. On average, for the
SF dataset, the processing time of TTG-tree is only 18.87%
of that of FPB.
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FIGURE 14. Why questions of ordinary SKQ queries.

9) THE PERFORMANCE ON WHY QUESTIONS OF ORDINARY
SPATIAL KEYWORD QUERIES
Finally, we examine the performance of three methods in
supporting the why questions on ordinary spatial keyword
queries, without considering the temporal information of
queries and objects. Fig. 14 shows that as the number of
original query keywords increases, the cost of these methods
also increases. Moreover, the experiment result of FPB, APB,
and TTG-tree shows the same trend as that in Fig. 7, but the
processing time of each method increases. The reason is that
in this set of experiments, temporal filtering is not used, thus
there aremore qualified objects to be evaluated. Although this
saves the time required for temporal matching calculation,
it cannot offset the increased cost of evaluating more objects,
so the total cost is still increasing.

VIII. CONCLUSION
This paper mainly focuses on the why question on time-aware
spatial keyword queries in traffic networks (WhyTSKQT).
In order to effectively organize the comprehensive informa-
tion of the traffic network and its objects, a new hybrid index
named TTG-tree is designed. It mainly includes three parts,
the G-tree of the traffic network, the keyword list & the
Bloom buffer for distinguishing, and the textual & temporal
part. In addition, several pruning techniques are presented
to reduce the traffic network area and massive data objects
unrelated to the WhyTSKQT query. Based on TTG-tree and
pruning techniques, an efficient algorithm for WhyTSKQT
query processing is designed. Moreover, several optimization
techniques are proposed to further speed up query processing.
The experimental result on two traffic networks demonstrates
the effectiveness of the proposed algorithms. In future work,
the why question of spatial keyword queries on moving
queries and/or objects will be considered.
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