
Received 9 September 2022, accepted 5 October 2022, date of publication 10 October 2022, date of current version 14 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213271

Queueing-Based Simulation for Software
Reliability Analysis
JHIH-SIN LIN1 AND CHIN-YU HUANG 2, (Member, IEEE)
1Silicon Motion, Inc., Zhubei, Hsinchu 302082, Taiwan
2Department of Computer Science, National Tsing Hua University, Hsinchu 300044, Taiwan

Corresponding author: Chin-Yu Huang (cyhuang@cs.nthu.edu.tw)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 110-2221-E-007-035-MY3
and Grant MOST 111-2221-E-007-079-MY3.

ABSTRACT As modern software system is growing in size and complexity, the customer expectations
for software quality have become higher. In the past, many software reliability growth models (SRGMs)
were proposed and they are helped to evaluate the quality of developed software. It is worth noting that
some of SRGMs can be used to model the fault detection process (FDP) and the fault correction process
(FCP) through an infinite server queueing (ISQ) system or a finite server queueing (FSQ) system. However,
it can also be found that most ISQ and FSQ models were developed on a first come first served basis.
In this paper, we propose to use the queueing-based simulations to describe the behavior of FCP and assess
the software reliability instead of using model-based approaches. Our proposed queueing-based simulation
techniques and simulation procedures will be able to thoroughly investigate the FCP and easily provide
system performance information estimated based on the staffing level, the average response time, and the
average waiting time. Numerical examples based on three real failure data are given and discussed. Our
experiments show that the proposed simulation procedures obtain a good prediction capability for software
reliability. We expect that the proposed methods can provide effective information for software developing
management and help decision makers in resource allocation and cost control.

INDEX TERMS Fault detection, fault correction, software reliability growth models (SRGMs), preemptive
priority queue, rate-based simulation.

I. INTRODUCTION
In modern society, software is already an indispensable part
of our lives. To assess software quality, ISO/IEC 9126 is
a useful reference [1]. The quality model specifies six
characteristics including Functionality, Reliability, Usability,
Efficiency, Maintainability, and Portability. Among these
characteristics, reliability is generally regarded as a key fac-
tor in software quality evaluation. Presently, many software
reliability growth models (SRGMs) have been published and
are used to evaluate the quality of developed software. Ref-
erence [2], [3], [4], [5], [6], [7], [8], [9], [10]. In general,
SRGMs are formulated in terms of random processes [3].
SRGMs can typically be used to help managers truly under-
stand the current project status. But Musa [5] once argued

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

that many research studies of the software reliability model-
ing that follow are either theoretical or based on small-scale
projects or limited failure data, so they must be gener-
ally viewed as heuristic and not yet ready for real-world
use.

In the past, some of SRGMs used the infinite server queue-
ing (ISQ) or finite server queueing (FSQ) systems to model
the fault detection process (FDP) and the fault correction
process (FCP) [11], [12], [13], [14], [15]. It can also be found
that most ISQ and FSQ models were developed on a First-
Come-First-Served (FCFS) basis. But practically, high prior-
ity faults should be fixed quickly to minimize their impact
on software development and testing. But it also has to be
noted that the fault correction time should not be ignored.
Mockus et al. [16] reported that the high-priority faults should
be corrected faster than the low-priority faults. Moreover,
Zhang et al. [17] analyzed close source software and collected

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 107729

https://orcid.org/0000-0003-4931-4572
https://orcid.org/0000-0002-7194-3159


J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

its failure data. Their statistics demonstrated that bugs with
the higher priority are fixed faster, which means that the bug-
fixing time is shorter.

Priority scheduling [18], [19] is an operating system pro-
cess scheduling algorithm and can be generally classified as
preemptive or non-preemptive. Based on this concept, Lin
and Huang once [9] proposed a preemptive priority queueing
(PPQ) model that considers both a finite number of debug-
gers and different priority levels. In actuality, in addition to
above model-based approaches, the discrete-event simulation
offers an alternative to analytical models as it can represent
the impact of different strategies that may be used during
testing [4]. For example, rate-based simulation approach was
proposed to relax certain unreasonable assumptions that are
common in model-based approaches [4].

Based on our past studies [9], in this paper we further
propose queueing-based simulation techniques and simula-
tion procedures to analyze the behavior and reliability of the
PPQ model. The proposed simulator can describe the pro-
cess of fault correction in more detail and optimize various
system parameters such as staffing level, average response
time, and average waiting time. Some experiments based on
real open source software (OSS) and closed source software
(CSS) failure data are presented and discussed. We have also
presented an assessment tool called R-ViSim, which is cur-
rently under development, to automate the simulation pro-
cess. Practically, developers and project managers can use the
proposed simulation procedure to estimate workloads that are
similar to the actual situation and allocate appropriate human
resources.

The remainder of this paper is organized as follows.
In Section II, we give a brief review of model-based,
queueing-based, and simulation-based software reliability
analysis. In Section III, we will propose two queueing-
based simulation procedures described in C-like program-
ming language. The components in the queueing-based
simulation procedures will be explained and discussed in
detail. In Section IV, we apply three real data sets collected
fromOSS and CSS to discuss and assess the processes of fault
detection and removal, and analyze the experimental results.
We also address the threats to validity and answer some
research questions in Section IV. Finally, conclusions and
future research recommendations are offered in Section V.

II. RELATED WORKS
A. MODEL-BASED SOFTWARE RELIABILITY ANALYSIS
In the past, a lot of SRGMs were developed to estimate
and predict the reliability of developed software systems [3],
[4], [5], [6]. Some models assume that there is a finite and
fixed number of faults in system while others assume that
an infinite number [20]. Some models need the exact time
in between each failure found in testing [21], while others
only require the number of failures found during any given
time interval [22] (i.e., a day or a week). Some SRGMs have
been are commonly used in the field of software reliability
modeling. We will provide a brief review in the following.

1) THE GOEL AND OKUMOTO (G-O) MODEL
Goel and Okumoto [23] once proposed an exponential-type
model, which describes a software detection phenomenon.
The Mean Value Function (MVF) of the GO model is given
by

m (t) = a
(
1− e−bt

)
, b > 0, (1)

where a is the expected number of faults that will be eventu-
ally detected, and b is the faults detection rate per fault at an
arbitrary testing time.

2) THE DUANE MODEL
This mode (also known as the Weibull process model)
assumed that the MVF satisfies [22]

m (t) =
(
t
k

)b
, k > 0, b > 0, (2)

where k and b are constant parameters which can be estimated
using collected failure data.

3) THE YAMADA DELAYED S-SHAPED (DSS) MODEL
Yamada et al. [24] proposed a delayed S-shaped SRGM to
describe the fault detection process. The observed growth
curve of the cumulative number of detected faults is S-shaped.
The MVF of the DSS model is given by

m (t) = a
[
1− (1+ bt) e−bt

]
, b > 0. (3)

It is a two-parameter S-shaped curve with parameter a denot-
ing the number of faults to be detected and b corresponding
to the failure detection rate (and the fault isolation rate).

4) THE INFLECTED S-SHAPED (ISS) MODEL
This model was proposed by Ohba [25] and it described a
software failure detection phenomenon with a mutual depen-
dence of detected faults. The MVF of the ISS model is

m (t) =
a
(
1− e−bt

)
1+ ψe−bt

, b > 0, ψ > 0, (4)

where a is again the total number of faults to be detected,
while b and ψ are the failure detection rate and the inflection
factor, respectively.

5) THE LOGISTIC AND GOMPERTZ GROWTH CURVE
MODELS
The Logistic and Gompertz growth curve models were also
commonly used to estimate the fault content of developed
software [26]. The expected cumulative number of detected
faults at time t for the logistic growth curve model [27] can
be described by

m (t) =
a

1+ ke−bt
, a > 0, b > 0, k > 0. (5)

The MVF of the Gompertz growth curve model [27] is
given by

m (t) = akb
t
, a > 0, b < 1, k > 0, (6)

107730 VOLUME 10, 2022



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

where b and k are constant parameters which can be estimated
by fitting the failure data. Notice that the parameter a in the
above-mentioned models may typically be interpreted as the
expected number of initial faults in the software.

6) TWO-ERROR-TYPES MODEL
Yamada et al. [28] proposed a modified exponential SRGM
which assumes that the software system contains two types
of faults, type I (which are easy to detect) and type II (which
are difficult to detect). It is assumed that the faults detected
early in testing are different from those detected later on. This
model has a mean value function as follows:

m (t) =
2∑
i=1

api
(
1− e−bit

)
, 0 < b2 < b1 < 1, (7)

where pi for (i = 1, 2), denoted the proportion of type i errors
in the software system (p1+p2 = 1), a is the expected number
of faults and bi is the error detection rate of type i errors per
error (per unit time).

Debugging is not an easy thing.Most research has assumed
that when faults are detected during testing, they will
be removed immediately and successfully in debugging.
In reality, the time required to remove the faults cannot be
ignored [11], [29], [30], [31]. Kapur and Grag proposed
a SRGM model for describing error removal [30]. In this
SRGM, it is assumed that for a failure the detection of the
faults causing the failure also results in the detection of a pro-
portion of the remaining faults, without those faults causing
any failure. Let mr (t) be the number of faults detected by
time t . We then obtain

mr (t) =
ab
(
e(b+d)t − 1

)
d + be(b+d)t

, (8)

where a is the total fault content of the software, b is the
failure rate, and d is the error-detection rate of additional
detected errors.

It is noted that Wu and Huang [10] once demonstrated how
to derive mathematical expressions from the computational
methods of deep learning models and how to determine the
correlation between them and the mathematical formula of
SRGMs. They used the back-propagation algorithm to obtain
the SRGM parameters. However, the foregoing discussion
showed that most studies assume that software reliability
growth behavior follows a non-homogeneous poisson process
(NHPP), based on collected software failure data. It is worth
noting that Hou [33] reported that before applying the fail-
ure data to the SRGMs, whether the dataset is of the NHPP
type and whether it is used correctly by the NHPP-based
SRGM should be explained. On the other hand, Kanoun and
Lapire [4] also observed that the use of NHPP-based SRGMs
during the early stages of development and validation is much
less convincing.

Additionally, Liu and Kang [34] once deduced an imper-
fect debugging software belief reliability growth model using
the uncertain differential equation under the framework of

uncertainty theory, and investigated the properties of essen-
tial software belief reliability metrics. Garg et al. [35]
proposed a entropy-combinative distance-based assessment
(CODAS-E) method and presented to select and rank SRGMs
based on multiple performance indexes. Nafreen and Fion-
della [36] proposed a framework for SRGM possessing a
bathtub-shaped fault detection rate and derived stable and
efficient expectation conditional maximization algorithms to
fit the models. Sabnis and Joshi [37] ever proposed an archi-
tecture to enhance, optimize and validate software reliability
using machine learning techniques. Yang et al. [38] proposed
a quantitative reliability evaluation process and method of
network system based on discrete event simulation combin-
ing software and hardware.

B. QUEUEING-BASED SOFTWARE RELIABILITY
MODELING
It is worth noting that most of the traditional SRGMs are
usually based on the same assumptions. Yet some of the
assumptions are unreasonable, particularly regarding the
development of OSS, such as with perfect debugging and
immediate debugging. For example, in practice, the assump-
tion about perfect debugging may not be reasonable. This
assumption states that when a failure is detected, developers
correctly remove the corresponding fault without introducing
new faults.

In reality, developers generally have the experience that as
they remove a fault, they at times create other new faults.
The assumption which hypothesizes perfect debugging is
not legitimate, because the debugging process is a com-
plex activity which includes locating and removing the rel-
evant faults [39]. Therefore, the more complex the fault that
developers want to remove is, the more complex the debug-
ging process to be performed will be. For example, Ray-
mond [40] once reported that beta testing plays a key role
in the testing of OSS, hence the test team usually is not the
same as the development team in OSS. Thus, once a fault
is detected, developers of OSS usually need more time to
communicate with testers for removing the fault. The above
situation makes debugging time lag occur more easily in
OSS.

In the past, some researchers once proposed to use Infinite
Server Queueing (ISQ) and/or Finite Server Queueing (FSQ)
approaches to model the FDP and the FCP [9], [11], [14],
[15]. Basically, both ISQ and FSQ approaches are based on
queuing theory to make projections on software reliability.
In general, a queueing system can be described as customers
arriving for service, waiting for service if it is not immediate,
and leaving the system after being served [41]. We observed
that some characteristics of this theory are similar to those of
software engineering:

• Arrive rate of customers: The concept is similar to
the fault detection rate of the software system. If the
probability distribution of the arriving process is time-
independent (the arrival rate does not change with time),

VOLUME 10, 2022 107731



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

it is defined as stationary. If the probability distribution
is not time-independent, it is non-stationary.
• Service time: Similar to debugging time, which is the

average time taken for debugging by a debugger in the
queueing system. Similar to arrivals, it can be stationary
or non-stationary.
• Number of service channels: The service channels may

be viewed as the debuggers who can analyze and process
the detected faults concurrently.
• Queue discipline: The rule by which faults are selected

for debugging when a waiting queue has formed.
The rule can be First-Come-First-Served (FCFS), Last-
Come-First-Served (LCFS), random, or a priority
scheme.

The standard shorthand for describing the queueing system
is Kendall. It consists of a series of symbols and slashes such
as A/B/X/Y/Z , where A represents the arrival time distribu-
tion, B represents the probability distribution of the service
time, X represents the number of total servers in system, Y is
the limits of the system capacity, and Z is the rule for queue
discipline. A and B in shorthand can be an exponential distri-
bution (M ), a deterministic distribution (D), a type-k Erlang
distribution (Ek), a phase type distribution (PH ), or a general
distribution (G). The service rule Z can be FCFS, LCFS,
random selection for service (RSS), priority (PR), or general
discipline (GD). Y and Z are usually omitted if there are no
constraints on the queue length and the queue discipline is
FCFS [41].

In the past, Lin et al. [9] once proposed a preemptive
priority queueing (PPQ) model that considers both a finite
number of debuggers and different priority levels. Inoue
and Yamada [15] also proposed an ISQ model considering
the time distribution of the fault-isolation process based on
DSS models. This model can easily describe and analyze
fault detection during the actual testing phase and expresses
several NHPP-type models as special cases. Gokhale and
Mullen [42] have presented the multi-priority queueing mod-
els to estimate the mean resolution time resolution of faults
with different severity levels. They found that the prior-
ity model mixed non-preemptive priority and preemptive
priority principle is suitable to describe the defect data.
Kapur et al. [43], [44] and Dohi et al. [45] also discussed
how to usethe ISQ model to describe software development
behavior.

Furthermore, Zhang [46] incorporated detection and cor-
rection efforts into the fault detection and correction pro-
cesses, respectively. Huang et al. [47] proposed an extended
ISQ model with multiple change-points to estimate the soft-
ware reliability. Zhang et al. [48] showed how to apply ISQ
models with testing effort functions (TEFs) to model the
FDP and FCP. Their proposed model with an Exponentiated
Weibull TEF and a Logistic TEF can consider the influence
of resources on the software debugging phase, and enhance
the assessment of reliability.

Note that most studies assume that the detected faults
are corrected on a FCFS basis [13], [15], [34], [44], [48].

However, Mockus et al. [16] found that in Apache and
Mozilla, bugs with higher priority are fixed faster than bugs
with lower priority. Zhang et al. [17] analyzed an IT man-
agement product for enterprise customer and collected its
failure data. They calculated the time needed to fix the bugs
and found that bugs with higher priority are fixed faster (as
indicted by mean values). In the real world, the debugging
team to fix the faults based on their severity and priority.

C. SIMULATION-BASED METHODS
Over the last few decades, simulation has proven to
be an effective approach for analyzing software systems.
It can also be used to address a variety of issues, such
as management of software development, improving soft-
ware processes, or training software project management.
Simulation can provide an alternative method for investi-
gating software reliability because it can model a wider
range of reliability phenomena than mathematical analy-
sis [4]. Kellner’s study [49] could be the first state-based
simulation applied to software engineering processes. Later
on, Raffo and Kellner [50] discussed some of the impor-
tant empirical issues that arise in software process simula-
tion modeling, and proposed the software process simulation
model and compared the simulated results to the real-world
data. Raffo et al. [51] once addressed some relevant aspects
of the multifaceted relationship between empirical studies
and the building, deployment and usage of software process
models.

Gokhale et al. [52] developed simulation procedures which
may be used to assess the impact of individual components on
the reliability of an application in the different repair strate-
gies during testing. It can provide project owners with a range
of operational configurations to meet the desired reliability.
Rus et al. [53] described a process simulator to assist software
project planning in the software development program. Using
this discrete event model to construct a software reliability
prediction model for a realistic project. Lin and Huang [54]
once proposed simulation procedures based on queueing the-
ory to describe and explain possible debugging behavior in
the software development process. The proposed methods
can help project leaders to effectively assess the appropriate
staffing level for the debugging team. Juan et al. [55] devel-
oped a Java-based simulation software, J-SAEDES, which
can estimate the reliability and availability of time-dependent
computer systems and networks, and identify those com-
ponents which play a critical role in system reliability and
availability.

Additionally, Gokhale et al. [56] proposed a rate-based
simulation framework that incorporates explicit debugging
activities into SRGMs conducted according to different
debugging policies. Their simulation framework obtains
realistic software reliability estimates and determines the
optimal software release time. Antoniol et al. [57] incorpo-
rated the queue theory and stochastic simulation to explore
a real system and to evaluate its cost, risk, and staffing
levels. Fan et al. [58] constructed a defect removal process

107732 VOLUME 10, 2022



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

simulation based on finite independent queues with different
capacities and loadings. The simulation takes into account
the limitations on developers and the differing abilities of
developers. It can also provide useful and important infor-
mation, such as the duration of defect removal, the use of
each developer in the defect removal process, and the rate of
removed defects at a planned time.

Chang et al. [59] applied the express-queueing theoretic
approach to model the fault correction process. All detected
faults will be classified and dispatched into either an express
queue or regular queue to reduce the mean resolution time.
Their experiments show that the performance and efficiency
of software debugging processes can be improved. Lin and
Li [60] developed a new rate-based queueing simulation
framework for open source software (OSS) reliability assess-
ment. It can support the optimal release time decision and
assist the OSS and CSS project managers to estimate the
number of devoted core contributors. Shu et al. [61] proposed
a simulation-based approach to easily analyze the reliabil-
ity of fault tolerant web services and the execution details
of different fault tolerant strategy. Thus, the developers can
determine an appropriate strategy for different constraints.
Nakahara et al. [62] also proposed a simulation model of
software quality assuranc to quantitatively demonstrate the
positive effect of adding quality assurance effort especially
in early phases of software development. Note that their pro-
posedmodel can represent the relationship among the number
of bugs in each phase, the amount of quality assurance effort,
the expected number of detectable bugs and the amount of
bug fixing effort.

III. SIMULATION-BASED FRAMEWORK FOR SOFTWARE
RELIABILITY ESTIMATION
From above-mentioned studies, we can see that there is no
single model or method that can be universally applicable
to all the situations [4]. Here we will show an alternative
approach to modeling the software reliability. In addition to
our proposed queuing-based model [9], we find that simu-
lation procedures can also be used to investigate the soft-
ware fault correction process and to estimate system per-
formance measures such as the average debugging time and
waiting time. Specifically speaking, the queueing-based sim-
ulation approaches can relax certain unreasonable assump-
tions which are common in model-based approaches. In order
to mimic the actual situation of FCP, we incorporate the con-
cept of preemptive priority queueing into the rate-based sim-
ulation procedure. In this section, the details of the debugging
behavior are discussed and analyzed using the fault priority
level.

The assumptions of the queueing-based model with pre-
emptive priority queueing (PPQ) policy are as follows [9],
[63], [64], [65], and [66]:

1) The software is subject to failures at random times
caused by the manifestation of remaining faults in the
system.

2) The mean number of detected faults in the time inter-
val (t, t + 1t) is proportional to the mean number of
remaining faults in the system.

3) The detected faults will be put into the waiting queue
according to a Poisson process with detection rate (λ).
Additionally, the detected faults are fixed by a finite
number of debuggers (c); The fault correction time
for each assigned debugger is exponentially distributed
with correction rate (µ).

4) There are two different types of faults: high-priority
faults and low-priority faults. High-priority faults have
a preemptive ability for service over low-priority faults.
If the two faults have the same priority, they will be
served according to their order in the waiting queue.

5) If all debuggers are busy with high-priority faults,
a newly detected high-priority fault follows the FCFS
rule and waits at the tail of the same priority faults in
the waiting queue.

6) The waiting time and correction time of fault(s) are
mutually independent. Fault detection activity contin-
ues while faults are removed, and fault correction does
not affect the detection process.

7) Fault correction time is non-negligible. When a fault is
fixed, it will not introduce a new fault.

Based on the above assumptions, we will be able to
obtain a queueing model that describes the fault removal
process, M/M/c/∞/PR. Figure 1 shows the rate transition
diagram of proposed queueing-based model with PPQ pol-
icy. To implement the procedures, a C-like programming
language will be used, but there are many possibilities.
Figure 2 shows the flowchart of our proposed queueing-based
simulations. Note that each iteration in the procedure includes
three steps. Note that the staff allocation, the first step, assigns
a fault to a free debugger. The second step is used to determine
whether a fault is detected according to the failure data set.
The end of an iteration is the step of fault correction, which
checks whether the faults are completely corrected. The three
steps will be repeated until the time for the simulation proce-
dure runs out of the total execution time.

A. PROCEDURE #1: THE SIMULATION PROCEDURE FOR
THE NON-PREEMPTIVE PRIORITY SYSTEM
The flowchart of the Procedure #1 is shown in Figure 3.
Additionally, the algorithm shown in Figure 4 presents the
non-preemptive debugging simulation procedure. Under non-
preemptive scheduling, once a process goes into operation,
it will not be interrupted until completion. For example,
developers often practically deal with higher-priority faults
more rapidly than lower-priority faults. The Procedure #1
accepts three parameters as inputs: the total execution time,
defined as stop_time, the length of time for each iteration, dt ,
and staffing_level, the total number of debuggers in the sys-
tem. Further, we split the execution time into a great number
of iterations. Thus, the probability of multiple events occur-
ring within each iteration is negligible [4], [7], [52].

VOLUME 10, 2022 107733



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

FIGURE 1. Rate transition diagram of M/M/c queue with two priority
classes.

FIGURE 2. The flowchart of queueing-based simulation procedure.

Note that current_time is a variable representing the current
cumulative simulation execution time. After the completion
of each iteration, the time spent on iteration (dt) will be added
to the current execution time until it reaches the total execu-
tion time (stop_time). As the current execution time increases,
our system updates the state of faults (processing or waiting)
to record the time cost in each component. We denote the
number of busy debuggers at present by working_server. The
Set data structure correcting_set is used to collect faults being
processed. Furthermore, the high_priority_waiting_queue
and low_priority_waiting_queue are theQueue data structure
used to store the waiting high priority faults and low priority
faults, respectively. Based on the assumptions described in
this section, Procedure #1 was developed and implemented
in three phases: staff allocation, fault detection, and fault
correction.

1) PART 1 STAFF ALLOCATION PHASE
In this phase, we firstly check whether there are avail-
able debuggers in the system by comparing the number
of busy debuggers (working_server) with all debuggers
(staffing_level). If unoccupied debuggers actually exist, we
checkwhether there are faults in thewaiting queues according
to their priority orders (high priority faults first). For exam-
ple, if there is a waiting high priority fault, the fault will be
assign to a debugger and its status will change from waiting
to processing. If the number of waiting high priority faults
is zero, then we check whether there are low priority faults
in the queue. In short, the high priority waiting queue takes

FIGURE 3. The flowchart of non-preemptive debugging simulation
procedure.

precedence over the low priority waiting queue. These actions
are described in lines 9-18 of Figure 4, which will repeat until
there are no waiting faults or there are no available debuggers.

2) PART 2 FAULT DETECTION PHASE
Note that the detection time of faults is based on the real
failure dataset we collected fromOSS and CSS projects. Each
fault will enter the simulation system based on timestamp
ordering (time detected). Therefore, in each iteration, the
function occur() compares the timestamps with the current
execution time (current_time) to check whether any fault is
detected. When the occur() function returns true, the priority
of the detected fault will be determined and handled indepen-
dently. For example, if a low priority fault is detected, it will
be added to the low priority waiting queue, and assigned to
a debugger if there are available debuggers. These activities
are shown in lines 20-37 of Figure 4.

3) PART 3 FAULT CORRECTION PHASE
At the beginning of this step, each fault being processed will
be checked by the leave() function which is used to determine

107734 VOLUME 10, 2022



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

FIGURE 4. Non-preemptive debugging simulation procedure.

whether the fault will be corrected. The probability that a
debugger successfully corrects the fault in the time interval
(ts, ts +1t), given that it has already been in progress for
time ts is [54]:

P(ts ≤ Ts ≤ ts +1t|Ts > ts) = µ×1t, (9)

whereµ represents the fault correction rate, and Ts represents
the time spent on fault correction. Thus, we can generate a
random number x which is the probability of correcting a fault
in a unit time and compared it with µ × 1t after invoking
the leave() function. When x is greater than µ × 1t , the
devoted debugger will successfully correct the fault in this

iteration. Otherwise, a fault which cannot be corrected will
be rechecked in the next iteration. These actions are given in
lines 39-44 of Figure 4.

B. PROCEDURE #2: THE SIMULATION PROCEDURE FOR
THE PREEMPTIVE PRIORITY SYSTEM
Here we will further discuss and present the simulation pro-
cedure of the preemptive priority system in which high pri-
ority faults can preempt low priority faults. The flowchart
of the simulation procedure is depicted in Figure 5 and
the algorithm of this procedure is shown in Figure 6.
Note that Procedure #2, constructed on the basis of
Procedure #1, also accepts three parameters as inputs:

VOLUME 10, 2022 107735



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

FIGURE 5. The flowchart of preemptive debugging simulation procedure.

current_time, dt, and staffing_level. Owing to the preemptive
property of the Procedure #2, the Queue data structure, pre-
emption_waiting_queue, is used to place the preempted faults
(low priority faults).

Based on the assumptions described in this section, Proce-
dure #2 was developed and implemented in three phases: staff
allocation, fault detection, and fault correction.

1) PART 1 STAFF ALLOCATION PHASE
First, we check the available debuggers by comparing work-
ing_server with staffing_level. The activity is the same as
the staff allocation of the Procedure #1. Based on our

assumptions in Section III, preempted faults are handled prior
to waiting low priority faults and faults with high priority
take priority over preempted faults. Therefore, the available
debuggers will be allocated according to the order of priority:
waiting high priority faults, preempted faults, andwaiting low
priority faults. The details of actions for staff allocation are
described in lines 10-23 of Figure 6, which is repeated until
there are no waiting faults or no available debuggers.

2) PART 2 FAULT DETECTION PHASE
When a fault is detected, we then check what kind of pri-
ority it has. For instance, if a high priority fault enters

107736 VOLUME 10, 2022



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

FIGURE 6. Preemptive debugging simulation procedure.

the system and no debuggers are available in this itera-
tion, we check whether there is a low priority fault being
processed in the correcting_set. If there are low prior-
ity faults which are being processed, the preemption()
function will replace the first entering low priority fault
in the correcting_set with the high priority one, and the

preempted fault will be sent to the preemption_waiting_queue.
Otherwise, the newly detected high priority fault will
be placed in the high_priority_waiting_queue. Details of
the preemption procedure are shown in Figure 7 and
the fault detection part is described in lines 25-44 of
Figure 6.

VOLUME 10, 2022 107737



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

FIGURE 7. Preemption function.

3) PART 3 FAULT CORRECTION PHASE
In each iteration, the correcting_set will be checked, and the
faults that are successfully corrected by debuggers will be
removed from correcting_set and the number of busy debug-
gers will decrease by one. When the currently processed
faults are corrected, the occupied debuggers will be available
at the same time. These actions are described in lines 46-51
in Figure 6. If a fault cannot be corrected successfully in the
current iteration, it will be checked in the next iteration.

IV. NUMERICAL EXAMPLES
A. SELECTED DATA SETS AND MODEL’S COMPARISON
CRITERIA
In this paper, the failure data used for the evaluations in this
paper are composed of three sets of data and come from
three sources [9], [67], [68]. The first data set (DS1) was
collected from the public bug-tracking system, Bugzilla [67].
The system contains the shared components used by Firefox
and other Mozilla software. The second data set (DS2) was
also obtained fromBugzilla [68]. The third data set (DS3)was
collected from the Coretronic Corp. It is noted that in software
reliability engineering, the overall failure data sets typically
fall into two types: time domain data and interval domain
data [2], [3]. Practically, the time domain data provides better
accuracy in the parameter estimates, but it also inevitably
involves more data collection efforts and computations than
the interval domain approach [2], [3], [4]. In our experiments,
these three data sets were collected in interval domain format.
Table 1 displays a sample of the actual failure data. Addition-
ally, Table 2 shows the data source and system characteristics
for each set of failure data.

On the other hand, Figure 8 depicts the cumulative number
of detected and corrected high/low priority faults versus the
time of the three data sets. The difference between detected
and removed faults are the open-remaining (detected but in
the waiting queue) faults. They clearly show that the fault
removal time is not negligible because the total number of
removed faults obviously lags behind the total number of
detected faults.

In this paper, except for our proposed simulation-based
method, five selected SRGMs are selected for performance
comparisons. They are the GOmodel [4], the DSS model [4],
the ISS model [4], the Gompertz model [8], and the PPQ
model [9]. The method of maximum likelihood estimation is
used to estimate the parameters of all models [2], [3], [4], [8].
The following criteria are used to evaluate ll selected models.

1) The Mean Square Error (MSE) is defined by [4], [8],
and [9]:

MSE =
1

n− θ

n∑
i=1

(mi − m (ti))2 , (10)

where mi is the cumulative number of detected faults
in a given time interval (0, ti], m(ti) is the mean value
function, i.e., the expected number of software failures
by time ti, n is the size of the selected data set, and θ is
the degree of freedom. The lesser the MSE, the better
the model performance.

2) The Theil’s U Statistic (TS) includes two parts, denoted
U1 and U2. They are defined as follows [69], [70]:

U1 =

√∑n
i=1 (mi − m (ti))

2√∑n
i=1m

2
i +

√∑n
i=1m (ti)

2
, (11)

and

U2 =

√∑n−1
i=1

(
m(ti+1)−mi+1

mi

)2
√∑n−1

i=1

(
mi+1−mi

mi

)2 , (12)

A low value of U1 and U2 means that the method
provided a more accurate prediction.

3) TheCoefficient of Determination
(
R2
)
is defined as [4]:

R2 = 1−

∑n
i=1 (m (ti)− mi)

2∑n
i=1 (mi − m̄)

2 , (13)

and

m̄ =

∑n
i=1mi
n

, (14)

A higher R2 value indicates the model is a good fit.

B. DS1
Here we will apply the PPQ simulation procedure described
in Section III to DS1. The simulation procedures were imple-
mented with Python and the experiments executed on an
AMD FX-6350 machine with six 3.9 GHz cores and 8GB of
memory, running in a Windows 10 environment. Note that
there are two steps in our proposed simulation procedure
algorithm. The first step is to calculate the parameters from
the data set. The second step is to conduct the simulation and
average the experimental results. Using DS1, we simulate
the proposed PPQ model for a period of 45 weeks and set
each time unit iteration as 0.001 week. Based on our past
study in [9], first, Table 3 shows a summary of the DS1
parameters used in the simulation procedure for DS1. Note
that c, λh, λl , and µ are the parameters that stand for the
number of debuggers, the high-priority fault detection rate,
the low-priority fault detection rate, and the fault correction
rate, respectively [9]. FromDS1, we obtain the average detec-
tion rates of high and low priority faults, 1.244 (= 56/45)
and 0.555 (= 25/45) faults per week, respectively. To ensure

107738 VOLUME 10, 2022



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

FIGURE 8. Cumulative number of detected and corrected faults for DS1-DS3.

TABLE 1. A sample of the actual failure data.

TABLE 2. Characteristics of failure data sets.

system stability (ρ = (λ/cµ) < 1), we assume that the
service rate for each debugger µ is 0.201 faults per week, and

the number of debuggers c is 10. Table 3 gives a summary
of the DS1 parameters used in the simulation procedure for

VOLUME 10, 2022 107739



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

TABLE 3. Parameters used in the simulation procedure of DS1.

TABLE 4. Performance evaluation and comparison of different models
and methods for corrected faults of DS1.

DS1. We repeat the simulation procedure for 1,000 times and
calculate the average of the experimental results.

Table 4 summarizes the performance comparisons of
selected models for corrected faults of DS1. The proposed
simulation-based method is the best for high priority faults of
DS1 in terms of MSE, R2, TS-U1, and TS-U2. As for the low
priority faults of DS1, the proposed simulation-based method
almost performs better than the traditional SRGMs. The PPQ
model only shows a significantly better performance than
the simulation-based method based on the values of MSE,
R2, and TS-U1. In general, we can see that the proposed
simulation-based method almost gives the lowest values for
TS-U1 and TS-U2 compared to traditional SRGMs for DS1.
Obviously, we can see from Table 4 that both the proposed
simulation-based method and PPQ model provide a better fit
for DS1 and predict future fault correction processes well.
Since real life debugging teams deal with high priority faults
first, it can be seen that the preemptive mechanism better
simulates the real world situation.

Figure 9 illustrates the cumulative corrected faults of
the actual failure data DS1 versus the simulated failure
data, which are generated by the procedures described in
Section III-B. We can thus investigate the profiles of the
actual failure data and the simulation results. We can see
from Figure 9 that there is an obvious difference between
the actual data and the simulation results in high priority
faults between the 2nd and 12th weeks. The simulation results
exhibit similar results for low priority faults between the 2nd
and 13thweeks. This probably becausewe only use part of the
actual data, ignoring the previous faults being processed and
the open-remaining faults. Overall, the approximation of the
curves illustrating the cumulative number of corrected faults
are close to each other in Figure 9.

FIGURE 9. Plot of the actual and simulated failure data (DS1).

Finally, the comparison results of performance measure-
ment between model-based and simulation-based methods
are highlighted in Table 5. The simulation results and the
performance estimation of the PPQ model are very close in
average queue length, average waiting time, and the average
response time, and the relative errors are within −0.14%.
The results show that our proposed simulation procedure is
workable to predict future behavior well.

C. DS2
Similarly, we repeat the simulation experiment steps based on
the failure data of DS2. Thus, the average detected rate of high
priority faults and low priority faults are 2.739 (=126/46)
and 5.021 (=231/46), respectively. To ensure system stability
(ρ = (λ/cµ) < 1), we assume that the service rate for
each debugger µ is 0.24 fault per week, and the number of
debuggers c is 40. In Table 6, we show a summary of the
parameters used in the simulation procedure for DS2.

Table 7 summarizes the performance comparisons of
selected models for corrected faults of DS2. The proposed
simulation-basedmethod is the best for high- and low-priority
faults of DS2 in terms of MSE, R2, and TS-U1. As for the low
priority faults of DS2, the proposed simulation-based method
almost performs better than the traditional SRGMs. The PPQ
model only shows a significantly better performance than the
simulation-based method based on the values of MSE, R2,
and TS-U1. Although the ISS model has smaller values of
TS-U2 compared to the proposed simulation-based method,
but the proposed simulation-based method still shows a sig-
nificantly better performance than other SRGMs and the PPQ

107740 VOLUME 10, 2022



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

TABLE 5. Comparison results between modeling and simulation for DS1.

TABLE 6. Parameters used in the simulation procedure of DS2.

TABLE 7. Performance evaluation and comparison of different models
and methods for corrected faults of DS2.

model based on the value of TS-U2 for high priority faults
of DS2. Again, we can see from Table 7 that the proposed
simulation-based method and PPQ model provide abetter fit
for DS2 and are generally more accurate than the traditional
SRGMs.

In Figure 10, we plot the actual and simulated failure data
for DS2.We can see from Figure 10 that the simulation results
for the high priority faults and low priority faults have a small
difference with the actual data and the simulation data in the
period from the 4th week to the 10th week. This is probably
because we ignore the previous faults being processed and
the open-remaining faults. Overall, the approximation of the
curves depicting the cumulative number of corrected faults
are close to each other in Figure 10. Table 8 shows the com-
parison results between model-based and simulation-based
methods for DS2. It can be found that the simulation results
and measurements from the PPQmodel are very close to each
other in average queue length, the average waiting time, and
the average response time, and the relative errors are within
0.08%. Note that for high priority faults the average queue
length and average waiting time are zero. This is because the
simulation results are too small to be measured. Thus, the
relative error cannot be obtained. These experimental results
indicate that our proposed simulation procedure is workable
to predict faults in the correction process well for DS2.

FIGURE 10. Plot of the actual and simulated failure data (DS2).

D. DS3
Similarly, we repeat the experiment steps based on the failure
data of DS3. Then, the average fault detection rate of high
and low priority faults is 1.071(=30/28) and 2.607 (=73/28)
fault per week, respectively. To ensure system stability (ρ =
(λ/cµ) < 1), we assume that the fault correction rate for each
debugger µ is 0.55 faults per week and that the number of
debuggers c is 7. In Table 9, we give a summary of the DS3
parameters used in the simulation procedure.

Table 10 summarizes the performance comparisons of
selected models for corrected faults of DS3. The proposed
simulation-based method is the best for low priority faults
of DS3 in terms of MSE, R2, and TS-U1. As for the
high priority faults of DS3, the proposed simulation-based
method almost performs better than the traditional SRGMs
in terms of MSE and TS-U2. In general, both the proposed
simulation-based method and PPQ model provide a better fit
for DS3 and are generally more accurate than the traditional
SRGMs.

The cumulative number of actual failure data in the DS3
dataset versus the simulated failure data is illustrated in
Figure 11. The simulation result corresponds well to the
actual failure data. This may be because there are very few

VOLUME 10, 2022 107741



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

TABLE 8. Comparison results between modeling and simulation for DS2.

TABLE 9. Parameters used in the simulation procedure of DS3.

TABLE 10. Performance evaluation and comparison of different models
and methods for corrected faults of DS3.

open-remaining faults in the past. In Table 11, we have
highlighted the comparison results between model-based and
simulation-based methods for DS3. From Table 11, we see
that the simulation results and measurements from the PPQ
model are very close to each other in average queue length,
the average waiting time, and average response time, and the
relative errors are within 0.11%. Note that the high priority
fault has an average queue length and average waiting time
of zero. This is because the simulation results are too small to
measure. Thus, the relative error cannot be obtained. These
experimental results show that the proposed simulation pro-
cedure predicts future fault correction processes well using
the DS3 dataset.

E. RELIABILITY VISUALIZATION SIMULATOR
In order to visualize the simulation results, we have developed
an assessment tool called the Reliability Visualization Simu-
lator (R-ViSim) to provide quantitative estimation based on
the PPQ model. R-ViSim’s major functions are listed below.

• PPQ modeling. R-Visim can calculate the performance
measures of the PPQ model [9] such as average queue
length, average waiting time, and average response time
and the parameter settings.

FIGURE 11. Plot of the actual and simulated failure data (DS3).

• PPQ simulation. Based on real failure data, R-ViSim
can simulate the fault correction process using the pre-
emptive priority queueing simulation procedure.
• The results display. R-Visim can graphically display

the cumulative corrected faults of the actual failure data
versus the simulated failure data, which are generated by
the PPQ simulation. The measurement derived from the
PPQmodeling is filled in the blank of simulation results.

The high level architecture of developed R-ViSim is shown
in Figure 12, which depicts a combination of several sub-
modules. R-ViSim was implemented in the Python language
and using the Python 2D plotting library (Matplolib). As we
can see from Figure 12 that R-ViSim first reads a failure
data file (including the detection time and priority of each
fault) for rate-based simulation, and R-ViSim allows the user
to set the simulation parameters. Once the parameters have
been entered, the user can start the simulation by clicking the
Simulate button on the menu bar. The proposed model and
simulation results are then reported and displayed.

Figure 13 shows a typical window dump from R-ViSim.
The high and low fault detection rates, fault correction rate,
and the number of debuggers are explained and illustrated

107742 VOLUME 10, 2022



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

TABLE 11. Comparison results between modeling and simulation for DS3.

FIGURE 12. High level architecture of the developed R-ViSim tool.

in Section IV-B – IV-D. The length of iteration time can be
set to a constant. The right hand side shows the workspace
in which the simulation parameters are displayed, while the
left hand side shows the plots of these simulation results.
The menu items on the top left hand side include the File
option which allows for file operations, Reset parameters
option which allows the user to reset all parameters, Simulate
option which allows the users to start the simulation, Setting
option provides options for setting all simulation parameters,
andHelp option would provide on-line assistance in case the
user needs it.

F. EXPERIMENTAL VALIDITY
The degree of the validity of the experimental design is as
important as the experimental results [71], [72]. Adequate
validity indicates the experimental results or other findings of
the study have a high ability to solve similar problems. In the
following, we will briefly discuss the internal, external, and
construct validity of the experiment, respectively.

Internal validity refers to whether the research design can
correctly explain the research results or show the causal rela-
tionship between independent and dependent factors. First,
the collection of failure data is one threat to our internal valid-
ity. In general, there are not so much failure data containing
the information about the fault detection, the fault correction,
the fault priority level, etc. In this paper, DS1 and DS2 were

obtained from Bugzilla. DS3 was collected from a projector
firmware project developed by Coretronic Corp. in Taiwan.
Note that Bugzilla has an open-fault record and its dataset is
widely used in software engineering research. Thus we would
be able to use Bugzilla’s dataset for doing research. Basically,
the three failure data represent a wide variety of applications.
Note that the potential inaccuracy of collected failure data is
also a threat to internal validity. In actuality, the fault reports
from the system could be duplicate, invalid, or unreasonable
since OSS projects were usually included thousands of vol-
unteer participants. In this paper, we have carefully inspected
the collected data and eliminated the overlaps and invalid
bugs from our data sets.

Additionally, the SRGMs we selected for performance
comparison are another issue for the internal validity of these
experiments. We use some traditional SRGMs introduced in
Section II for comparison with our proposed method. These
SRGMs have gainedwide acceptance in field of software reli-
ability modeling. We also implemented all selected models
very carefully.

External validity focuses on the generalizability of the out-
come of our work. In other words, whether the experimen-
tal results of the research can be applied to other situations.
An important threat to the external validity of our experiments
is the choice of data sets. In general, we would not be able
to generalize our findings and experimental results to every
published data set. However, in this paper we totally use three
real failure data to evaluate the performance of our proposed
method compared with some SRGMs. DS1-DS3 were col-
lected from different OSS and CSS projects, which had dif-
ferent architectures and the different developer compositions.
It is also worth noting that Bugzilla has for many years seen
widespread use by many users and researchers. It would be
more convincing if we perform the experiments based on real
failure data collected from the commonly used OSS projects.
This diversity allows us to have greater confidence in our
experimental results. In this case, we would be able to reduce
the threats to external validity.

Construct validity is concerned with whether the measure-
ment can meaningfully reflect or access the underlying con-
struct which is intended to be measured. Thus the construct
validity of this study could be affected by the number of
comparison criteria in the experiment. In order to check the
performance of our proposed method, make a fairly com-
prehensive comparison with all selected models, and avoid
bias, we use three criteria in our paper; they are: the Theil’s

VOLUME 10, 2022 107743



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

FIGURE 13. A window dump from R-ViSim.

U Statistic (TS), the Coefficient of Determination (R2), and
the Mean Square Error (MSE). It is worth noting that the
TS cannot distinguish between under- or over-prediction, but
the magnitude of error can be examined from the computed
values of Ul and U2 [69], [70]. MSE is one of the criteria we
adopted since it is the primary measure used for comparing
predictionmethods for a long time. In actuality,MSE is a very
common tool for assessing the quality of global model. It is
also noticed that the MSE was used to judge the Retrodictive
ability [3], [4], [8]. On the other hand, the R2 is a measure of
the linear association between the two variables x and y, and
the value is bound in the range of 0 to 1. Basically the three
criteria may be independent of each other. But it has to be
noted that how many of comparison criteria are satisfied and
the examination of statistical properties of measures could be
another topic of future research [73].

G. RESEARCH QUESTIONS
It is recommended to evaluate a case study by answering
some research questions [74]. In this section, we will briefly
present the experimental results that answer four research
questions.
RQ1: Is there any data-format limitation for the proposed

simulation method?
In the field of software reliability engineering, software

failure data collections can be classified into two types:
interval-domain format and time-domain format [2], [3], [4],
[8]. The interval-domain data is characterized by counting
the number of failures occurring during a fixed period while
the time-domain data records the individual occurrence time
of failures. In this paper, DS1-DS3 were collected in inter-
val domain format. In the industry, failure data are usually
treated as confidential information. Only few data sets with
this feature are released for public access in the literatures.
However, most of them belong to interval-domain format.
To our knowledge, few time-domain data sets provide the
failure correction data in the time-domain format. Consider-
ing SRGMs, some may be suitable for one specific format

only, while others apply to the other format. If we want to
use the failure data in time-domain format for estimation, our
proposed simulation procedures will give users/developers
more flexibility in meeting the time-domain format.
Q2: What if a more complicated queuing mechanism is

used?
In this paper, based on some assumptions in Section III,

we develop simulation procedures that describe the fault
removal process, M/M/c/∞/PR. Basically, our proposed
simulation procedures contain three steps. The first step is
to assign a fault to a free debugger. The second step is used
to determine whether a fault is detected according to the
failure data set. The end of an iteration is the step of fault
correction, which checks whether the faults are completely
corrected. Besides the basic queueing characteristics, it is
possible for the queueing-based simulation method to involve
multistaging or feedback. It can be found that the debugging
process depicted in this paper takes into account the fault
detection and the fault correction. In fact, a debugging process
can typically be subdivided into three steps: fault detection,
fault isolation (identifying the location of the root cause of
the problem), and fault correction [75]. If the debugger fails
to correct an isolated fault for too long, the fault may be
sent back for re-isolation (i.e. re-identifying the root cause).
Through the use of a multistage queueing system with feed-
back, the fault isolation and re-isolation in debugging pro-
cesses can be specified, which will approach reality more
closely. It is true that a more complicated queueing system
can handle more realistic situations, but further discussion of
this subject is beyond the scope of this paper.We plan to study
this part and publish our findings in the near future.
RQ3: What is the difficulty of the parameter setting in the

simulation method?
In this paper, we have developed a R-ViSim tool to pro-

vide quantitative estimation and allow to visualize simulation
results. After entering the parameters, user can start the simu-
lation and see the results in a short time. Different parameter
values in our proposed simulation method can be executed

107744 VOLUME 10, 2022



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

and compared with other models and method soon. Thus we
will be able to overcome the difficulty of the parameter setting
problem of this work and our results can be more easily and
closely replicated.
RQ4: What are the benefits of using simulation method for

software reliability estimation?
In addition to model-based approaches in Section II.A, the

discrete-event simulation generally offers an alternative to
analytical models as it can represent the impact of differ-
ent strategies that may be used during testing [4]. Simula-
tion approaches can relax certain unreasonable assumptions
which are common in model-based approaches. It can be
seen that our proposed simulator can describe the process
of fault correction in detail and optimize various system
parameters. Developers and project managers can use the
proposed simulation procedure to estimate workloads that
are similar to the actual situation and allocate appropriate
human resources. Here we will discuss and illustrate how to
apply both PPQ simulation procedure and/or PPQ model [9],
to project management. Let’s assume that the work efficiency
of each debugger is equal for convenience of analysis. Due to
the limits of paper size, here we will primarily choose DS1
to illustrate how the proposed method can help project man-
agers accurately estimate the efficiency of fault corrections.
We can follow similar procedures to make data analysis and
discussion for DS2 and DS3.

From Section IV.B, we obtain the average detection rates
of high and low-priority faults, i.e., λh = 1.244 and λl =
0.555 faults per week, respectively. To ensure system stabil-
ity (ρ = (λ/cµ) < 1), we assume that the service rate for
each debugger µ is 0.201 faults per week, and the number of
debuggers c is 10. In this case, we obtain ρ = (λh+λl)/cµ=
0.895 as the percentage of faults worked on by each debug-
ger during the testing phase. This analysis shows that we
use almost all resources (about 90%), thus introducing risk
into the project schedule. Obviously, if any incidents were
to happen, such as a debugger’s absence or a change in the
requirements, a delay in the project schedule may occur. One
way to save personnel resources is to delay the release time.
For example, with system DS1, if the release schedule is
set delayed for a time period roughly equal to one fourth of
the time period of the original schedule, which is a delay of
11 weeks, the extended fault detection rate and correction
rate are λ’ = [(1.244+0.555) × 45]/(45+11) = 1.45 faults
per week and µ’ = (2.01∗45)/(45+11)= 1.61 faults per
week. The ratio ρ < 1, showing that all faults can be cor-
rected by the time the software is released. Compared to not
extending the schedule, the personnel resource savings are
(100/2.01)× (2.01-1.61)= 19.9% That is to say, if 10 debug-
gers are participated, we can assign at most 2 debuggers to
another project or make a better deal with a holiday that might
occur within the development schedule.

V. CONCLUSION
Because the reliability of software is critical, software quality
evaluation is important. Thus, among those factors typically

used as measurements of software quality, software reliability
is regarded as key. A large number of SRGMs have been
proposed and discussed over the past three decades. But most
of published SRGMs assumed that detected faults will be
immediately fixed and/or removed during software testing
and debugging. However, most of developersmust spend time
analyzing the root cause of faults in the real world.

Presently, queueing models have been shown to be use-
ful in many applications. Some studies have shown that
queueing theory and/or queueing model can be used to
describe various engineering activities for software develop-
ment, such as testing, debugging, maintenance, etc. In this
paper, we propose to use the queueing-based simulation to
describe the behavior of FCP and assess the software relia-
bility instead of usingmodel-based approaches. The proposed
simulation-based method is therefore inspired by the process
scheduling of operating systems and considers the priority
levels of the faults. Each fault is assigned a priority level by
the testers and faults with higher priority are corrected sooner
than faults with lower priority. We thoroughly investigate the
fault removal process considering the fault correction time
and the finite debugging resources. Three real data sets col-
lected from OSS and CSS are used to test the performance
of our proposed method. Experimental results show that the
simulation-based method gives a better fit to the observed
data than traditional SRGMs and predicts future behavior
well. A tool called R-ViSim is developed to automate the
simulation task.

On the other hand, Figure 8 shows the difference between
detected and removed faults are the open-remaining faults.
Practically, the number of open-remaining faults is very
important information for managers to allocate adequate
debuggers during the software development. When track-
ing the trend of the number of open-remaining faults, the
interval-domain data are generally more ideal than time-
domain data. It should be noticed that the format conver-
sion from time-domain to interval-domain can easily be done
without any assumptions and precision loss [3]. Therefore,
even though the failure data are collected in the time-domain
format, it is better to transform them into the interval-domain
format before estimating the staffing needs.

Our future works can be divided into three aspects. First,
we plan to add more practical functions to our simula-
tion procedure. These will include determining the optimal
version-updating time of software systems and taking imper-
fect debugging into consideration, in order for project leaders
tomanage the software development processmore efficiently.
Second, during our research, we observed that debugging
teams not only consider the priority of a detected fault, but
also its severity. Critical severity faults cause greater damage
to systems than low severity faults. Therefore, in future work,
severity will be considered in the fault correction process to
estimate and evaluate software reliability

Lastly, we also plan to study another queuing mechanism.
In this paper, our proposed queueing-based simulation proce-
dure describes the single-queue schedulingmechanism. In the

VOLUME 10, 2022 107745



J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

future, we plan to use the express queue service in the simula-
tion procedure if the detected faults are not classified accord-
ing to their level of severity due to some reasons. The detected
faults of the software will be delivered to the express queue
or allocated to the express queue debuggers if its required
service time is below a certain value. Other faults will be
delivered to the regular queue or allocated to the regular queue
debuggers. In this case, the waiting time can be reduced.

REFERENCES
[1] Software Engineering Product Quality—Part 1: Quality Model,

document ISO/IEC 9126-1, 2001.
[2] H. Pham, System Software Reliability, Reliability Engineering Series.

London, U.K.: Springer, 2006.
[3] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability, Measure-

ment, Prediction, and Application. New York, NY, USA: McGraw-Hill,
1987.

[4] M. R. Lyu, Handbook of Software Reliability Engineering. Hightstown,
NJ, USA: McGraw-Hill, 1996.

[5] J. D. Musa, Software Reliability Engineering: More Reliable Software
Faster and Cheaper, 2nd ed. Bloomington, IN, USA: AuthorHouse, 2004.

[6] M. Ohba, ‘‘Software reliability analysis models,’’ IBM J. Res. Develop.,
vol. 28, no. 4, pp. 428–443, Jul. 1984.

[7] R. C. Tausworthe and M. R. Lyu, ‘‘A generalized technique for simulation
software reliability,’’ IEEE Softw., vol. 13, no. 2, pp. 77–88, Mar. 1996.

[8] M. Xie, Software Reliability Modelling. Singapore:World Scientific, 1991.
[9] J.-S. Lin, C.-Y. Huang, and C.-C. Fang, ‘‘Analysis and assessment

of software reliability modeling with preemptive priority queueing
policy,’’ J. Syst. Softw., vol. 187, May 2022, Art. no. 111249, doi:
10.1016/j.jss.2022.111249.

[10] C.-Y.Wu and C.-Y. Huang, ‘‘A study of incorporation of deep learning into
software reliability modeling and assessment,’’ IEEE Trans. Rel., vol. 70,
no. 4, pp. 1621–1640, Dec. 2021.

[11] K. Z. Yang, ‘‘An infinite server queueing model for software readiness
assessment and related performance measures,’’ Ph.D. dissertation, Dept.
Elect. Eng. Comput. Sci., Syracuse Univ., Syracuse, NY, USA, 1996.
[Online]. Available: http://surface.syr.edu/eecs_etd/189

[12] C.-Y. Huang and C.-T. Lin, ‘‘Software reliability analysis by considering
fault dependency and debugging time lag,’’ IEEE Trans. Rel., vol. 55, no. 3,
pp. 436–450, Sep. 2006.

[13] C.-Y. Huang andW.-C. Huang, ‘‘Software reliability analysis andmeasure-
ment using finite and infinite server queueing models,’’ IEEE Trans. Rel.,
vol. 57, no. 1, pp. 192–203, Mar. 2008.

[14] T. Z. Kuo, ‘‘Reliability analysis and application of using finite server
queuing models in the detection and removal process of software faults,’’
M.S. thesis, Computer Science Dept., Nat. Tsinghua Univ., Hsinchu,
Taiwan, 2013.

[15] S. Inoue and S. Yamada, ‘‘A software reliability growth modeling based on
infinite server queueing theory,’’ in Proc. 9th ISSAT Int. Conf. Rel. Quality
Design (QRD). Waikiki, HI, USA, Aug. 2003, pp. 305–309.

[16] A. Mockus, R. T. Fielding, and J. D. Herbsleb, ‘‘Two case studies of open
source software development: Apache and Mozilla,’’ ACM Trans. Softw.
Eng. Methodol., vol. 11, no. 3, pp. 309–346, Jul. 2002.

[17] H. Zhang, L. Gong, and S. Versteeg, ‘‘Predicting bug-fixing time: An
empirical study of commercial software projects,’’ in Proc. 35th Int. Conf.
Softw. Eng. (ICSE), May 2013, pp. 1042–1051.

[18] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts,
1st ed. Hoboken, NJ, USA: Wiley, 2014.

[19] H. Deitel, P. Deitel, and D. Choffnes, Operating Systems, 1st ed.
Upper Saddle River, NJ, USA: Pearson, 2007.

[20] W. Jones and D. Gregory, ‘‘Infinite-failures models for a finite world:
A simulation study of fault discovery,’’ IEEE Trans. Rel., vol. 43, no. 2,
pp. 211–230, Sep. 2004.

[21] A. L. Goel and K. Okumoto, ‘‘Time-dependent error-detection rate model
for software reliability and other performance measures,’’ IEEE Trans.
Rel., vol. R-28, no. 3, pp. 206–211, Aug. 1979.

[22] J. T. Duane, ‘‘Learning curve approach to reliability monitoring,’’ IEEE
Trans. Aerosp., vol. AS-2, no. 2, pp. 563–566, Apr. 1964.

[23] A. L. Goel, ‘‘Software reliability models: Assumptions, limitations, and
applicability,’’ IEEE Trans. Softw. Eng., vol. SE-11, no. 12, pp. 1411–1423,
Dec. 1985.

[24] S. Yamada and S. Osaki, ‘‘Reliability growth models for hardware and
software systems based on nonhomogeneous Poisson process: A survey,’’
Microelectron. Rel., vol. 23, no. 1, pp. 91–112, Dec. 1983.

[25] M. Ohba, ‘‘Inflection S-shaped software reliability growth model,’’ in
Stochastic Models in Reliability Theory. Berlin, Germany: Springer-
Verlag, 1984, pp. 144–162.

[26] S. Yamada, M. Ohba, and S. Osaki, ‘‘S-shaped reliability growth mod-
eling for software error detection,’’ IEEE Trans. Rel., vol. R-32, no. 5,
pp. 475–484, Dec. 1983.

[27] S. Yamada and S. Osaki, ‘‘Software reliability growth modeling: Mod-
els and applications,’’ IEEE Trans. Softw. Eng., vol. SE-11, no. 12,
pp. 1431–1437, Dec. 1985.

[28] S. Yamada, S. Osaki, andH. Narihisa, ‘‘A software reliability growthmodel
with two types of errors,’’ RAIRO Oper. Res., vol. 19, no. 1, pp. 87–104,
1985.

[29] S. Yamada and S. Osaki, ‘‘Software reliability analysis by considering fault
dependency and debugging time lag,’’ IEEE Trans. Softw. Eng., vol. SE-11,
no. 12, pp. 1431–1437, Aug. 1985.

[30] P. K. Kapur and R. B. Garg, ‘‘A software reliability growth model for an
error-removal phenomenon,’’ Softw. Eng. J., vol. 7, no. 4, p. 291, 1992.

[31] N. F. Schneidewind, ‘‘Fault correction profiles,’’ in Proc. 14th Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2003, pp. 257–267.

[32] P. Kapur, R. Garg, and S. Kumar, Contributions to Hardware and Software
Reliability. Singapore: World Scientific, 1999.

[33] Y. F. Hou, ‘‘Using the methods of statistical data analysis to improve the
trustworthiness of software reliability modeling,’’ M.S. thesis, Comput.
Sci. Dept., National Tsinghua Univ., Hsinchu, Taiwan, 2017.

[34] Z. Liu and R. Kang, ‘‘Imperfect debugging software belief reliability
growth model based on uncertain differential equation,’’ IEEE Trans. Rel.,
vol. 71, no. 2, pp. 735–746, Jun. 2022.

[35] R. Garg, S. Raheja, and R. K. Garg, ‘‘Decision support system for optimal
selection of software reliability growth models using a hybrid approach,’’
IEEE Trans. Rel., vol. 71, no. 1, pp. 149–161, Mar. 2022.

[36] M. Nafreen and L. Fiondella, ‘‘Software reliability models with bathtub-
shaped fault detection,’’ in Proc. Annu. Rel. Maintainability Symp.
(RAMS), May 2021, pp. 1–7.

[37] P. S. Sabnis and S. D. Joshi, ‘‘An architecture to enhance, optimize and
validate software reliability using machine learning: A contemplate solu-
tion,’’ in Proc. IEEE World Conf. Int. J. Speech Technol. Comput. (AIC),
Jun. 2022, pp. 21–26.

[38] H. Yang, L. Yang, N. Hu, Y. Pan, X. Wu, and G. Nie, ‘‘Reliability simu-
lation evaluation technology of network system with hardware and soft-
ware combined,’’ Proc. Asia Conf. Algorithms, Comput. Mach. Learn.
(CACML). Hangzhou, China, Mar. 2022, pp. 373–378.

[39] C. T. Lin and C. Y. Huang, ‘‘Quantifying the influences of imperfect
debugging on software development using simulation approach,’’ in Proc.
Int. Conf. Adv. Softw. Eng. Appl., Special Session Adv. Technol. Softw. Rel.
Saf. (ATSRS). Jeju Island, South Korea, Dec. 2009, pp. 305–312.

[40] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. Sebastopol, CA, USA:
O’Reilly & Associates, 1999.

[41] D. Gross and C. Harris, The Fundamentals of Queueing Theory, 3rd ed.
Hoboken, NJ, USA: Wiley, 1988.

[42] S. S. Gokhale and R. E. Mullen, ‘‘Queuing models for field defect reso-
lution process,’’ in Proc. 17th IEEE Int. Symp. Softw. Rel. Eng. (ISSRE).
Raleigh, NC, USA, pp. 353–362, Nov. 2006.

[43] P. K. Kapur, A. G. Aggarwal, and R. Kumar, ‘‘A unified approach for
discrete software reliability growth model for faults of different severity
using infinite server queuing model,’’ Commun. Dependability Quality
Manag. Int. J., Special Guest Issue Trends Future Directions Qual., Rel.
Infocom Technoligy, vol. 13, no. 4, pp. 66–81, Dec. 2010.

[44] P. K. Kapur, S. Anand, S. Inoue, and S. Yamada, ‘‘A unified approach for
developing software reliability growth model using infinite server queuing
model,’’ Int. J. Rel., Quality Safety Eng., vol. 17, no. 5, pp. 401–424,
Oct. 2010.

[45] T. Dohi, S. Osaki, and K. Trivediy, ‘‘An infinite server queueing approach
for describing software reliability growth—Unified modeling and estima-
tion framework,’’ in Proc. 11th Asia–Pacific Softw. Eng. Conf. (APSEC).
Busan, South Korea, Dec. 2004, pp. 110–119.

[46] N. Zhang, ‘‘Queue-based FDP and FCP analysis with detection effort and
correction effort,’’ J. Inf. Comput. Sci., vol. 12, no. 1, pp. 21–29, Jan. 2015.

[47] C.-Y. Huang, T.-Y. Hung, and C.-J. Hsu, ‘‘Software reliability prediction
and analysis using queueing models with multiple change-points,’’ in Proc.
3rd IEEE Int. Conf. Secure Softw. Integr. Rel. Improvement, Jul. 2009,
pp. 212–221.

107746 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.jss.2022.111249


J.-S. Lin, C.-Y. Huang: Queueing-Based Simulation for Software Reliability Analysis

[48] N. Zhang, G. Cui, and H. Liu, ‘‘Software reliability analysis using queuing-
based model with testing effort,’’ J. Softw., vol. 8, no. 6, pp. 1301–1307,
Jun. 2013.

[49] M. I. Kellner, ‘‘Software process modeling support for management plan-
ning and control,’’ in Proc. 1st Int. Conf. Softw. Process. Redondo Beach,
CA, USA, Oct. 1991, pp. 8–28, doi: 10.1109/ICSP.1991.664337.

[50] D. M. Raffo and M. I. Kellner, ‘‘Empirical analysis in software process
simulation modeling,’’ J. Syst. Softw., vol. 53, no. 1, pp. 31–41, Jul. 2000.

[51] D. Raffo, T. Kaltio, D. Partridge, K. Phalp, and J. F. Ramil, ‘‘Empirical
studies applied to software process models,’’ Empirical Softw. Eng., vol. 4,
pp. 353–369, Dec. 1999.

[52] S. S. Gokhale and M. R.-T. Lyu, ‘‘A simulation approach to structure-
based software reliability analysis,’’ IEEE Trans. Softw. Eng., vol. 31, no. 8,
pp. 643–656, Aug. 2005.

[53] I. Rus, J. Collofello, and P. Lakey, ‘‘Software process simulation for
reliability management,’’ J. Syst. Softw., vol. 46, nos. 2–3, pp. 173–182,
Apr. 1999.

[54] C. T. Lin and C. Y. Huang, ‘‘Staffing level and cost analyses for software
debugging activities through rate-based simulation approaches,’’ IEEE
Trans. Rel., vol. 58, no. 4, pp. 711–724, Dec. 2009.

[55] A. Juan, J. Faulin, J. Marques, and M. Sorroche, ‘‘J-SAEDES: A Java-
based simulation software to improve reliability and availability of com-
puter systems and networks,’’ in Proc. Winter Simulation Conf., Dec. 2007,
pp. 2285–2292.

[56] S. S. Gokhale, M. R. Lyu, and K. S. Trivedi, ‘‘Incorporating fault debug-
ging activities into software reliability models: A simulation approach,’’
IEEE Trans. Rel., vol. 55, no. 2, pp. 281–292, Jun. 2006.

[57] G. Antoniol, A. Cimitile, G. A. D. Lucca, and M. D. Penta, ‘‘Assessing
staffing needs for a software maintenance project through queuing simula-
tion,’’ IEEE Trans. Softw. Eng., vol. 30, no. 1, pp. 43–58, Jan. 2004.

[58] W. Fan, Y. Xiaohu, Z. Xiaochun, and C. Lu, ‘‘Simulation of the defect
removal process with queuing theory,’’ in Proc. 3rd Int. Symp. Empirical
Softw. Eng. Meas., Oct. 2009, pp. 473–476.

[59] S. C. Chang, C. Y. Huang, and J. S. Lin, ‘‘Applying express-queue-based
approach to software reliability and cost analysis,’’ in Proc. IEEE Int. Conf.
Signal Process., Commun. Comput. (ICSPCC). Hong Kong, Aug. 2016,
pp. 1–6.

[60] C.-T. Lin and Y.-F. Li, ‘‘Rate-based queueing simulation model of open
source software debugging activities,’’ IEEE Trans. Softw. Eng., vol. 40,
no. 11, pp. 1075–1099, Nov. 2014.

[61] Y. Shu, Z.Wu, H. Liu, and Y. Gao, ‘‘A simulation-based reliability analysis
approach of the fault-tolerant web services,’’ in Proc. 7th Int. Conf. Intell.
Syst., Modeling Simulation (ISMS), Jan. 2016, pp. 125–129.

[62] H. Nakahara, A. Monden, and Z. Yucel, ‘‘A simulation model of software
quality assurance in the software lifecycle,’’ in Proc. IEEE/ACIS 22nd Int.
Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD),
Nov. 2021, pp. 236–241.

[63] L. Kleinrock, Queueing Systems, 1st ed. Hoboken, NJ, USA: Wiley, 2016.
[64] A. B. Bondi and J. P. Buzen, ‘‘The response times of priority classes under

preemptive resume inM/G/m queues,’’ ACM SIGMETRICS Perform. Eval.
Rev., vol. 12, no. 3, pp. 195–201, Aug. 1984.

[65] I. Samoladas, L. Angelis, and I. Stamelos, ‘‘Survival analysis on the
duration of open source projects,’’ Inf. Softw. Technol., vol. 52, no. 9,
pp. 902–922, Sep. 2010.

[66] K. S. Trivedi, Probability and Statistics With Reliability, Queuing, and
Computer Science Applications, 2nd ed. Hoboken, NJ, USA: Wiley, 2002.

[67] Bugzilla. Accessed: Apr. 30, 2016. [Online]. Available: https://
bugzilla.mozilla.org/

[68] Eclipse Bugzilla. Accessed: Mar. 12, 2016. [Online]. Available:
https://bugs.eclipse.org/ bugs/

[69] G. Keller and B. Warrack, Statistics for Management and Economics.
Duxbury, MA, USA: Duxbury Press, 1999.

[70] K. Holden, D. A. Peel, and J. L. Thompson, Economic Forecasting: An
Introduction. Cambridge, U. K.: Cambridge Univ. Press, 1991.

[71] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in Software Engineering. Berlin, Germany: Springer,
2012.

[72] M. V. Zelkowitz and D. Wallace, ‘‘Experimental validation in software
engineering,’’ Inf. Softw. Technol., vol. 39, no. 11, pp. 735–743, 1997.

[73] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Met-
rics and Models. Redwood City, CA, USA: Benjamin-Cummings, 1986.

[74] P. Runeson and M. Höst, ‘‘Guidelines for conducting and reporting case
study research in software engineering,’’ Empirical Softw. Eng., vol. 14,
no. 2, pp. 131–164, Apr. 2009.

[75] R. S. Pressman and B. Maxim, Software Engineering: A Practitioner’s
Approach, 9th ed. New York, NY, USA: McGraw-Hill, 2019.

JHIH-SIN LIN received the B.S. degree in com-
puter science from the National Central Univer-
sity, Taoyuan, Taiwan, in 2015, and the M.S.
degree in computer science from the National
Tsing Hua University, Hsinchu, Taiwan, in 2017.
He is currently an Engineer at SiliconMotion, Inc.,
Zhubei, Hsinchu. His current research interests
include software reliability estimation and quality
measurement.

CHIN-YU HUANG (Member, IEEE) received the
M.S. and Ph.D. degrees in electrical engineering
from the National Taiwan University, Taipei, in
1994 and 2000, respectively. He is currently a
Full Professor with the Department of Computer
Science and the Institute of Information Systems
and Applications, National Tsing Hua University
(NTHU), Hsinchu, Taiwan. He was with the Bank
of Taiwan, from 1994 to 1999. He was also a
Senior Software Engineer at Taiwan Semiconduc-

tor Manufacturing Company, from 1999 to 2000. Before joining NTHU,
he was a Division Chief at Central Bank of China, Taipei, in 2003. His
research interests include software reliability engineering, software testing,
software metrics, software testability, fault tree analysis, and system safety
assessment. He received the Ta-You Wu Memorial Award of National Sci-
ence Council, Taiwan, in 2008. He has been on the Editorial Board of Sci-
entific Programming, since 2017 and theJournal of Information Science and
Engineering, since 2016. He is currently serving as an Associate Editor for
the IEEE TRANSACTIONS ON RELIABILITY.

VOLUME 10, 2022 107747

http://dx.doi.org/10.1109/ICSP.1991.664337

