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ABSTRACT The area affected by the earthquake is vast and often difficult to entirely cover, and the
earthquake itself is a sudden event that causes multiple defects simultaneously, that cannot be effectively
traced using traditional, manual methods. This article presents an innovative approach to the problem of
detecting damage after sudden events by using an interconnected set of deep machine learning models
organized in a single pipeline and allowing for easy modification and swapping models seamlessly. Models
in the pipeline were trained with a synthetic dataset and were adapted to be further evaluated and used with
unmanned aerial vehicles (UAVs) in real-world conditions. Thanks to the methods presented in the article,
it is possible to obtain high accuracy in detecting buildings defects, segmenting constructions into their
components and estimating their technical condition based on a single drone flight.

INDEX TERMS Structural health monitoring, machine learning, defect detection, synthetic dataset.

I. INTRODUCTION
Earthquakes are sudden and violent disasters that cover huge
areas of land in a very short period of time. They have
been known to mankind since ancient times and invariably
pose one of the most serious threats to the lives of people
concentrated in large cities. The scale of their destructive
power can be seen in the number of nearly two million
earthquake victims in the 20th century alone [1], or in the
most devastating events, which could claim up to nearly a
million lives [2]. At the same time, the map of seismically
active areas largely overlaps with densely populated areas,
particularly in North America, Europe and Asia [3], which
focuses researchers on this type of hazard and methods of its
mitigation.

Studies conducted to date have assessed the effects of
earthquakes both in terms of the impact on housing and infras-
tructure, and the performance of public services in repairing
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damage or improving traffic flow in the affected area [4], [5].
These works have led to concepts of cities in which such
events will no longer have a critical impact on the lives of
residents, but with the cost of monitoring the condition of
structures even after seemingly harmless, small earthquakes
to take corrective action immediately after damage occurs [6].
This, however, requires the use of modern methods of con-
struction monitoring to reduce the labor intensity of the entire
process, without which the end goal is impossible to achieve.

In this paper, we present our step towards building
autonomous systems that can bring this goal closer. Using a
synthetic dataset containing models of earthquake-damaged
buildings observed from unmanned aerial vehicle (UAV)
like perspective, we created a robust, yet easily modifi-
able pipeline featuring multiple machine learning models
that can be applied in real-life scenarios. The models we
have trained allow us to detect close objects, segment them
into their components, and finally detect their defects and
evaluate their condition. In our work, we also described
the specifics of working with a synthetic dataset and the
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possibilities for extending our solution that could improve its
accuracy.

The rest of this paper is organized as follows. In Section II
we present works related to the main topics of the arti-
cle, including earthquake-induced structural defects, defect
detection and the use of UAVs along with synthetic dataset.
In Section III we describe our approach starting with dataset
description. Then we cover in detail each task of our approach
together with our solution and develop our final pipeline.
Section IV provides discussion of our solution. in which
we suggest ways to improve it. Lastly, in Section V we
summarize the progress achieved in the work.

II. RELATED WORKS
Although the topic is extremely broad, four primary themes
present in the related literature and research papers can be iso-
lated from it. These topics include earthquake-related damage
to structures, detection and management of this damage, the
use of UAVs for this purpose, and the use of synthetic datasets
for machine learning algorithms.

On the subject of damage to buildings caused by earth-
quakes, many scientific works focus on the analysis of spe-
cific cases of disasters [7], [8], or individual constructions [9]
affected by earthquake. Related to them are works on estimat-
ing possible future damage in a given area [10] and building
general models of damage caused by earthquakes [11], [12]
or management strategies. There are also works describ-
ing the assessment of the accuracy of currently used meth-
ods of seismic measurements in relation to the damage
recorded on buildings [13], or novel systems of seismic data
collection [14].

The field of detection and management of identified faults
is also rich in research. In the detection of defects, methods
employing, among others, dynamic response of the struc-
ture [15] or laser scanning are used [16], but for a long time
there has also been a significant increase in the number of
works devoted to the use of computer vision, also regard-
ing earthquakes [17]. In this sub-field, classical methods of
computer vision [18] are currently being replaced bymethods
that derive from machine learning, using convolutional [19]
and fully convolutional [20] neural networks, LSTM [21] net-
works or other techniques combining [22] or improving [23]
upon these methods. However, it should be noted that only
a few systems have been dedicated to detecting more than a
single type of defect. Similarly, the field of identified damage
management is still evolving, using, among other things, BIM
models [24] and mobile applications [25].

The use of UAVs is extremely closely related to the
detection of damage to buildings, as they have been used
for this purpose for a long time, not only in the form of
flying vehicles, but also self-propelled rovers [26]. Flying
vehicles were used to detect damage on various surfaces, such
as pavements [27], railroads [28] and public infrastructure
facilities [29], also with additional sensors [30].

The last field – the use of synthetic data sets in train-
ing machine learning algorithms also has a long history

of research related to it. Synthetically generated data sets
do not necessarily have to be images and have been used
in many areas, ranging from sociology [31], finance [32],
medicine [33], to the issues related to computer vision. Since
sets of correctly labeled data are necessary in the training
of ML algorithms, and their manual collection is extremely
time-consuming, automatic generators of synthetic data were
also developed, thus further reducing the laboriousness of
building a data sets [34].

III. OUR APPROACH
In our approach, we focused on putting various computer
vision and machine learning techniques to the test to find
the optimal solution to the problem at hand. We used various
models of Convolutional Neural Networks for the task of
image recognition and semantic segmentation, and decision
trees, random forests and naive Bayes algorithm for the
classification task. While developing our solution, we used
ready-made state-of-the-art models with transfer learning
technique for feature recognition as well as our own models
and algorithms, developed exclusively for the task and trained
from scratch.

In conclusion, we managed to develop a robust pipeline
that can perform the tasks of segmenting construction com-
ponents, their defects and assessing each of the elements’
condition in the single run of the algorithm, while delivering
satisfactory accuracy. It has to be noted, however, that the
presented solution was validated only with the given, syn-
thetic dataset, and for the practical usage, the models should
be fine-tuned also on the real-world data points.

All the scripts needed to replicate the obtained results are
provided in our repository [35]. The experiments described
in this paper were performed on machine equipped with Intel
Core i7 3.80 GHz CPU, Nvidia GeForce RTX 3080Ti GPU
and 64 GB of RAM.

A. DATASET DESCRIPTION AND INITIAL MANAGEMENT
1) DATASET DESCRIPTION
The provided dataset [36] consisted of 4808 images of 1920×
1080px size from artificially generated drone flight in 3D
urban surroundings and depictedmulti-story apartment build-
ings with hardly noticeable defects along with similarly look-
ing backgrounds. Out of all images, 3 804 were labeled into
tasks of component, defect (cracking, spalling and exposed
rebar), and damage state recognition. Additionally, separate
labels were provided for depth channel of the images.

However, we found the direct usage of the dataset proved
to be difficult, as it came with a set of problems that had to
be resolved in the first step of data preparation. The most
important problem was the presence of conflicting labels in
the task of defect recognition. The total number of images
with colliding labels along with label-to-label collision mark-
ing is summarized in Tab. 1. This problem prevented the use
of a single model for defect recognition, as it would have to
yield the probabilities of occurrence of three separate labels.
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TABLE 1. Occurrences of label collisions in the dataset.

This problem was solved by training three separate models
for each of the defect class.

Next, we discovered that the defect labels themselves make
up only a small fraction of the whole labeled image, which
was most noticeable for the exposed rebar class. The pixels
marked as exposed rebar occupied a maximum of only 1%
of the label image, with occurrences of as few as only one
labeled pixel per image (less than one hundredth of a percent
of all pixels in the image). Furthermore, it was found out that
many of the images do not contain any of the class labels,
again, with exposed rebar class not present on nearly half of
the training images. Tomitigate this problem, we introduced a
step-by-step approach, in which at first the building in image
was split into its components and only then the defects were
sought in the area of segmented out components.

The last identified problem concerned the buildings visible
in the background. While such image alignment is realistic,
it does not coincide with the assigned labels, as they cover
only the building in the foreground, and thus would be
misleading for the classifier during its training (eg. wall in
the more distant building would be considered background
while similarly looking wall in the building nearby would be
classified accordingly to its class). Moreover, the provided
depth channel cannot be used directly by the models, as this
data is not provided for the evaluation dataset (althoughRGB-
D sensors are already in use with UAVs [37]). To avoid this
problem along with the need to estimate depth maps with ML
algorithms like in already existing works [38], we decided to
train a simple segmentation model to differentiate between
background and foreground in the initial step of the image
analysis.

2) INITIAL DATASET MANAGEMENT
Before developing, training and testing our algorithms,
a series of modifications to the dataset had to be done,
accordingly to the issues described above. The first one
was to split it into training and testing datasets to avoid
overfitting of the trained algorithms and allow for reliable
metrics checking. We split the dataset randomly in 4:1 ratio,
where 20% of the dataset was intended for testing, thus
yielding 3 043 datapoints for training and 761 for testing.
To preserve the split and be able to repeat it with the same
outcome, it was initiated with the known seed for the random
algorithm.

After splitting the dataset, we prepared it for the task of
detecting objects in the foreground and masking unwanted
background ones. To include this step in the single, continu-
ous pipeline of performing all the given tasks in one algorithm

TABLE 2. Data points extracted for defects classes after the dataset
modification.

run, we added it as Task 0. To prepare the dataset, we provided
simple, binary image mask labels for classes background and
foreground, where all the objects from component segmen-
tation task were counted as foreground class. This way, the
data prepared for classifier could differentiate only between
whole, close and distant set of objects instead of each object
distance type separately. The sample images from the dataset
and their reworked counterparts are depicted in the Fig. 1.
Apart from Task 0, images reworked for this dataset, albeit
with different labels, would be then later used for the rest of
the tasks as well.

Next, for the task of detecting defects, we prepared a new
dataset that could help us with the problem of small number
of labeled pixels for the defects and their complete absence
from some of the images. To do so, we used labels for
detecting components from Task 2 to make rectangular crops
containing a single element and its immediate surroundings.
We repeated the same operation on label images, thus obtain-
ing a dataset containing a higher number of smaller than
initial images, but to greater extent filled with labeled pixels.
In this step, we also excluded all the image parts, where
the defects were not visible, to slightly counteract biasing
the classifiers towards background class. The final yield of
images for every class in both training and testing datasets
for defect detection along with the total sum of damaged
elements is summarized in Tab. 2.
For the component segmentation task, we mostly used the

initial dataset provided with the task. The only modifica-
tions that we made were the use of images modified for
the background-foreground segmentation and re-coding the
labels’ numbers to integers – this way, as image labels we
obtained images containing only a single channel.

Lastly, we also modified the dataset for the last task – the
damage state assessment. However, this task turned out to be
more demanding, as additional problems occurred. Some of
the elements, while having their state decreased (by implica-
tion by the defects occurring on them), had no visible defects
that were indicated by provided labels. Others had conflicting
damage state designations even though the entire component
should have been classified to a single state. Furthermore, the
dataset containing structure elements did not separate their
individual segments (for instance segmentation task), even
though two segments of the same element may have differed
in condition. The latter two of the problems are depicted in
Fig. 2.
The problems described are beyond the ability to solve

them using dataset manipulation or even an elaborate ML
algorithm, and are a direct result of the way the dataset was
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FIGURE 1. Initial dataset images (top) and reworked images by background removal (bottom).

FIGURE 2. Example of damage state marking problems: contrasting
markings on a single element (top), no clear division of component
segments (bottom).

constructed. As these were human errors made during the
development of the dataset, possibly due to work fatigue, this
draws all the more attention to the need for careful prepa-
ration of training data. However, we still attempted to solve
them by approaching them in a more general way. Rather
than focusing on elements’ defects themselves, we decided
to focus on their surfaces, and assess them by their general
appearance.

To do so, we once again focused on extracting surface
images from single elements. However, this time, to retain
as much information about the surface of a single element
as there was, we extracted them with their minimum area,
rotated rectangular bounding boxes and warped them into
square shape of 224 × 224px. An example of such transfor-
mation is depicted in Fig. 3. Such rectangular images were
then used as an input to an image classifier, where the class
was indicated by elements’ damage state. The final yield of
textures used for training is summarized in Tab. 3. While
considering the dataset, it is important to notice that in this
task there are large inequalities between classes that, when
mishandled, can affect the classifier.

FIGURE 3. Surface images warped to square shape.

TABLE 3. Datapoints extracted for damage state classes after the dataset
modification.

3) THE IMPACT OF DATASET MANAGEMENT
While the purpose of the modifications that we did to the
dataset may be unclear at first, they have greatly assisted us in
achieving high accuracy of the models we trained. Although
in the next sections we’ll be focusing on our most successful
models developed with the data modified as described above,
we will still provide the results from our other models that
used the dataset directly or through simple extraction of data
for additional comparison.
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TABLE 4. Metrics of foreground detection model.

B. TASK 0 – DETECTING FOREGROUND OBJECTS
As mentioned previously in Section III-A, we added the
initial task marked as Task 0 to differentiate between objects
in background and foreground more easily. To perform the
segmentation, we used the previously prepared dataset along
with model trained with Detectron 2 framework, taken from
Detectron 2 model ZOO repository [39]. Our choice of
framework was based on the multiplicity of training options,
choices of available architectures, and the ease of inference
with the model. Detectron also allows for changing the type
of task (eg. object detection, semantic segmentation etc.) with
only minimal changes to the code, for the ease of testing
different approaches.

During our tests we found out that themodel giving us opti-
mal results considering both accuracy and inference speed
was the Faster R-CNN [40] based on ResNet 50 model [41]
with additional fully convolutional head as feature proposal
network, trained initially for 12 epochs on ImageNet [42]
dataset. We fine-tuned the model for 15 additional epochs
using learning rate of 2.5e − 4 with batches containing two
images each and no additional learning rate decay.

The metrics of the model we obtained after training,
including both – mean values and values per class of IoU
and accuracy per pixel, are presented in Tab. 4. We found
them satisfactory, as masks resulting from inference with the
model hardly differ from the ones we manually prepared
for training, and can be used in subsequent tasks without
additional modifications.

C. TASK 1 – DETECTING DEFECTS
Similarly to Task 0, Task 1 also focuses on image semantic
segmentation with intention to detect cracks, spalling and
exposed rebar on the surface of the structure. This time,
however, the objects sought in the image are much smaller
and more sparse across the dataset. As stated previously
in Section III-A, we attempted to mitigate this problem by
extracting only those parts of the dataset, where defects were
present. Also, due to the collisions of labels described in the
description of the dataset, we had to train one model per
defect separately.

With such prepared dataset and task, we used the same
architecture as in Task 0 for three models, as it again proved
to provide the best balance between accuracy and inference
time. To achieve the best results, we changed training param-
eters – this time each model was fine-tuned for additional

FIGURE 4. Example predictions for each model: cracking (top), spalling
(bottom left) and exposed rebar (bottom right).

50 epochs with learning rate decaying from initial 2.5e −
4 by 2.5e−4

50 every epoch. The resulting metrics (IoU and
pixel accuracy per defect) calculated on the testing dataset
after training are presented in Tab. 5, and sample images
from model inference are depicted in Fig. 4. Tab. 5 also
provides comparison between models trained with modified
and unmodified dataset.

As seen in Tab. 5, our modifications to the dataset helped
with the problem of model bias towards detecting back-
ground class and made them more balanced, especially in
Exposed rebar task, where pixel accuracy increased over
eightfold. In Fig. 4 it can also be seen how small an area
the searched defect could be, especially considering the
initial, much greater size of the input image, what once
again justifies the best result achieved by the largest type of
defect (spalling). The results however still are not perfect,
and other means such as random undersampling of dominant
class or training performed for image patches could also be
considered.

D. TASK 2 – SEGMENTING OUT COMPONENTS
Task 2 once again focuses on image semantic segmentation,
so we used methods similar to Task 1 and 2. We used
Detectron 2 framework to fine tune ResNet 50 with Fea-
ture Proposal Network on dataset with background objects
removed. We achieved satisfactory results when the model
was trained for additional 15 epochs and learning rate an order
of magnitude greater than for the previous tasks – 2.5e − 3.
We also did not use learning rate decay schedule this time.

The resulting metrics we obtained after the training for
both datasets – the initial one and after background removal
with model from Task 0 – are summarized in Tab. 6. More-
over, Figs. 5 and 6 show the example results for component
detection for both cases – when background is and is not
removed.

As can be seen in Fig. 5, 6 and Tab. 6, removing the
background has significantly improved the performance of
the model, especially in the case of detecting slabs and
backgrounds, whereas the accuracy with visible background
was negligible. The only elements whose pixel-by-pixel
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TABLE 5. Metrics of defects detection models.

FIGURE 5. Example results obtained after performing initial background removal.

FIGURE 6. Example results without background removal.

detection accuracy slightly increased without background
removal were parts of windows, and this may have been due
to their specific shape in the dataset, which windows found
in buildings in the background did not have.

At the same time, it should be noted that the model
working on images without first removing the background
still correctly recognizes the elements of objects in the back-
ground to some extent, even though they differ significantly

in appearance from those in the dataset. This indicates, on the
one hand, that the model was correctly chosen for the task,
since it was able to generalize the acquired knowledge beyond
the provided dataset, and on the other hand, the necessity
to apply the first step of the analysis – removing the back-
ground, since the results of the actually conducted measure-
ments would be muddied by the occurrence of false-positive
detections.
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TABLE 6. Metrics of component segmentation model.

FIGURE 7. Single model approach compared to ground truth label.

TABLE 7. Metrics of damage state detection model.

E. TASK 3 – ASSESSING THE DAMAGE STATE
In the first attempt to solve Task 3 we intended to use the
relationship between an element, its total area, and the relative
area of each defect as a one-dimensional input vector for a
shallow machine learning algorithm. We used decision trees
with maximal depth of 59 splits, random forest with total of
200 models and naive Bayesian algorithm with and without
data normalization. The training data we collected came from
the partitioning of the structure into elements by the model
trained for Task 2 and the damage detected using the model
from Task 1. This way we managed to gather 61 058 data
points for training and 15 036 for testing. The final vector
along with its exemplary data presented itself in this way:

{Et ,Esr ,Cr ,Rr , Sr } = Es (1)

eg. {3.0, 0.0245, 5.90e− 5, 3.94e− 5, 9.60e− 3} = 3.0

where:

Et : element type (mapped to int value)
Esr : element size to image size ratio
Cr : crack size to element size ratio
Rr : exposed rebar size to element size ratio
Sr : spalling size to element size ratio
Es: element damage state

However, despite a vast dataset for model development,
this approach proved to be inaccurate. It was mostly due to
the component defect not visible in the frame of the image
and occasional false negative indications of the model from
Task 1. This led to many instances of data points where
even though the element had no visible defect, its state was
described as damaged. The results of models trained using
this approach are shown in Tab. 7.
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FIGURE 8. The final pipeline of our solution.

To increase the accuracy of classification, we turned to
methods based on a single model that uses computer vision
to determine the damage state of elements. We called this
approach single model baseline, where we used Detectron
2 directly on the visual data. Unfortunately, this approach
turned out to be ineffective, not achieving the best result in
any of the categories, as shown in Tab. 7. In Fig. 7, we also
show the result of the model inference compared to the label.

To improve damage state assessment, as stated previously
in Section III-A, we chose the method that is approaching
the problem in a more general way – by image recognition
rather than inference based on defects found by other models.
Again, the part of the task related to the semantic segmenta-
tion of the structure components has been done before, andwe
can continue on the segmentation done with high accuracy in
Task 2 to focus on image recognition task.

In order to perform the image recognition we used KrakN
framework [43] to train 4 separate CNNmodels using transfer
learning technique with 3-fold cross validation on dataset
containing warped images of elements’ surfaces. Models we
used as feature extractors for single layer logistic regression
classifier were: VGG16 [44], Densenet [45], ResNet and
Xception [46], all of which were pre-trained on the ImageNet
dataset. The results of the training are summarized in Tab. 7 –
note that this time the only measured metrics were accuracy
per class, average accuracy and average F1 score which
describes balance between precision and recall. This time
IoU or pixel accuracy will be derived from the segmentation
performed in Task 2 and have no impact on the overall
score.

As seen in Tab. 7, while shallow machine learning tech-
niques can provide near perfect accuracy for single defect
types, they tend to be highly biased and thus resulting in
low average accuracy and F1 score. On the other hand, deep
CNN models provide more balanced results across classes
and do not tend to over-promote particular predictions. At the
same time, once again, it is important to account for highly
imbalanced dataset. However, even with properly performed
random undersampling with the best performing models

(ResNet and Densenet), we did not manage to achieve better
results.

It is also possible to consider using model ensembles with
only slightly biased members and use a voting algorithm to
pick the most probable prediction.

F. THE FINAL PIPELINE
In Fig. 8 we present the final pipeline of our solution.

First, the image retrieved by the UAV is stripped of back-
ground objects using the model trained for Task 0. Then, the
model from Task 2 performs structure segmentation to its
components. These components after additional processing
are used in further tasks. For Task 1, the segmented parts
of the structure come as rectangular frames of the image,
and then damage is detected on them using the model for
semantic segmentation. For Task 2, they are further warped
to a square shape, after which the CNN model performs an
image recognition task on them.

While the tasks performed by the pipeline are backwards
dependent, the great advantage of this approach is to divide
one large task into a number of smaller tasks that can be
performed with greater accuracy. At the same time, this
approach allows for wider freedom in the manipulation of the
models that make up the workflow – models can be freely
exchanged or fine-tuned with new batches of data as single
nodes responsible for individual tasks, thus maintaining the
integrity of the solution.

IV. DISCUSSION
Considering the phasing of successive tasks performed
by with our pipeline from Section III-F, we can expect
marginally lower accuracy of the whole workflow, albeit
thanks to nearly perfect accuracy of the first stages, the
reduction will not be significant. Also, some of the models
we presented in the pipeline can certainly be improved in
the terms of their particular accuracy. However, due to the
specific nature of the dataset, much higher prediction accu-
racy cannot be expected.

Still, there are methods that can aid the accuracy of the
algorithm. One is the previously mentioned use of small
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image patches to train a model that performs damage detec-
tion. This way the problem of highly imbalanced dataset can
be avoided, and models would not be as much biased towards
background class. This problem can also be mitigated with
the use of random oversampling techniques that could help
by expanding underrepresented classes or with the use of
weighted loss function – focal loss [47]. However, while the
latter could help with the training process (although during
the performed tests, the gain was insignificant), the former
could lead to model biased towards a specific shape of defect
of single class.

The last method that can have a positive impact on the
accuracy of the algorithm is to transform the flat represen-
tation of objects in the image into a 3D point cloud. This
way, the problem of defects not visible on an element in
a single frame may no longer be relevant, since the defect
detection model would operate on the entire 3D object. The
transformation could be performed with photogrammetric
methods employing RGB-D sensors like in eg. [48]. However,
this approach also has some drawbacks. First of them is the
need of depth data associated with RGB images, that was
not available for the task. Second is the necessity of heavy
computations performed during preprocessing of the data,
excluding this approach from on-site usage. Additionally,
machine learning models trained in 3D point cloud environ-
ment require significantly more computing power than those
operating on RGB images.

V. CONCLUSION
The detection of earthquake caused defects to buildings is an
extremely important issue, affecting both the safety of build-
ing occupants and the efficient management and restoration
of the affected area. The use of UAVs for this purpose is an
important step in the desired direction by which the effective-
ness of immediate post-earthquake response can be increased.
Moreover, fully autonomous vehicles armed with algorithms
that enable automatic and immediate assessment of structure
technical condition will allow more efficient management
of emergency services human resources and labor intensity
reduction of the whole process. However, for that purpose,
vast datasets and robust machine learning models are needed.

While real-world datasets like PEER Hub ImageNet [49]
or Mexico City [50] earthquake datasets are available, they
focus on high-magnitude earthquakes, which is beyond the
scope of continuous monitoring of structures after minor
earthquakes. Other datasets that contain individual defect
types, on the other hand, do not consider a holistic approach to
the structure monitoring problem. For this reason, until actual
imaging data is collected from low magnitude earthquakes in
highly urbanized areas, synthetic datasets are one of the best
ways to pretrain neural algorithms.

In this paper, we proposed a workflow along with dataset
transformations and models trained for the tasks of fore-
ground objects, defects, and structure components detection,
as well as image recognition methods for elements’ damage
state assessment. In the work we presented, we used a syn-

thetic dataset that can serve as a base for training machine
learning models and achieved satisfactory results in all four
tasks.

During our work, we also identified some recurring issues
with synthetic datasets that can significantly affect the trained
models. Although synthetic data, especially those that sim-
ulate extremely rare and large-scale events, are essential in
building training datasets, they must be free of errors in
the objects represented and the classes given. At the same
time, even a flawlessly prepared dataset cannot be the only
source of information for a machine learning algorithm –
for this, one must also be exposed to real data in the final
training phase. With this in mind, a worthwhile concept to
consider while creating a synthetic dataset is instead of a
single, homogeneous dataset, creating multiple smaller but
more diverse datasets for which the real-world data would
always fit closer within the spectrum of variants.

Our work has also pointed possible directions for further
development of the proposed methods. As we mentioned in
Section IV, a next step with a holistic approach to assessing
the condition of a building would be a much-needed improve-
ment to the overall process of structure maintenance. How-
ever, it requires creating a three-dimensional model of the
building that is faithful to the original, using RGB-D cameras,
photogrammetry methods or multi-scale approach. At the
same time, the effort should be put into developing diverse
synthetic datasets along with their real-life counterparts.
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