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ABSTRACT The differential evolution (DE) is a well known population-based evolutionary algorithm that
has shown capabilities for solving real-world problems such as resource allocation, multicast routing, and
localization of target nodes. However, the accuracy of the DE, like other evolutionary algorithms, depends
on the settings of its control parameters. The localization of target nodes is highly nonlinear and multi-
modal, which may trap the DE in a local optimum. A local optimum may be avoided by a proper selection
of the control parameters. One of the key control parameters is the population size (PS), which affects
directly the localization accuracy and computational complexity. Finding an adequate PS throughout the
evolution process is a challenging task. Even if an adequate PS is found it may not be the adequate PS
anymore when the scenario of a problem changes. Although several approaches have been proposed for
adapting the PS, they have not been evaluated when solving the localization problem. In this paper, a
comprehensive comparison in terms of accuracy and computational demand is conducted among the state-
of-the-art PS adaptation techniques when employed with the DE for solving the localization problem of
target nodes in various scenarios. We also propose three new PS adaptation techniques, namely, exponential,
parabolic, and logistic reduction. The results from extensive numerical simulations show that, after setting
the initial PS properly, there is no technique that outperforms the others in practically all the scenario of the
localization problem. Additionally, the DE with the proposed techniques provides competitive localization
accuracy with considerably less computational complexity. Specifically, The proposed approaches reduce
the computational demand by approximately 50% over the standard DE in all the scenarios considered here.

INDEX TERMS Differential evolution, evolutionary algorithms, localization, population size control,
wireless sensor networks.

I. INTRODUCTION
Target nodes (TNs) localization in wireless sensor networks
(WSNs) is of pivotal importance in several real-world appli-
cations such as healthcare monitoring, surveillance, and
robotics. To estimate the position of TNs, several approaches
based on linear least squares, semidefinite programming,
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and unscented transformation are commonly employed [1].
Although such conventional approaches improve the local-
ization accuracy over their predecessors, they usually approx-
imate the maximum likelihood (ML) cost function, resulting
in suboptimal solutions. Interestingly, it was shown recently
that approaches based on evolutionary algorithm provided
considerably improvement over conventional approaches [2],
[3]. This is because evolution based approaches do not require
any approximation of the localization problem, and thus
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results in a better localization accuracy. Although evolution-
ary algorithms have been applied for solving several prob-
lems, its application to the localization problem has been
barely explored. There are important questions that need to
be answered: for instance, do the existing population size
(PS) control techniques enhance (or reduce) the quality of
the solution as in other problems [4], [5]? This paper tries
to answer this question.

Over the past years, several evolutionary algorithms have
been developed such as the differential evolution (DE) [6],
genetic algorithm [7], particle swarm optimization [8], and
ant colony optimization [9]. Among them, the DE is known
to provide excellent solutions to several complex problems
with reasonable robustness and computational demand [10],
[11]. Despite the robustness and relative simplicity of the
DE, however, it has also been shown that the accuracy of
the DE and its variants are highly dependent on their control
parameters [12].

A standard DE has three main control parameters: PS,
mutation scaling factor, and crossover probability. To obtain
reasonable solutions when employing the DE, it is usually
necessary to tune the control parameters. Since this is a
significant task in practice, several adaptive techniques have
been developed [13].

Among the three control parameters, the PS on the DE
plays a key role in balancing the exploration and exploitation
of the algorithm, which has an impact on the convergence rate
and solution quality [14]. A large PS in the DE can encourage
wider exploration of the solution space which may help to
avoid stagnation, but at the cost of delaying the convergence
to the global optimal solution. On the other hand, a small PS
usually results in a faster convergence with a higher risk of
convergence to a local optimal solution. In essence, finding
an optimal PS is of great importance in the DE and any
evolutionary algorithm.

A. RELATED WORK
When dealing with the PS, three categories of techniques
can be devised: fixed population, reduction-based, and self-
adaptive techniques. Fixed population (FiP) techniques main-
tain the same PS throughout the evolution process, and
reduction-based and self-adaptive techniques adapt the PS
based on certain rules. For instance, the iterative halving (ItH)
technique reduces the PS in half at predetermined intervals.
Each of the individuals in the first half is compared with
the second half by one-to-one correspondence and, then, the
best individuals are chosen for the next interval evolution
process. In [15], it was shown that the ItH technique helps to
improve the solution quality of the standard DE in most of the
cases considered therein although only for high dimensional
functions. The linear reduction (LiR) technique reduces the
PS linearly as a function of the number of fitness evaluations
or equivalently as a function of the number of iterations. The
LiR was introduced in [4] to improve the convergence rate
of an earlier algorithm called SHADE [16]. Therein, it was
shown that SHADE with the LiR technique outperforms, and

in some cases was outperformed, by the SHADE and other
evolutionary techniques [4]. Unlike the LiR technique, the
inverse parabolic (InP) technique reduces the PS following
an InP function defined based on the number of fitness
evaluations. A variant of the DE called PaDE, which uses
the InP technique, was compared with the SHADE with the
LiR technique for problems of dimension 30 [5]. Therein,
it was shown that the PaDE with the InP technique performs
better and worse than the SHADE with LiR depending of the
problem at hand. The linear staircase (LiS) technique reduces
the PS at a predefined rate and interval [17]. In the LiS
technique, as in the other techniques, only the best individuals
are selected to move to the next evolution process.

There also exist techniques that increase and decrease the
PS based on information related to the population and/or
predefined rules. For instance, the population diversity (PD)
technique measures the diversity of individuals in the popu-
lation for increasing or decreasing the PS [18]. Comparison
between the DE and variants of the DE with and without
the PD technique has shown that it is beneficial to use the
PD technique, in most cases, especially for high-dimensional
problems [18]. In contrast, the pulse wave (PuW) technique
increases or decreases the PS at pre-defined intervals by
taking into account variations in the fitness values [17]. Inter-
estingly, it is shown that the PuW technique is more effective
than the PD technique [17].More recently, the entropy control
(EnC) technique was introduced for dynamically adapting
the PS [19]. The EnC technique measures the entropy in the
population of the current and previous generations, which are
used for creating a ratio that is later employed in a control
parameter for increasing or decreasing the PS. The EnC
technique was shown to outperform the PD technique when
employed together with the SHADE algorithm [19].

In some works, the PS adaptation techniques were com-
pared. For instance, the FiP, ItH, LiR, and PD together with
the DE and its variants were compared in [20] for solving
optimization problems from the CEC2014 [21]. The com-
parison was only in terms of solution quality and it was
shown that in most of the cases the PD technique was more
effective than the ItH and LiR. A more comprehensive com-
parison between PS techniques was performed in [17], but
with another evolutionary algorithm, i.e., the sine cosine
algorithm [22]. Therein, the FiP, LiS, LiR, ItH, PuW, and PD
were employed with the sine cosine algorithm for solving
unimodal, multimodal, and composite functions similar to
those in the CEC2014. It was shown that the PuW performed
better than the FiP, LiS, LiR, ItH, and PD techniques at the
cost of higher computational demand in most cases.

B. MOTIVATIONS AND KEY CONTRIBUTIONS
The works mentioned above demonstrate, in general, that PS
control techniques improve the performance of evolutionary
algorithms. However, it is not clear which of the PS control
techniques is the best since it was reported that an increase in
the performance of the evolutionary algorithm due to the PS
techniques can vary significantly depending on the problem
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at hand. Furthermore, use of a certain PS technique may be
counterproductive in some cases. Therefore, a comprehensive
comparison of the PS control techniques for a particular
problem is of great importance.

In this paper, we aim at exploring the performance of the
PS adaptation techniques when employed together with the
DE for solving the localization problem of the TN based on
received signal strength (RSS) measurements in WSNs. The
DEwith several PS adaptation techniqueswill be compared in
terms of localization accuracy and computational complexity.
Although there exist some works where PS adaptation tech-
niques are compared, the comparisons are limited to a few
PS adaptation techniques [20] or with a different evolutionary
algorithm [17]: these works in addition do not deal with the
TN localization problem, but deal with other problems such
as those presented in the CEC2014 [21]. Furthermore, they
made the comparison only for high dimensional problems,
i.e., dimensions not smaller than 10.

In addition to conducting a comparison among popular
PS adaptation techniques, we also propose three new PS
adaptation techniques: exponential reduction (ExR), logistic
reduction (LoR), and parabolic reduction (PaR). The reason
for suggesting new PS adaptation techniques is twofold. First,
according to the results in [4] and [5] on LiR and InP tech-
niques, the accuracy of DE can be improved by reducing
the PS in some scenarios, implying the possibility of more
efficient PS reduction techniques. Second, we would like to
test if a drastic or smooth PS reduction affects the accuracy
of the DE for solving the localization problem.

The main contributions of this article can be summarized
as follows:

• To the best of our knowledge, this article is the first study
in which the state-of-the-art PS adaptation techniques
are tested and compared when solving the localization
problem.

• The comparison is conducted exhaustively in several
scenarios of the localization problem in terms of local-
ization accuracy and computational demand.

• We propose, and include in the comparison, three new
PS adaptation techniques that reduce the computational
burden without compromising the localization accuracy.

• Unlikemost of the existing PS adaptation techniques, the
proposed techniques in this work require only one or no
control parameter for reducing the PS. This is important
since an evolutionary algorithm with less control param-
eters is commonly preferred.

The remainder of this paper is organized as follows.
In Section II, the TN localization problem based on RSS
in WSNs is presented. In Section III, the DE with PS
adaptation is introduced. Section IV presents PS adapta-
tion techniques for the DE, where three new PS adaptation
techniques are introduced in addition to conventional tech-
niques. Section V is devoted to the comparison of DE with
the proposed and other popular PS adaptation techniques
when solving the localization problem presented in Section II.

The comparisons are based on the localization accuracy and
computational complexity in a variety of scenarios. Discus-
sion on the comparison results is also presented. Finally,
in Section VI, concluding remarks are included.

II. LOCALIZATION PROBLEM OF TARGET NODE
For simplicity and without loss of generality, two-
dimensional (2-D) WSNs are assumed. The extension to
three-dimensional (3-D) WSN should be straightforward.
Consider N anchor nodes (ANs) with known positions xn =
[xn, yn]T for n = 1, 2, · · · ,N , and one TN with unknown
position x0 = [x0, y0]T .
Under the path-loss model in [23], the received power Pn

at the n-th AN from the TN can be expressed as

Pn = P0 − 10γ log10 ‖xn − x0‖ + vn (dB) (1)

for n = 1, 2, · · · ,N , where ‖φ‖ =
√
φ21 + φ

2
2 denotes

the Euclidean norm of a vector φ = [φ1, φ2] in the
two-dimensional space R2. Here, γ denotes the path loss
exponent and P0 denotes the power of the signal transmitted
from the TN. The additive noise term vn represents the log-
shadowing effect and follows a Gaussian distribution with
mean zero and standard deviation σn.

The localization problem consists in finding the unknown
location x0 of the TN by

x̂0 = argmin
x

f (x) (2)

using the RSS measurements {Pn}Nn=1, where

f (x) =
N∑
n=1

1
σ 2
n

(
Pn − P0 + 10γ log10 ‖xn − x‖

)2 (3)

is the ML cost function with x ∈ R2.
To solve (2), several approaches have been proposed

and refined including those based on the linear least
squares [24], convex optimization [25] and unscented trans-
formation [26]. Recently, approaches based on evolution-
ary algorithms are gaining attention because they do not
approximate (3) and tend to provide competitive localization
accuracy [2], [3], [11].

III. DIFFERENTIAL EVOLUTION WITH POPULATION
SIZE ADAPTATION
The DE with PS adaptation is a population based algo-
rithm, a stochastic search optimization tool. The population
in the DE with PS adaptation evolves through G generations.
At each generation, the population of the DE with PS adapta-
tion passes through four main processes: mutation, crossover,
selection, and PS adaptation.

For g = 0, 1, · · · ,G− 1, the population
{
I (g)l

}L(g)
l=1

is a set

of L(g) individuals at the g-th generation, where each of the

two entries of I (g)l =
[
I (g)l,1 , I

(g)
l,2

]
is called a gene. In the case

of dealing with a three-dimensional localization problem, the
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individual I (g)l is a three-dimensional vector. The number L(g)

of individuals can be bounded as

L
−→
≤ L(g) ≤

←−
L . (4)

In (4), L
−→

and
←−
L denote the lower and upper bounds of

L(g), respectively: L
−→

can be obtained by analyzing the
minimum number of individuals required in the evolution
process. On the other hand,

←−
L can be set up based on the

suggestion, for example, that a PS higher than 10D, where
D represents the dimension of the problem, does not have a
considerable effect on enhancing the quality of the solution
of a problem [6].

The DE with PS adaptation creates the initial population{
I (0)l

}L(0)
l=1

randomly in the solution space. Here, the solution

space, also called the area of interest, is defined as

Z = {(z1, z2) : a1 ≤ z1 ≤ b1, a2 ≤ z2 ≤ b2} , (5)

where ad and bd denote the lower and upper bounds, respec-
tively, on zd for d = 1, 2. After the initial population is
generated, the population evolves through the four processes
of the DE with PS adaptation:

A. MUTATION

A mutant population
{
Ĩ
(g)
l =

[
Ĩ (g)l,1 , Ĩ

(g)
l,2

]}L(g)
l=1

is generated as

Ĩ
(g)
l = I (g)k + α

(
I (g)p − I

(g)
q

)
(6)

from the original population
{
I (g)l

}L(g)
l=1

, where k, p, q ∈{
1, 2, · · · ,L(g)

}
such that k 6= p, k 6= q, and p 6= q. Here, α

denotes the scaling factor which regulates the diversity in the
population.

B. CROSSOVER

A trial population
{
Ĭ
(g)
l =

[
Ĭ (g)l,1 , Ĭ

(g)
l,2

]}L(g)
l=1

is generated by

combining the elements of the individuals in the mutated and
original populations with a crossover probability pC ∈ [0, 1]
as

Ĭ (g)l,d =

{
Ĩ (g)l,d , if cl ≤ pC or d = dR,

I (g)l,d , otherwise,
(7)

where cl ∼ U (0, 1) and dR ∈ {1, 2} is a randomly selected
index.

C. SELECTION
The selection process compares individuals in the trial and
original populations. An individual with the lowest fitness
value is selected as

I (g+1)l = argmin
I(g)l ,Ĭ

(g)
l

{
f
(
I (g)l

)
, f
(
Ĭ
(g)
l

)}
. (8)

Then, the selected individual is employed as the initial indi-
vidual in the next generation.

Algorithm1: PseudoCode of theDEWith PSAdaptation
Input:ML cost function (3), RSS measurements

{Pn}Nn=1, number N of ANs, initial population
size L(0), scaling factor α, crossover probability
pC , maximum number G of generations, lower
bounds ad , and upper bounds bd for d = 1, 2

Output: Estimated value of the position of TN
Initialize the population randomly;
while g ≤ G− 1 do

for l = 1; l ≤ L; l = l + 1 do
Create mutant individuals with (6);
Generate trial individuals via (7);
Select the best individual via (8);

end
Adapt the PS as in (9) with (11), (13), (14), (17),
(18), (22), (23), (28), (32), (30), or (31);
When required:
→ Increase the PS by generating random
individuals;
→ Reduce the PS by eliminating the least favorable
individuals;
Increase g = g+ 1;

end
Return the estimated value of the position of TN;

D. ADAPTATION OF PS
The PS adaptation is performed after the three main processes
of the DE have been concluded. The adaptation of the PS can
be achieved at any stage and based on available information,
e.g., Euclidean distance among the individuals or entropy of
the population.

This process adapts the PS and assures that the PS does not
violate the lower and upper bounds of the PS as

L(g+1) =


←−
L , if L(g) >

←−
L

L
−→
, if L(g) < L

−→

‘Adaptation technique’, Otherwise.

(9)

A formal description of the ‘Adaptation technique’ will be
provided in detail in Section IV.

Finally, after G generations, the best individual

I = argmin
I (G)l

{
f
(
I (G)l

)}L(G)
l=1

(10)

among
{
I (G)l

}L(G)
l=1

is selected as the estimate x̂0 of the

unknown location x0 of the TN. Algorithm 1 summarizes the
pseudo-code of the DEwith several PS adaptation techniques.

IV. ADAPTATION TECHNIQUES FOR POPULATION SIZE
Several techniques for adapting the PS in various evolu-
tionary algorithms have been reported in [4], [5] [13], [15],
[17], [18], and [19]. The techniques can be divided into
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three categories: fixed population, reduction-based, and self-
adaptive techniques.

A. FIXED POPULATION TECHNIQUES
The FiP techniques keep the same PS over all the generations:
that is, for g = 0, 1, · · · ,G− 1,

L(g+1) = L(g). (11)

There exists a general guideline that in most cases provides
good results [6], i.e., 5D ≤ L(g) ≤ 10D. High values of fixed
PS usually provide a better accuracy of the DE, especially
when the dimension of the problem is high, e.g., D > 10.
Interestingly, however, for the localization problem where
D ≤ 3 it will be shown that high values of PS do not pro-
vide considerable improvement in the localization accuracy.
Instead, setting PS to high values, i.e., near 10D, only incurs
increased computational complexity.

B. REDUCTION-BASED TECHNIQUES
The reduction-based techniques reduce the PS monoton-
ically to the minimum PS L

−→
in successive generations.

When reducing the PS, the least favorable individuals are
eliminated.

1) ITERATIVE HALVING
The ItH technique reduces the PS in half at intervals defined
by [15]

δItH =

⌊
G
Np

⌋
, (12)

where b∗c denotes the floor function rounding ∗ to the great-
est integer less than or equal to ∗ and Np denotes the number
of interval that needs to be set based on the user expertise [15].
Once δItH is obtained, L(g) is updated as

L(g+1) =

{⌊
L(g)
2

⌋
, if mod(g, δItH) = 0,

L(g), otherwise,
(13)

where mod(c1, c2) is the modular operator. The ItH technique
adjusts the PS at an interval δItH of generations by taking only
the best half individuals in the current generation [15].

2) LINEAR REDUCTION
The LiR technique decreases the PS at each generation. It was
proposed to enhance the accuracy of a variant of the DE
algorithm [4]. The PS in the LiR technique is reduced as

L(g+1) =

[
L
−→
− L(0)

G
· g+ L(0)

]
, (14)

where [∗] rounds ∗ to the closest integer.

3) LINEAR STAIRCASE
In the LiS technique a reduction factor 1 is employed for
establishing the number Nr of reductions as [17]

Nr =

⌊
L(0) − L

−→

1

⌋
. (15)

The reduction of the PS in the LiS technique is then executed
at an interval of δLiS defined by

δLiS =

⌊
G

Nr + 1

⌋
. (16)

The PS is updated as

L(g+1) =

{
L(g) −1, if mod(g, δLiS) = 0,
L(g), otherwise.

(17)

4) INVERSE PARABOLIC
The InP technique reduces the PS as [5]

L(g+1) =

[
L
−→
− L(0)(

G−L(0)
)2 (g− L(0))2 + L(0)

]
. (18)

C. SELF-ADAPTIVE TECHNIQUES
Self-adaptive techniques increase or decrease the PS accord-
ing to some information extracted from the population. When
an increase in the PS is required, additional individuals
are generated randomly within the solution space Z. When
a reduction is needed, the least favorable individuals are
eliminated.

1) POPULATION DIVERSITY
The PD technique employs the parameter

R(g) =
ρ(g)

ρ(0)
, (19)

called the relative diversity. In (19), ρ(g) denotes the popula-
tion diversity at the g-th generation calculated as

ρ(g) =

√√√√√ 1
L(g)

L(g)∑
l=1

2∑
j=1

(
I (g)l,j − I

(g)
j

)2
(20)

with

I
(g)
j =

1
L(g)

L(g)∑
l=1

Il,j (21)

being the arithmetic mean of the j-th gene over all the indi-
viduals at the g-th generation. Taking into account the relative
diversity R(g), the PD technique updates the PS as

L(g+1) =


L(g) + 1, if R(g) < 0.9 R(g−1),
L(g) − 1, if R(g) > 1.1 R(g−1),
L(g), otherwise.

(22)

2) PULSE WAVE
The PuW technique makes the changes in the PS by tak-
ing into account variations in the best fitness values at
the g-th and (g − 1)-st generations. The PuW technique
employs a control parameter δPuW which is used as a factor
for increasing or decreasing the PS and as an interval of
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adaptation. The PS adaptation with the PuW technique is
conducted as

L(g+1)

=



L(g) +

δPuW
(
←−
L − L(g)

)
G

 , if mod(g, δPuW) = 0

and 1f ≤ κ,

L(g) −

δPuW
(
L(g) − L

−→

)
G

 , if mod(g, δPuW) = 0

and 1f > κ,

L(g), otherwise,
(23)

where κ is a small number that serves a threshold for mea-
suring the difference 1f between the smallest values of the
ML cost function shown in (3) at the current and previous
generations.

3) ENTROPY CONTROL
The EnC technique is based on the concept of entropy
introduced by Shannon [27]. The EnC technique analyzes
the existing entropy in the population and, according to it,
increases or decreases the PS [19]. The entropy of the popu-
lation at the g-th generation is calculated as

Ẽ (g)
=

2∏
j=1

E (g)
j , (24)

where

E (g)
j = −

L(g)∑
l=1

p(g)l,j log
(
p(g)l,j

)
(25)

denotes the entropy of the j-th gene at the g-th generation for
j = 1, 2. In (25),

p(g)l,j =
N (g)
l,j

L(g)
(26)

is the probability that an individual falls into certain decision
space evenly divided into L(g) intervals, where N (g)

l,j is the
number of individuals with their j-th gene falling into the l-th
interval at the g-th generation.

The EnC technique creates the ratio

R(g)EnC =
Ẽ (g)

Ẽ (g−1)
(27)

at each generation using the entropy of the population at the
current and previous generations. Then, the PS is adjusted at
certain intervals δEnC as

L(g+1) =



L(g) +
[
r1 · L(g)

]
, if mod(g, δEnC) = 0,

g < 0.2G, and
µ > R̄EnC,

L(g) −
[
r2 · L(g)

]
, if mod(g, δEnC) = 0,

g ≥ 0.2 G, and
µ < R̄EnC,

L(g), otherwise,
(28)

FIGURE 1. Reduction of the population size of the proposed and some
popular reduction-based techniques.

where µ ∼ U (0, 1), and

R̄EnC =
1
δEnC

g∑
i=g−δEnC

R(i)EnC (29)

is the average value of the ratio of entropy. In the EnC
technique, the parameters δEnC, r1, and r2 need to be provided
by the users.

D. PROPOSED TECHNIQUES
Based on the LiR technique and the observation that reducing
the PS linearly may not be the best option [5], we now
propose three new techniques for reducing the PS. It will
be shown later in Section V that nonlinear reduction such as
those proposed in this section can provide a better trade-off
between the localization accuracy and computational com-
plexity. When reducing the PS, the proposed techniques also
eliminate the least favorable individuals.

1) EXPONENTIAL REDUCTION
In the ExR technique, the reduction of the PS follows an
exponential decay as

L(g+1) =
[(
L(0) − L

−→

)
βg + L

−→

]
, (30)

where 0 ≤ β ≤ 1 is the control parameter of the ExR
technique controlling how fast the PS reduction happens. For
small values of β, the PS is rapidly reduced from the initial PS
L(0) to the minimum PS L

−→
. This diminishes the exploration

capability of the DE, which results in a poor quality solution.
On the contrary, at higher values of β, the reduction of the
PS is slowed down, which results in an improvement of the
exploration capability and, consequently, the performance of
the algorithm. Note that at the highest value of β = 1 the ExR
becomes FiP.

2) LOGISTIC REDUCTION
Themain idea of the LoR technique is to have a smooth transi-
tion from exploration, where having a larger PS is necessary,
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TABLE 1. Comparison of Theoretical Computational Complexity.

to exploitation, where a small PS may be more suitable [4].
To do so, the reduction of the PS is conducted according to
an inverse logistic function as

L(g+1)=

(L(0) − L
−→

)1−
1

1+ e

(
G
2 −g

)
λ

+ L
−→

 , (31)

where 0.1 ≤ λ denotes the control parameter of the LoR
technique controlling how smoothly the PS changes from the
initial value L(0) to the lower bound L

−→
. Note that among the

proposed techniques the LoR is the one that allows a smoother
transition from the initial to the minimum PS. For small
values of λ, the LoR tends to behave like the LiR technique.
On the other hand, for high values of λ, the LoR tends to
behave as the LiS, but with only one stair. Interestingly, it will
be shown in Section V-E that the performance of the DE with
the LoR is rather insensitive to the values of λ.

3) PARABOLIC REDUCTION
In the PaR technique, the reduction of the PS follows a
parabolic decay as the evolution process evolves. This means

that as g increases the PS is reduced parabolically as

L(g+1) =

[
L(0) − L

−→

G2 (g− G)2 + L
−→

]
. (32)

It is worthwhile mentioning that the PaR technique does
not require control parameters unlike most of the techniques
introduced above.

It is noteworthy that the proposed approaches, like the
reduction-based techniques such as the ItH, LiR, LiS, and
InP, do not require to measure the diversity in the current
generation. Consequently, the proposed approaches signif-
icantly simplify the process of PS control without affect-
ing the quality of the solution, especially over adaptive
methods.

Fig. 1 depicts the PS reduction patterns of the ExR, LoR,
and PaR techniques with respect to the LiR and InP tech-
niques. Note that the ExR and PaR are more drastic reduction
techniques than the LiR and InP. The LoR technique can
be considered a smoother way of reducing the PS. The InP
technique is the most cautious when reducing the PS, and
the ExR technique is the boldest and reduces the PS at a
higher rate compared to the other techniques. Although the
PaR technique also reduces the PS much faster than the LiR
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TABLE 2. Control parameters of PS adaptation techniques.

and InP techniques, it is more conservative than the ExR
technique. In contrast, the LoR technique follows a pattern
that can be considered as a median between the InP and PaR
techniques.

E. COMPUTATIONAL COMPLEXITY
Table 1 shows the theoretical computational complexity of the
PS control techniques introduced in this section. In general,
it is observed that the computational complexity of all the
techniques depends mainly on the PS size at the current
generation, which is intrinsically linked to the characteristics
of each of the techniques. Therefore, it is difficult to state
which of the techniques is the one with the highest or lowest
computational complexity. Nevertheless, it can be observed
that the self-adaptive techniques are more complex than those
based on reduction techniques. This statement will be con-
firmed in Section V.

V. COMPARISON AMONG THE ADAPTATION
TECHNIQUES
In this section, results from numerical simulations are pre-
sented for comparing the accuracy of the DE with several
PS adaptation techniques when solving the localization prob-
lem of a TN in WSNs. The effects of the PS adaptation
techniques described in Section IV are carefully analyzed in
terms of the localization accuracy and computational com-
plexity. The DE algorithms with PS adaptation techniques
are all implemented in MATLAB - R2017b. We also include
the Cramer-Rao lower bound (CRLB) as a benchmark, and
employ the root-mean-square error (RMSE) as the param-
eter for comparing the localization accuracy. The RMSE is
defined as

RMSE =

√√√√ 1
M

M∑
m=1

∥∥x̂0,m − x0,m∥∥2, (33)

where M is the number of Monte Carlo trials, and x0,m =[
x0,m, y0,m

]T and x̂0,m =
[
x̂0,m, ŷ0,m

]T denote the actual and
estimated positions, respectively, of the TN at them-th Monte
Carlo trial.

We have assumed nineANs deployed deterministically and
randomly, and a TN deployed randomly on a 2-dimensional
area of 50 m × 50 m with the lower and upper bounds a1 =
a2 = 0 and b1 = b2 = 50, respectively. For the path-loss
model (1), we have considered −10 dBm as the power P0 of
the transmitted signal from the TN, γ = 3 as the path-loss

FIGURE 2. Localization accuracy versus initial population size L(0)

(minimum PS L
−→
= 3, maximum PS

←−
L = 20).

FIGURE 3. Average running time versus initial population size L(0)

(minimum PS L
−→
= 3, maximum PS

←−
L = 20).

exponent, and σ = 5 dB as the standard deviation of the log-
shadowing noise. The required control parameters of six PS
adaptation techniques are presented in Table 2. The remaining
five PS adaptation techniques considered here do not require
control parameters.

A. EFFECT OF THE INITIAL POPULATION SIZE
The initial PS is a key parameter since it is directly related to
the exploration and exploitation paradigm in any evolutionary
algorithm [14]. Here, we analyze the effect of the initial PS
in terms of the accuracy and computational complexity of the
DE with PS adaptation techniques. Nine ANs are deployed
deterministically at (0, 0), (0, 25), (0, 50), (25, 0), (25, 25),
(25, 50), (50, 0), (50, 25), and (50, 50). The maximum num-
ber G of iterations is set to 50: the reason for this setting will
be evident in the next subsection.

Fig. 2 shows the RMSE of the DE with PS adaptation
techniques as a function of the initial PS L(0). In general,
it is observed that as L(0) increases the localization accu-
racy of the DE is enhanced regardless of the PS adaptation
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FIGURE 4. Localization accuracy versus maximum number G of iterations
(minimum PS L

−→
= 3, maximum PS

←−
L = 20).

FIGURE 5. Average running time versus maximum number G of iterations
(minimum PS L

−→
= 3, maximum PS

←−
L = 20).

technique. Interestingly, Fig. 2 also shows that, when L(0) is
larger than 10 approximately, the performance of DE with
any PS adaptation technique provides similar localization
accuracy, which in some extent validates the suggestion
of setting the value of the initial PS between 5D and
10D [6]. One may think that by reducing the PS through
the evolution processes may deteriorate the accuracy: on the
contrary, Fig. 2 shows that the DE algorithms with PS reduc-
tion techniques provide similar localization accuracy to the
others.

Fig. 3 depicts the average computational time of the DE
with eleven PS adaptation techniques as a function of the ini-
tial PS L(0). It is observed that as the initial PS L(0) increases
the computational time increases. Additionally, the DE algo-
rithms with the PD, PuW, and FiP are among the techniques
with the highest computational complexity. In contrast, the
DE algorithms with the proposed PS adaptation techniques
are among the least computationally demanding. In fact, the
DE algorithm with the proposed ExR technique is the least

FIGURE 6. Localization accuracy versus standard deviation of the
log-shadowing noise (minimum PS L

−→
= 3, maximum PS

←−
L = 20).

FIGURE 7. Localization accuracy versus number of anchor nodes
(standard deviation of the log-shadowing noise σ = 5 dB, minimum PS
L
−→
= 3, maximum PS

←−
L = 20).

computationally demanding among all the algorithms com-
pared when L(0) > 8.

B. EFFECT OF THE NUMBER OF ITERATION
In this subsection, we analyze the effect of the maximum
number G of iterations on the localization accuracy and com-
putational complexity. Here, the ANs and TN are randomly
deployed inside the area of interest: the reason is to test if less
favorable distributions of ANs affect the accuracy of the DE
with PS adaptation techniques. We set the initial PS L(0) to
15 for all the algorithms considered.

Fig. 4 depicts the RMSE of the DE with PS techniques as a
function of the maximum number of iterations. Although it is
not completely clear, there is a tendency for better accuracy
as G increases. However, the improvement obtained beyond
G > 40 seems to be negligible. This figure also shows
that none of the algorithms perform uniformly best in all the
range of values of G. For instance, at G = 60 it is clearly
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TABLE 3. Mean and Standard Deviation of Absolute Localization Error of
PS Techniques.

FIGURE 8. Average running time versus number of ANs (CPU: Intel
(R) Core (TM) i5-6600 3.30 GHz. RAM: 16.0 GB, minimum PS L

−→
= 3,

maximum PS
←−
L = 20).

observed that the DE with the ExR technique provides the
best accuracy while the DE with the PD technique provides
the best accuracy at G = 80.

Fig. 5 shows the average computational time of several
algorithms as a function of the maximum number G of
iterations. In general, it is observed that the computational
time of all the algorithms increases with a larger value of
G. The DE with the PD, FiP, and PuW techniques are the
most computationally demanding. In contrast, the DE with
the ExR, LoR, and PaR techniques together with the ItH and
LiS techniques are in the group of the least computationally
demanding algorithms. Within the second group, the DE with
the ExR technique is the least computationally demanding
when G > 40.

C. EFFECT OF NOISE VARIANCE
Let us consider the accuracy of the DE with several PS adap-
tation techniques for solving the localization problem when
the standard deviation of the log-shadowing noise varies. The
ANs and TN are distributed as in Section V-A. The initial
PS L(0) and the maximum number G of iterations are set to
15 and 50, respectively, for all the algorithms: these values

FIGURE 9. Localization accuracy of the DE with the ExR technique versus
β (standard deviation of the log-shadowing noise σ = 3 dB, minimum PS
L
−→
= 3, maximum PS

←−
L = 20).

FIGURE 10. Localization accuracy of the DE with the LoR technique
versus λ (standard deviation of the log-shadowing noise σ = 3 dB,
minimum PS L

−→
= 3, maximum PS

←−
L = 20).

are chosen based on the results in Sections V-A and V-B,
respectively.

Fig. 6 shows that, as the standard deviation of noise
increases, the accuracy of all algorithms deteriorates. Inter-
estingly, this figure also shows that, at each value of the
standard deviation of the log-shadowing noise, all the algo-
rithms provide similar localization accuracy. This means
that the DE algorithms with all the PS adaptation tech-
niques are equally sensitive to the variations of the noise
strength. To validate this observation, we calculate the mean
and standard deviation of the absolute estimation error∣∣x̂m − xm∣∣. Table 3 shows the mean and standard deviation
of the absolute estimation error for the algorithms when
the standard deviation of the log-shadowing noise is 5 dB.
It is observed that all the PS adaptation techniques pro-
vide similar values of the mean and standard deviation of
the localization error in the x- and y-axes of the solution
space.
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TABLE 4. Performance of Several Algorithms for Different Dimensions of the TN Localization Problem(
2-D: L(0) = 15, G = 50; 3-D: L(0) = 20, G = 80; 5-D: L(0) = 30, G = 100

)
.

D. EFFECT OF NUMBER OF ANCHOR NODES
In this subsection, we investigate the effect of the number of
ANs on the localization accuracy of algorithms. We consider
N = 3, 6, · · · , 21 ANs. At each number of ANs, the ANs
and TN are deployed randomly inside the area of interest, and
M = 1000 Monte Carlo trials are considered.
Fig. 7 shows the RMSE as a function of the number of

ANs. This figure shows that, as the number of ANs increases,
the localization accuracy is enhanced and all the algorithms
perform closer to the CRLB. Additionally, the figure shows
that at any number of ANs the localization accuracy of the
algorithms is practically the same in general.

Assuming the same values of parameters as those chosen
for Fig. 7, Fig. 8 depicts the average running time of the
algorithms as a function of the number of ANs. It is observed
that the DE with the ExR technique is computationally the
least demanding among the eleven algorithms. When N =
15 the execution times of the DE with the ExR, LoR, PaR,
EnC, FiP, ItH, InP, LiR, LiS, PD, and PuW are approximately
10, 16.3, 13, 18, 25.7, 11.8, 20.1, 16.4, 13.4, 34.2, and
22 milliseconds, respectively. These results demonstrate that
the DE with the ExR technique reduces more than half the
computational demand of the DE with the FiP technique,
which can be regarded as the standard DE.

E. EFFECT OF CONTROL PARAMETERS
Assuming the same distribution of ANs and TN as in
Section V-A, here we analyze the effect of the control
parameters of the ExR and LoR techniques when the stan-
dard deviation of the log-shadowing noise is σ = 3 dB.
The CRLB and DE with the FiP technique are included as
benchmarks.

Fig. 9 shows the localization accuracy as a function of the
control parameter β. It is clearly observed that as β increases
the accuracy of the DE with the ExR technique improves and
approaches the CRLB. Note that the ExR technique with β =
1 is the same as the FiP.

Fig. 10 depicts the RMSE of the DE with LoR technique as
a function of the control parameter λ. It is observed that the
RMSE of the DEwith LoR oscillates around RMSE = 4.1m.
However, this oscillation is not due to the variations of its

control parameter λ, but due to the geometrical configuration
among the ANs and TN. This assertion is based on the
observation that the CRLB also shows oscillation. Addition-
ally, the DE with the FiP technique, which does not depend
on the control parameter λ, has almost the same pattern of
oscillation as the DE with the LoR technique. Base on these
observations, we can infer that the DE with LoR technique is
not sensitive to its control parameter λ, and regardless of the
value of λ, the DE with LoR technique provides competitive
localization accuracy.

F. EFFECT OF THE DIMENSION OF THE PROBLEM
In this section, we analyze the performance of the algorithms
when the dimension of the localization problem is increased.
We consider the localization problem in 2-D, 3-D, and five-
dimensional (5-D) spaces. For the 2-D localization problem,
the setup of parameters is the same as that in Section V-C.
For the 3-D localization problem, the positions of the eight
ANs are fixed in each of the vertices of a cube of 50 m ×
50 m× 50 m. For the 5-D localization problem, in addition to
the unknown 3-D position of the TN, we include the transmit
power and path loss exponent as unknown parameters.

The performance of several algorithms in terms of local-
ization accuracy and average computational time is presented
in Table 4 when the standard deviation of the log-shadowing
noise is σ = 3 dB. It is observed that, for the 2-D
and 3-D localization problems, the localization accuracy
of all the algorithms is similar. However, some differences
can be observed when the algorithms are tested in the
5-D localization problem. For instance, The DE with the
PaR and LoR are among the algorithms with the high-
est localization accuracy. In contrast, the DE with the
ExR provides the lowest localization accuracy. It is also
observed that the DE with the ExR, LiS, and PaR are the
ones with the lowest average computational time. Among
them, the DE with the ExR is the least computationally
demanding.

G. CONVERGENCE CURVES
Considering the same scenario of the localization problem
with the same distribution of ANs and TN as in Section V-C,
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FIGURE 11. Convergence of the best-so-far solution (standard deviation
of the log-shadowing noise σ = 5 dB, minimum PS L

−→
= 3, maximum PS

←−
L = 20).

Fig. 11 shows the averaged convergence curves as a function
of the number of iterations in log-scale. For each algorithm,
M = 100 Monte Carlo runs is considered when the standard
deviation of the noise is σ = 5 dB. For each run, we record
the convergence curve of each of the algorithms based on the
dynamics of the best-so-far fitness value. It is observed that
all the algorithms converge after approximately 20 iterations
and that there is no significant difference in the fitness values
of the algorithms over 20 iterations.

H. DISCUSSION
It has been demonstrated in [4] and [5] that a careful reduction
of the PS in the DE could provide us with an improvement of
the quality of solutions. However, in the specific problem of
TN localization, the results from our simulations show that
there is no such improvement in the solution quality, i.e.,
localization accuracy, of the reduction-based PS adaptation
techniques. In fact, the simulations results show that, after
selecting properly the initial PS, i.e., between 5D and 10D,
the quality of the solutions provided by the DE algorithms
does not show considerable differences depending on the
reduction-based PS adaptation techniques. Even more sur-
prisingly, the DE algorithms with self-adaptive techniques
also do not show any considerable advantage with respect
to the DE algorithms with fixed PS and reduction-based
techniques when the initial PS is in the range of 5D ∼
10D. The DE algorithms with self-adaptive techniques show
better localization accuracy only when the initial PS is small.
This result can be expected since, contrary to the fixed
population and reduction-based techniques, the self-adaptive
techniques can increase and decrease the PS at any stage
of the evolution process of the DE. Based on these results,
we can conclude that to ensure a reasonable localization
accuracy of the DE, regardless of the PS adaptation technique
employed, the initial PS should be set in the range of 5D ∼
10D, which is in line with the suggestions made in [16]
and [14].

The ExR, PaR, and LoR techniques belong to the group of
reduction-based PS adaptation techniques. Compared to the
LiR and InP techniques, the ExR and PaR reduce the PSmore
drastically generation by generation. One might think that a
faster reduction in the PS could result in a degradation of the
localization accuracy. However, interestingly, our simulation
results for the 2-D and 3-D localization problems show that
the PaR and ExR do not degrade the accuracy of the DE algo-
rithms, and consequently, the DE algorithms with PaR and
ExR provide competitive localization accuracy with respect
to the other algorithms. Likewise, the DE algorithm with the
LoR technique, a technique that provides a smoother transi-
tion from the maximum PS to the minimum PS, also provides
a competitive, though not significantly better, localization
accuracy over the other techniques. In contrast, when the
algorithms are tested in the 5-D localization problem, a degra-
dation of the localization accuracy was observed, especially
for the DE with the ExR and LiS techniques. This result sug-
gests that a drastic reduction in the PS such as the ones pro-
vided by the ExR and LiS, for example, may not be suitable
for localization problems of a high dimension. Consequently,
techniques that provide moderate PS reduction rates as the
PaR and LiR are recommended.

The comparison of localization accuracy of the DE with
several adaptation techniques in this paper was conducted
with several variations in the localization scenario such as
deterministic and random placement of ANs, values of stan-
dard deviation of the log-shadowing noise, and numbers of
ANs. In such variations of the localization problem, none
of the PS adaptation techniques in the DE algorithm pro-
vides significant advantage in terms of localization accuracy.
This is quite an interesting observation considering that other
works suggested that some PS adaptation techniques may
perform better than the others [17], [20]. However, it is
worth mentioning that, when the comparison was conducted
in the 5-D localization problem, some algorithms performed
better than the others: for instance, the DE with the PaR,
LoR, LiR, and FiP outperformed the DE with the EnC, LiS,
and ExR.

Although the PS adaptation techniques in the DE do not
show any considerable difference in terms of localization
accuracy, especially in the 2-D and 3-D localization prob-
lems, major differences have been observed in terms of com-
putational complexity. In general, the DE with fixed PS and
self-adaptive techniques are the ones with higher computa-
tional complexity. The DE with reduction-based adaptation
techniques, which includes the three techniques proposed in
this paper, incur lower computational complexity. Among
all the algorithms considered, the DE with the PD and the
DE with the ExR are the highest and lowest computationally
demanding, respectively.

VI. CONCLUSION
In this article, we have compared the accuracy and com-
putational complexity of the differential evolution with
several adaptation techniques of population sizewhen solving
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the localization problem based on received signal strength
in wireless sensor networks. In addition to the existing
techniques, we have proposed and included in the com-
parison three new adaptation techniques of population
size.

Simulations results show that, once the initial popu-
lation size is set properly, all the algorithms compared
provide similar localization accuracy regardless of the
variations on the parameters of the localization problem,
especially for lower dimensional localization problems.
When the comparison is conducted in terms of compu-
tational complexity, the proposed algorithms incur less
computational requirement. Among them, the DE with the
exponential reduction technique is the least computationally
demanding.

In future work, we expect it interesting to analyze the per-
formance of the proposed techniques together with methods
that adapt other control parameters such as the mutation rate
and crossover probability. Additionally, employing and test-
ing other evolutionary algorithms for solving the localization
problem will receive our attention.
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