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ABSTRACT This paper presents new cooperative path planning algorithms for multiple unmanned aerial
vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path
planning is formulated into the minimization of a cost function that incorporates multiple objectives and
constraints for each UAV. A framework based on game theory is then developed to cast the minimization
into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization
algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO
algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path
planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical
shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the
advantages of the proposed approach for a practical application.

INDEX TERMS Cooperative path planning, UAV, Stackelberg-Nash game, PSO.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have rapidly emerged with
many interesting applications in both military and civilian
domains [1], [2]. To carry out complicated tasks, it is required
the teaming of multiple UAVs flying in formation or swarm.
The cooperative control of a group of UAVs working together
for a robotic task can result in such advantages as high
efficiency, reliability, and flexibility, compared to the task
execution with single UAVs [3]. Therefore, the problem of
path planning for UAV formation control has received great
interest. Indeed, path planning plays a significant role in com-
pleting flight missions for controlling multiple unmanned
vehicle systems. Of importance in formation path planning
for UAVs is how to avoid threats while completing a task
by taking various constraints and cooperative cohesion con-
ditions into consideration [4]. The strategy here is to plan a
flight route for individual UAVs from the starting location to
the goal while minimizing the total flight cost.
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For unmanned vehicles, the commonly-used A* algo-
rithm can be incorporated with a prediction technique
and route replanning strategy, or combined with numer-
ical optimal control to solve the path planning problem
subject to constraints [5]. The Voronoi graph-based tech-
niques have been introduced by simplifying the space rep-
resentation [6]. As mainly developed for 2D, the classical
A* search and Voronoi techniques would need some exten-
sion to cope with cooperative tasks in complex 3D dynamic
environments.

The artificial potential field (APF) is another technique for
path planning of UAVs [7]. In this approach, the operation
space is considered as a potential field that is characterized
as ‘‘attractive’’ surrounding the target and ‘‘repulsive’’ in
the neighborhood of obstacles. For UAV cooperative con-
trol, additional potential fields are also included to result in
attraction effects for maintaining the formation configuration,
and repulsion effects for inter-UAV collision avoidance. The
paths are then generated when the total force acting on each
UAV is induced from all the potential fields at each position.
This technique can produce smooth and continuous paths.
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On the other hand, it encounters the problem of local minima
when the total force is equal to zero.

From the hierarchical perspective, path planning for UAVs
can be considered as a high level control problem, whereby
optimal and predictive control methods can be used for min-
imization of a cost function [8]. For multiple UAVs, cooper-
ative path planning can be formulated into an optimization
problem for single vehicles subject to multiple constraints
[9]. To generate the paths, optimal control can be applied
to individual UAVs and then extended to the whole group.
Although this approach can solve the optimization problem
under different constraints for the formationwhen performing
a robotic task, it involves high computational complexity.

Computational evolution algorithms have been applied to
multi-UAV cooperative path planning with the capability
to find optimal solutions in complex scenarios [10]. This
approach, not requiring discretization of the workplace, can
generate smooth cooperative paths for the UAVs. However,
if cooperative constraints and maneuvering tasks are not
properly addressed, it may converge to sub-optimal solutions.

The key problem of UAV formation control is to resolve
possible conflicts and interactions among the leader and fol-
lowers or among the members of the group to maintain a
desired shape under various constraints when executing a
robotic task. In this context, the game theory, an important
branch of mathematics for studying conflicts and interactions
among rational decision-makers [11], can offer a powerful
tool to determine an optimal strategy. Indeed, as a solid frame-
work for strategic interactions among competing players, the
game theory has found various successful applications, e.g.,
in distributed energy generations [12], cooperative spectrum
sensing [13], or recently in highway maintenance [14].

During a game, to maximize the profit, players can choose
to take action depending on not only their own strategy but
also of others. Therefore, the best strategy is often decided
on what a player expects others to do. A game, in general,
can be categorized as cooperative or non-cooperative [15].
In cooperative games (CGs), several players share a common
goal to win or to achieve a profit better than by playing
alone. A major issue with CGs is trade-offs between sta-
bility and efficiency of the overall system [16]. In contrast,
players in noncooperative games (NCGs), possessing avail-
able information of their own intentions, payoff functions,
and procedural details of the game, can pursue their own
strategies. For NCGs, each player in a Nash game is equally
aware of other players’ strategies to reach an equilibrium,
which is called the Nash equilibrium. Although having infor-
mation about the decisions of others, each player has to
simultaneously make one’s own decision in a symmetric
competition, such as to find optimal control parameters [17]
or to seek strategies for multiple clusters in a distributed
way [18]. On the other hand, in Stackelberg games [19],
players have to adopt sequential steps depending on the
moves of the leading players. After the leaders take their first
actions in priority, the followers can adapt their strategies
accordingly.

In this paper, the path planning problem is formulated
into a game with UAVs as the players. By incorporating
the Stackelberg and Nash game into a two-layer framework
with a defined Stackelberg-Nash equilibrium, each UAV in
the group can develop a self-enforcing controller to estab-
lish and maintain a desired geometric shape. The desired
formation is kept in the control layer while constraints on
each UAV’s path are taken into account via a cost function
in the planning layer. Here, the cost function is minimized by
using a new algorithm named the game theory-based particle
swarm optimization (GPSO), developed for UAV cooperative
path planning. Notably, our method considers cooperative
constraints on the optimal paths of individual UAVs in the
group to cover all requirements on formation, path feasibility,
flexibility, and safety. For this, a hierarchical particle swarm
optimization (PSO) algorithm is developed to determine the
strategy for each UAV to reach the Stackelberg-Nash equi-
librium. The resulting optimal paths can be achieved while
maintaining the formation. Unlike other formation control
methods, the generated paths here can be self-adjusted to
reconfigure the whole group so that they can better adapt to
changes in the operating environment.

The contributions and innovations of our work are three-
fold: (i) comprehensively formulating the cooperative path
planning problem for multiple UAVs into the minimization
of a multi-objective cost function, (ii) casting the solution of
the minimization problem into the search for the equilibrium
of a two-layer Stackelberg-Nash game, and (iii) developing
new algorithms using game theory-based particle swarm opti-
mization (GPSO) for finding optimal solutions. The results
of this work enable the effective deployment of flexible and
cooperative formations of UAVs to accommodate complex
scenarios to effectively improve the autonomy of UAV-based
task execution under harsh, hazardous, and maybe hostile
conditions.

This paper is organized as follows. The cooperative path
planning problem is formulated in Section II. The proposed
Stackelberg-Nash game and hierarchical PSO algorithms are
introduced in Section III. Section IV provides numerical sim-
ulation results. Section V presents the setup and experimental
validation results, followed by Section VI for the conclusion.

II. PROBLEM FORMULATION
Consider a fleet of UAVs flying in a known environment
with obstacle models prescribed by cylinders as illustrated in
Figure 1, wherein the inertial frame, xyz, is defined relative to
the sea level with the z axis pointing upward. The flight for-
mation has a hierarchical leader-follower structure, as illus-
trated in Figure 2. The structure is organized into l layers,
l = 1, 2, . . . , 3. This structure, having advantages over the
behavior-based or virtual ones in maintaining the stability of
the formations under different environments, is quite popular
in multi-robot coordination and often used for data acquisi-
tion and communication among UAVs [20], [21]. We denote
Vl a UAV at layer l and consider it as the leader of Nl+1
followers at layer l+1, which are, in turn, denoted as V(l+1)n,
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FIGURE 1. Illustration of the UAV path planning problem.

FIGURE 2. Hierarchical leader-follower structure of UAV team.

n = 1, 2, . . . ,Nl+1. The location of the formation is defined
by P = [P1T ,P2T , . . . ,PST ]T , where S is the total number of
UAVs in the team and Pn = (xn, yn, zn)T is the position of the
n-th vehicle, n = 1, 2, . . . , S. To define the formation shape,
a set of reference positions Pr = [P1r

T ,P2r
T , . . . ,PSr

T ]T is
given, where Pnr = (xnr , ynr , znr )

T is the reference position
of the n-th UAV. The desired vector between two neighbors n
and n′ is computed as Pnrn′r = Pnr − Pn′r .
In a cooperative path planning problem, the aim is to find

optimal paths for all UAVs from their starting points to target
locations, fulfilling all requirements imposed by constraints
on formation shape, path length, threat avoidance, and turning
angle limit.We approach this problemwith a cost function for
each UAV in the team by incorporating those constraints to
formulate the cooperative path planning into an optimization
problem. The cost function associated with UAVn thus has
the form:

J (Xn) =
η∑
i=1

ωniJi(Xn), (1)

where Xn represents the path of UAVn, Ji(Xn) is the cost
corresponding to constraint i, ωni is a weighting factor, and
η is the number of constraints. The path Xn is defined
by a set of K nodes, represented by waypoints Pn(k) =
(xn(k), yn(k), zn(k))T , k = 1, 2, . . . ,K , that connect the flight

path of UAVn. The cost function Ji(Xn), i = 1, 2 . . . , η, for
each constraint is determined in the following.

A. FORMATION CONSTRAINT
The formation constraints are determined from the desired
structure of the geometric shape and interactions among
UAVs. Using the graph theory, we define UAVn as a vertex vn
and its interconnection with UAVn′ as an edge εm = (vn, vn′ )
of a directed graph G. Let V = {v1, v2, . . . , vS} be the set
of vertices and E = {ε1, ε2, . . . , εM } be the set of edges,
the graph G can be represented as G = (V, E). To establish
the formation, the graph must be connected, i.e., for any two
vertices (vn, vn′ ) ∈ V , there exists an interconnection between
them, or an edge in E . This interconnection is weighed byµnn′
as our graph is an edge-weighted graph. The incidence matrix
D of the graph has the dimension of S×M , where its element
is equal to 1 if the UAV is the head of an edge,−1 if the UAV
is the tail of an edge, and 0 otherwise.

The formation error for edge (vn, vn′ ) is computed from
Pn − Pn′ − Pnrn′r . The total formation error can be expressed
via the incidence matrix as

E =
∑
n,n′∈E

µnn′‖Pn − Pn′ − Pnrn′r ‖
2

= (P− Pr )T D̂Ŵ D̂T
(P− Pr )

= ||P− Pr ||2
D̂Ŵ D̂T , (2)

where Ŵ = W ⊗ I3 and W = diag[µnn′ ] is a diagonal
weight matrix of dimension M ×M , D̂ = D ⊗ I3, in which
operator ⊗ is the Kronecker product.

DefineL = DWDT as the Laplacian of the graph G, which
is symmetric and positive semi-definite, L̂ = D̂Ŵ D̂T

=

L⊗ I3 is also symmetric and positive semi-definite [22]. The
formation error can be rewritten as E = ||P−Pr ||2L̂

. The cost

function coming from the formation constraint for UAVn is
then defined as

J1(Xn) =
K∑
k=1

||P(k)− Pr ||2L̂n
. (3)

Apart from maintaining the formation, it is also important
to avoid intervehicle collisions among the UAVs. Let d̄n(k)
be the Euclidean distance from UAVn to its nearest neighbor
at waypoint k , i.e.,

d̄n(k) = min
n′={1,2,...,S},n′ 6=n

‖Pn(k)− Pn′ (k)‖, (4)

rn and ds be respectively the radius of UAVn and its safety
clearance. To avoid collisions, the distance between a UAV to
its nearest neighbor should then be greater than the sum of the
clearance ds and double of the UAV radius rn. Accordingly,
the cost function (3) is revised as,

J1(Xn) =
K∑
k=1

En(k), (5)
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FIGURE 3. Distance between an obstacle and two waypoints.

En(k) =

{
||P(k)− Pr ||2L̂n

, if d̄n(k) > ds + 2rn

∞, if d̄n(k) ≤ ds + 2rn,
(6)

where the infinity assigned to a cost function implies an
infeasible solution so that node k , at risk of collision, should
not be considered by an optimizer.

B. PATH LENGTH COST
When planning a path, it is required that its length is min-
imized to save time and energy, especially for a low-cost
UAV. In autonomous operations, a path typically includes a
list of waypoints uploaded to the UAV as references for the
flight controller to track [23]. With K waypoints, it can be
represented by a set of K − 1 line segments connecting the
waypoints as shown in Fig.1. The path length is then simply
the sum of those segments. Denoting Pn(k) as waypoint k
of path n, the cost representing the length of path n is then
computed as:

J2(Xn) =
K−1∑
k=1

||Pn(k + 1)− Pn(k)||2. (7)

C. OBSTACLE AVOIDANCE
During operation, each UAV needs to avoid collision with not
only other UAVs but also obstacles in its working environ-
ment, such as trees or buildings. In this work, each obstacle
is considered as a threat modeled by a cylinder with radius rτ .
Let pk of coordinates (xk , yk ) be the projection of waypoint

P(k) on the Oxy-plane, the distance d(k) from the center of
the obstacle C(xc, yc) to the path segment k is determined as
the shortest distance from C to pkpk+1. If ‖pk+1 − pk‖ 6= 0,
d(k) is calculated as the normal distance from point C to the
line connecting two points pk and pk+1 as shown in Figure 3,
or the smaller distance to those points in the case they are
located at one side of the obstacle. Thus, d(k) is computed as

d(k) =



‖C − pk‖, if ‖pk+1 − pk‖ = 0,
|(xk+1 − xk )(yk − yc)− (xk − xc)(yk+1 − yk )|√

(xk+1 − xk )2 + (yk+1 − yk )2
,

if ‖pk+1 − pk‖ 6= 0 and A ≥ 0,
min (‖C − pk‖, ‖C − pk+1‖), otherwise,

(8)

where

A = [(xk+1 − xk )(xc − xk )+ (yk+1 − yk )(yc − yk )]

× [(xk − xk+1)(xc − xk+1)+ (yk − yk+1)(yc − yk+1)].

The threat cost J3(Xn) is then calculated across waypoints
Pn(k) for T obstacles as below:

J3(Xn) =
K−1∑
k=1

T∑
τ=1

Dτ (k),

where Dτ (k)

=


0, if d(k)>ds+rτ+rn
(ds + rn + rτ )− d(k), if rn + rτ < d(k)

≤ ds + rn + rτ
∞, if d(k) ≤ rn + rτ .

(9)

D. ALTITUDE CONSTRAINT
Inmany applications, such as surface inspection, it is essential
that the UAVs flywithin a certain altitude range limited by the
minimum and maximum heights, hmin and hmax , respectively.
Let hn(k) be the relative height of the UAVwith respect to the
ground. The desired flying height for it is then h̄ = 0.5(hmin+
hmax). Thus, the altitude cost can be computed as

J4(Xn) =
K∑
k=1

Hn(k),

where Hn(k) =

{ ∣∣hn(k)− h̄∣∣ , if hmin ≤ hn(k) ≤ hmax ,
∞, otherwise.

(10)

E. SMOOTHNESS
Due to motion restraints of UAV dynamics, they are unable
to make a sharp turn, and thus it is required for the algorithm
to generate smooth paths. This can be achieved by limiting
changes in the turning and climbing angles.

The turning angle between two consecutive segments,
θn(k), is computed as

θn(k) = cos−1
( −−→

pn(k).
−−−−−→
pn(k + 1)

‖
−−→
pn(k)‖.‖

−−−−−→
pn(k + 1)‖

)
, (11)

where
−−→
pn(k) = Proj/Oxy{Pn(k + 1)− Pn(k)} is the projection

of segment (Pn(k + 1)− Pn(k)) on the plane Oxy.
The climbing angle, ϕn(k) between the path segment

(Pn(k + 1)− Pn(k)) and
−−→
pn(k) is calculated as:

ϕn(k) = tan−1
(
zn(k + 1)− zn(k)

‖
−−→
pn(k)‖

)
. (12)

The smoothness cost can then be defined as

J5(Xn) = β1
K−2∑
k=1

θn(k)+ β2
K−1∑
k=1

|ϕn(k)− ϕn(k + 1)| , (13)

where β1 and β2 are the penalty coefficients of the turning
and climbing angles, respectively.

III. GPSO DEVELOPMENT
Given the cost function J (Xn) defined for each UAV,
the cooperative path planning becomes finding paths Xn,
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n = 1, . . . , S, to simultaneously minimize J (Xn). Since
the value of J (Xn) depends on the path Xn generated for
UAVn itself as well as other paths of the remaining UAVs
in the team, finding optimal solutions remains a challenging
problem. The game theory concept of resolving conflicts and
handling interactions has been well-recognized [24]. Align-
ing well with cooperative path planning in robotics, it can
be promising for a game-theoretic framework to solve the
formation control problem with the development of a suitable
optimization tool. To deal with the problem of cooperative
path planning for UAVs, we propose here a game theory-
based particle swarm optimization (GPSO) approach con-
sisting of two steps. In the first step, a Stackelberg-Nash
game is formulated from the cooperative path planning prob-
lem. A hierarchical PSO-based algorithm is then developed
to solve for the Stackelberg-Nash equilibrium to obtain the
optimal paths.

A. STACKELBERG-NASH GAME FOR COOPERATIVE PATH
PLANNING
We first introduce some definitions.
Definition 1: Each UAV in the group is defined as a

decision-maker or player. Hence, the leading and following
UAVs are considered respectively as the leading and follow-
ing decision-makers.
Definition 2: A strategy of player UAVn is its path Xn.
Definition 3: The payoff for player UAVn is its cost

function J (Xn).

1) STACKELBERG GAME
The Stackelberg game is a model aiming to resolve the
asymmetric competition among a leading decision-maker and
some following decision-makers. In this game, the leader
conducts his movement first. The followers then decide their
strategies to respond to the leader’s decision [25]. Here, the
Stackelberg game can be used to model interactions among
the UAVs.

Now, the Stackelberg game for UAVs can be described as
GS =

(
(L,F), (Sl, Sf ), (Jl, Jf )

)
, where (L,F) is a set of

players with leading player L and following playersF defined
as a subset F = (F1,F2, . . . ,FN ). The pair (Sl, Sf ) stands
for the strategy sets of the leading player, Sl , and followers,
Sf . They are defined respectively as Sl = (Xl1 ,Xl2 , . . . ,Xl6 ),
where Xlσ is the decision strategy made by the leader
(σ = 1, 2, . . . , 6), and Sf = (Sf1 , Sf2 , . . . , SfN ), where
Sfn = (Xn1 ,Xn2 , . . . ,Xn6 ) represents all6 decision strategies
made by the n-th follower. The set (Jl, Jf ) is the players’
payoffs.

Let
∗

Xl and
∗

Xf = (
∗

Xf1 ,
∗

Xf2 , . . . ,
∗

XfN ) be respectively the best
strategy of the leader and of the followers, the Stackelberg
equilibrium is defined as

∗

Ss = (
∗

Xl,
∗

Xf ), which satisfies
correspondingly

Jf (Xl,
∗

Xf (Xl)) ≤ Jf (Xl,Xf (Xl)), (14a)

Jl(
∗

Xl,
∗

Xf (
∗

Xl)) ≤ Jl(Xl,
∗

Xf (Xl)). (14b)

FIGURE 4. Stackelberg-Nash game illustration for UAV formation.

The relation Xf (Xl) represents the strategy Xf of the fol-
lowing players as a function of the leader’s strategy Xl .
From (14a) and (14b),

∗

Ss = (
∗

Xl,
∗

Xf ) can be obtained as
∗

Xf = argmin Jf s.t. Xf ∈ Sf , (15a)
∗

Xl = argmin Jl s.t. Xl ∈ Sl . (15b)

2) NASH GAME
Apart from interactions between the leader and followers,
those among the followers should also be taken into account.
We use the Nash game for their modeling, making use of the
symmetry in the roles of the players [26]. In a Nash equilib-
rium, each player is assumed to know the best strategies of
other rivals, and no player can gain more payoff by changing
only their own plan. The Nash equilibrium thus provides an
approach to obtain optimal results for all symmetric players,
which represent the following UAVs. The Nash game can be
expressed as GN =

(
F, Sf , Jf

)
. The Nash equilibrium is

defined as
∗

Sf = (
∗

Xf1 ,
∗

Xf2 , . . . ,
∗

XfN ), satisfying the following
condition:

∀Xnσ ∈ Sfn , Jfn (
∗

Xfn ,
∗

X−fn ) ≤ Jfn (Xnσ ,
∗

X−fn ),

n = {1, 2, . . . ,N }, σ = {1, 2, . . . , 6n}, (16)

where
∗

X−fn = (
∗

Xf1 , . . . ,
∗

Xfn−1 ,
∗

Xfn+1 , . . . ,
∗

XfN ) is the optimal
strategy set ofXn’s rivals. TheNash equilibrium is obtained as

∗

Xfn = argmin
Xfn

Jfn (Xfn ,
∗

X−fn ). (17)

3) STACKELBERG-NASH GAME
By combining the two above models, the cooperative path
planning problem for multiple UAVs can be represented by a
Stackelberg-Nash game as illustrated in Figure 4. The game
is expressed as

G =
(
(L,F), (Sl, Sf ), (Jl, Jf ), (F, Sf , Jf )

)
. (18)

The Stackelberg-Nash equilibrium,
∗

S = (
∗

Xl,
∗

Xf 1,
∗

Xf2 , . . . ,
∗

XfN ), is defined to meet the conditions:

Jfn (Xl,
∗

Xfn (Xl),
∗

X−fn (Xl)) ≤ Jfn (Xl,Xfn (Xl),
∗

X−fn (Xl)),

∀Xnσ ∈ Sfn , n = {1, 2, . . . ,N }, σ = {1, 2, . . . , 6n},

(19a)

Jl(
∗

Xl,
∗

Xf (
∗

Xl)) ≤ Jl(Xl,
∗

Xf (Xl)). (19b)
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To find
∗

S, a hierarchical PSO-based algorithm is developed
as described in the following.

B. HIERARCHICAL PSO FOR STACKELBERG-NASH GAME
From the above, the UAV cooperative path planning is
reduced to finding the strategy

∗

S of a Stackelberg-Nash game
that fulfills all requirements of conditions (19a) and (19b)
to bring the game to its equilibrium. However, simultane-
ously solving inequalities (19a) and (19b) is challenging and
even impractical for analytical methods as involving non-
differentiable cost functions J (Xn) and dependent variables
Xf (Xl). Instead, heuristic optimization techniques based on
swarm intelligence are more viable and computationally effi-
cient for this problem. Among heuristic optimization tech-
niques, PSO has been widely used for path planning problems
as being effective in the optimal search. This is owing to the
balance between exploration and exploitation of swarm parti-
cles [23], [27], [28]. The main advantages of PSO include its
robustness, fast convergence, and computational efficiency,
making it thus suitable for optimizing interactions among
players in a game theory framework. In this paper, a hierar-
chical optimization algorithm based on PSO is developed to
find the best strategies for the Stackelberg-Nash equilibrium.
Those strategies represent the optimal paths of the UAVs.

1) PSO AND LEADER-FOLLOWER PATH PLANNING
Particle swarm optimization (PSO) is a population-based
method that exploits a population of individuals to probe
promising regions of the search space for optimal solutions.
In this context, the population is called a swarm, and the
individuals are called particles. Each particle moves with
an adjustable velocity to find its best position. Besides, the
best position of the swarm is shared among all individuals to
navigate their direction.

Consider a D-dimensional search space, S ∈ RD, and a
swarm consisting of Np particles. The position and velocity
of particle i are D-dimensional vectors denoted as Xi =
(xi1, xi2, . . . , xiD)T and Vi = (vi1, vi2, . . . , viD)T , respec-
tively. The best position encountered by particle i is a point in
S denoted as Qi = (qi1, qi2, . . . , qiD)T . Let g be the particle
that has the best position among all individuals in the swarm
at time t . The evolvement of the swarm is updated by the
following equations:

Vi(t + 1) = c0Vi(t)+ c1r1[Qi(t)− Xi(t)]

+ c2r2[Qg(t)− Xi(t)], (20)

Xi(t + 1) = Xi(t)+ Vi(t + 1), (21)

where c0 is an inertia factor, c1 and c2 are, respectively, the
cognitive and social coefficients, and r1 and r2 are random
samples uniformly distributed in the interval [0, 1].

For path planning with PSO, we encode the position of a
particle by flight path Xn. The whole swarm thus includes
Np candidate path solutions and their evolvement results in
the optimal solution. To better explore the search space,
we use the recently-developed spherical vector-based particle

swarm optimization (SPSO) algorithm [23]. The SPSO uses
spherical coordinates to describe the nodes of a flight path
so that it can exploit the correspondence between spherical
variables and maneuverable parameters of the UAV to speed
up the search process. Here, we propose a game theory-based
hierarchical approach to extend the SPSO for cooperative
path planning involving multiple UAVs during the search for
the Stackelberg-Nash equilibrium.

Since there are conflicts and interactions among the
leader and followers’ strategies within these two objectives
expressed in (19a) and (19b), the proposed GPSO algorithm
to obtain the overall Stackelberg-Nash equilibrium also cov-
ers two loops in general. The pseudo-code for the whole
hierarchy of leader-follower optimization is described in
Algorithm 1. Therein, to incorporate the interactions within
the hierarchy, from line 1 to line 6 of the inner loop, optimal
strategies for the followers are first obtained by solving the
Nash equilibrium, wherein the leader’s strategy Xl remains
unchanged. The optimal strategies of the followers

∗

Xf (Xl)
obtained are then used to find the best strategy for the
leader at the outer loop overall from line 1 to line 9. Further
explanations of both the inner and outer loop are presented
respectively in Algorithms 2 and 3 in the following.

Algorithm 1 Leader-Follower Optimization Hierarchy
1. Fix Xl ;
for n = 1 : N do
for n = 1 : N do
2. Fix X−fn ;

3.
∗

Xfn (Xl,X
−

fn )=argminXfn Jfn (Xl,Xfn,X
−

fn );

4. Obtain
∗

Xfn (Xl,X
−

fn ) and
∗

X−fn (Xl,Xfn );
end for
5. Substitute X−fn =

∗

X−fn (Xl,Xfn ) into
∗

Xfn (Xl,X
−

fn );

6. Obtain
∗

Xfn (Xl,
∗

X−fn );
end for
7. Obtain

∗

Xf (Xl);
8.
∗

Xl = argminXl Jl(Xl,
∗

Xf (Xl));
9. Obtain

∗

Xl ;
10. Substituting Xl =

∗

Xl into
∗

Xf (Xl);
11. Obtain

∗

Xf (
∗

Xl);

2) HIERARCHICAL GAME-THEORETIC PSO
IMPLEMENTATION
As per the optimization hierarchy designed for the
Stackelberg-Nash game equilibrium, PSO algorithms are
developed to implement the framework and obtain optimal
solutions. The implementation procedure consists of four
steps: Nash game initialization, inner-loop optimization,
Stackelberg game initialization, and outer-loop optimization.

a: NASH GAME INITIALIZATION
Initially, the parameters of the PSO and random strategies of
the followers are generated at a given strategyXl of the leader.
The followers’ payoffs are then optimized to obtain their best
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strategies,
∗

Xf (Xl), with respect to the leader strategy. At this
stage, the PSO algorithm is implemented in the inner loop,
corresponding to the Nash game for followers. In this inner
loop, parameters of the PSO such as weights c0f , c1f , c2f ,
number of iterations maxItf , and number of particles nPopf
for the followers are first selected for initialization.

b: INNER LOOP OPTIMIZATION FOR FOLLOWER
STRATEGIES
After having the leader’s strategy Xl and initializing random
strategies for the followers, the cost of follower n at each iter-
ation can be described as Jfn (Xl,Xfn (Itf ),

∗

X−fn (Itf −1)),where
∗

X−fn (Itf − 1) is the best strategies of the other followers previ-

ously. Byminimizing this cost, the optimal strategy
∗

Xfn (Itf ) of
player n can be achieved correspondingly. Based on

∗

Xfn (Itf )
recorded after each iteration, the strategy of the remaining
followers is then adjusted according to swarm dynamics (20)
and (21). Eventually, the inner loop optimization process will
yield the best strategies

∗

Xf (Xl) of all followers for strategy Xl
of the leader. At the termination of the inner loop, the Nash
equilibrium is obtained for all the followers since none of the
players can gain benefit just by altering its own strategy. The
pseudo-code for the optimization implementation to achieve
the Nash equilibrium is presented in Algorithm 2.

The followers’ optimal strategies
∗

Xf (Xl) resulting from the
Nash game are then fed to the outer loop for Stackelberg game
optimization.

Algorithm 2 Inner-Loop PSO Implementation for Followers
Path
Require: Leader’s strategy Xl ;

1. Initialize PSO parameters: c0f , c1f , c2f ,maxItf , nPopf ;
2. Set Itf = 0, generate random follower’s strategies;
3. Obtain the initial optimal follower’s strategies

∗

Xf (Itf );
for Itf = 1 : maxItf do
4. Recall

∗

Xf (Itf − 1);
5. Calculate Jfn (Xl,Xfn (Itf ),

∗

X−fn (Itf − 1)), for n =
1, 2, . . . ,N ;
6. Record

∗

Xfn (Itf );
7. Update Xfn (Itf );

end for
8. Obtain

∗

Xf (Xl);

c: STACKELBERG GAME INITIALIZATION
The GPSO algorithm is initiated with a search map and path
planning information depending on the task requirements
and operating environment. The swarm for the outer loop
of the optimization process are initialized with parameters
including weights c0l, c1l, c2l , number of iterations maxItl ,
and population nPopl .

d: OUTER LOOP OPTIMIZATION FOR LEADER STRATEGY
From the optimal strategies of the followers

∗

Xf (Xl), the pay-
off Jl(Xl,

∗

Xf (Xl)) is obtained to evaluate the leader’s profit.

It is then used to adjust the leader strategy according to
equations (20) and (21) of the PSO. This strategy is then fed
back to Algorithm 2 to start a new cycle in the inner loop
for optimization. The optimization process terminates when
the maximum number of iterations is exceeded or no profits
are gained. Finally, the best strategies

∗

Xf (
∗

Xl) of the followers
with respect to the best leader strategies are obtained as an
overall result of the game theory-based optimization.

The pseudo-code for the optimization process to
achieve the Stackelberg-Nash equilibrium is presented in
Algorithm 3.

Algorithm 3 Outer-Loop PSO Implementation for Leader
Path
Require: Search map and initial path planning information;

1. Initialize PSO parameters: c0l, c1l, c2l,maxItl, nPopl ;
2. Set Itl = 0, generate random leader’s strategies, Xl ;
for Itl = 0 : maxItl do
3. Run Algorithm 2 to obtain

∗

Xf (Xl);
4. Calculate the the leader’s profit, Jl(Xl,

∗

Xf (Xl));
5. Record

∗

Xl(Itl);
6. Update Xl(Itl);

end for
7. Obtain (

∗

Xl,
∗

Xf ).

The converged outcomes eventually present the global
Nash-Stackelberg equilibrium because the leader’s strategy
is optimized in the outer loop, which covers optimal strate-
gies of all followers in the inner loop given a path of the
leader. However, some local optima may be obtained if the
results neither converge to a single point nor have oscillatory
behavior. In that case, the Nash-Stackelberg equilibrium does
not exist. Since the leader’s and followers’ strategies are
generated randomly at the first iteration, Algorithm 1 should
be run several times to obtain histograms for the converged
cost values, for example, subject to a given threshold.

C. SPEED PROFILES FOR UAV COOPERATION
From Algorithms 1-3, safe and optimal paths can be gen-
erated for all vehicles of the formation, defined by a set of
K nodes as discussed above. Since distances between two
arbitrary nodes and the total path lengths of the UAVs could
be different, they would not reach waypoints and targets at
the same time by using a constant speed to establish the
formation. Therefore, after proceeding with the proposed
GPSO hierarchy to obtain waypoints, it is required to apply
suitable speed profiles for the UAVs to reach the waypoint
and target positions. To achieve this goal, velocity is used
as an independent variable along with the generated paths.
The following algorithm is therefore developed to compute
the required speed profile for each UAV path.

Let Tk , k = 1, 2, . . . ,K+1, be the time required for a UAV
to travel over the flight segment k . For timely cooperation and
synchronization, Tk should be the same for all UAVs. This
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leads to the calculation of speed profiles as presented in the
pseudo-code of Algorithm 4. Given a reference speed, νref ,
the reference time Tk required to complete the longest path
segment, lmaxk , among all the k-th segments is first deter-
mined. The flight speed, νn(k), of UAVn for path segment k
is then calculated proportionally to the segment length, i.e.
νn(k) = ln(k)/Tk , where ln(k) is the length of path segment k
for UAVn.

Algorithm 4 Speed Profiles Calculation
Require: Path of all vehicles Xn, for n = 1, 2, . . . , S
1. Initialize the reference speed νref ;
2. Calculate path segment lengths for all paths: ln(k);
for k = 1 : (K + 1) do
3. Find lmaxk = max{l1(i), l2(i), . . . , lS (i)};
4. Calculate Tk = lmaxk /νref ;
5. Calculate speed profiles for all UAVs: νn(k) =
ln(k)/Tk ;

end for
6. Return speed profiles for all UAVs: νn(k).

IV. SIMULATION RESULTS
This section presents the simulation results of the proposed
algorithm. Due to similarities in the multi-layer hierarchical
structure of UAVs, we conduct simulations for a general layer
to evaluate the path planning performance. Generally, a layer
consists of one leader Vm and several followers V(m+1)n, n =
1, 2, . . . ,N . In the simulation, we consider two commonly
used formation shapes, including the equilateral triangle and
diamond formations [29], [30]. However, it should be noted
that there are no restrictions on the choice of the formation
shape.

A. EVALUATION WITH EQUILATERAL TRIANGLE
FORMATION
In this scenario, the objective is to generate paths for three
UAVs flying in an equilateral triangle formation. The inci-
dence matrix D1 is thus defined as

D1 =

 1 1 0
−1 0 1
0 −1 −1

 . (22)

The weights for interconnections are set as Wm = [1 1 0],
W(m+1)1 = [1 0 0.01], and W(m+1)2 = [0 1 0.01]. Here, the
weights for interconnections between the leader and follow-
ers are set higher than the ones between the followers since
it is more desirable to maintain distances with the leader
than with the followers. The operation space is chosen as
100m×100m×35m in dimension. Obstacles are modeled as
cylinders located at (60, 20), (40, 50), (20, 80), and (80, 70)
with a radius of 4m. The starting locations of the leader and
followers are chosen at

[
Pm(0), P(m+1)1(0), P(m+1)2(0)

]
=

[15 10 20; 18.66 10 10; 20 20 20]. The target locations
were located at

[
Pm(end),P(m+1)1(end),P(m+1)2(end)

]
=

[85 80 90; 88.66 80 80; 20 20 20]. The formation reference

was given according to the target position, i.e.Pmr =Pm(end),
P(m+1)1r =P(m+1)1(end), and P(m+1)2r =P(m+1)2(end).
The parameters of the hierarchical PSO were set by the

trial-and-error as c0 = 0.98 and c1 = c2 = 1.5. Both the
outer and inner loops of the PSO run with 150 particles
and 100 iterations. In the total cost function of the leader,
weight factors were chosen as [ωl1, ωl2, ωl3, ωl4, ωl5] =
[0.01, 10, 100, 1, 1] in order to obtain a short dis-
tance avoidance-free path. Meanwhile, weight factors in
the total cost function of the followers were chosen as
[ωf 1, ωf 2, ωf 3, ωf 4, ωf 5] = [10, 0.01, 100, 1, 1] in
order to obtain a formation-maintaining avoidance-free path.
The number of waypoints for each path was set as K = 10,
excluding the start and target positions.
To show the merit of the proposed framework using the

Stackelberg-Nash game for UAV cooperative path planning,
we have compared it with a distributed algorithm based
on the Stag Hunt game approach [31], [32]. The paths of
the three UAVs are shown in Figure 5. As can be seen in
Figure 5a, the triangular formationwith the Stackelberg-Nash
game is maintained throughout the flight while both interve-
hicle collisions and obstacle collisions can be avoided. The
Stackelberg-Nash equilibrium is reached after 50 iterations
for the leader and 55 iterations for the followers at the con-
vergence of cost values as depicted in Figure 6a. Compared to
the Stag Hunt game, our algorithm converged faster and with
smoother paths. The stable convergence can be confirmed
in Figure 7 showing histograms of the final cost values in
35 trials.

B. EVALUATION WITH DIAMOND FORMATION
To further evaluate the performance of the proposed coop-
erative path planning algorithm, we compared it with state-
of-the-art methods that considered the group of UAVs as
a rigid body, and path planning was obtained for a virtual
vehicle located at the centroid of the group [33], [34]. In this
comparison, we considered a task in which four UAVs were
required to move in a diamond formation. The incidence
matrix D2 was determined as

D2 =


1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1

 . (23)

Similarly to the triangular formation case, the weights for
interconnections among UAVs were chosen as

Wm =
[
1 1 1 0 0 0

]
,

W(m+1)1 =
[
1 0 0 0.01 0.01 0

]
,

W(m+1)2 =
[
0 1 0 0.01 0 0.01

]
,

W(m+1)3 =
[
0 0.01 1 0 0.01 0.01

]
.

The map used was an area of Christmas Island in
Australia obtained from a real digital elevation model (DEM)
map [35], as depicted in Figure 8. It has the size of
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FIGURE 5. Generated formation paths.

FIGURE 6. Convergence of cost values.

1000m×1000m×35m. The starting locations were at

Vm(0) = [100 150 20],

V(m+1)1(0) = [60 80.72 20],

V(m+1)2(0) = [140 80.72 20],

V(m+1)3(0) = [100 11.44 20].

The target and reference locations were at

Vmr = Vm(end) = [850 900 20],

V(m+1)1r = V(m+1)1(end) = [810 830.72 20],

FIGURE 7. Histograms of the final cost values over 35 trials.

FIGURE 8. Scenario 1.

V(m+1)2r = V(m+1)2(end) = [890 830.72 20],

V(m+1)3r = V(m+1)3(end) = [850 761.44 20].

The GPSO parameters are remained as presented in the pre-
vious simulation for an equilateral triangle formation.

Comparative results for Scenario 1 with four obstacles can
be obtained as shown in Figure 8. It can be seen that both
methods, the proposed GPSO and rigid body planning, are
able to generate collision-free paths with the formation being
well-maintained. However, the game theory-based algorithm
is capable of shrinking and enlarging the formation shape
depending on the presence of obstacles and thus results in
a shorter path, 4391.0 m, compared to the rigid body method,
4397.8 m. This advantage is more prevalent in a more com-
plex situation, Scenario 2, as shown in Figure 9. In this sce-
nario, the UAV formation generated by the rigid body method
cannot flight through narrow space between the obstacles so
it has to travel a long distance, 5228.0 m, to avoid them
(see Figure 9b). The game theory-based method, on the other
hand, can change the formation size to generate an optimal
path with the length of 4389.1 m.

To evaluate the capability of split and merge of UAVn at
waypoint k , a formation flexibility index (FFI), ξn(k), is intro-
duced. It is computed as a ratio of the formation displacement
and its corresponding formation reference. For UAVn, it is
defined as

ξ (k) =
||P(k)− Pr ||2L̂n

||Pr ||2L̂n

. (24)
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FIGURE 9. Scenario 2.

For the rigid body formation technique, the FFI is zero,
i.e., the team of UAVs is inflexible. Meanwhile, a small FFI
of less than 0.1 can be obtained for the UAV diamond in
Scenario 1. In Scenario 2, the second follower relaxes its
formation constraint between the 5-th and 8-th waypoints to
avoid obstacles, resulting in the higher FFI of 0.28. This value
presents the capability to split and merge the UAV team and
further demonstrates the advantage of the proposed approach.

In terms of computational complexity, the proposed
method requires running the inner-loop PSO for each leader’s
strategy to achieve the Stackelberg-Nash equilibrium, result-
ing in a higher computational cost, particularly for more play-
ers and/or with an increased number of constraints. However,
since the path planning algorithm is carried out offline, this
cost is worth for better overall optimal results.

V. EXPERIMENTAL VALIDATION
In this section, we describe the testbed and the experiments
conducted to verify the feasibility and effectiveness of the
proposed GPSO algorithm.

A. EXPERIMENTAL SETUP
For experiments, our setup includes three 3DR Solo drones
with remote controllers, a ground control station, and
communication hardware, as shown in Figure 10. Each
drone is equipped with one ARM Cortex A9 processor for
running the Arducopter flight operating system and two
Cortex M4 168 MHz processors for low-level control. For
data acquisition, cameras, laser scanners, or environmental
sensors can be attached to the onboard computer of the
UAV depending on applications. Communication between
the ground control station and the drone is carried out via
a private network called 3DR Link Secure WiFi created
by modules integrated into the remote controller of the
drone [34]. The ground control station used the software
named QGround Control to upload the planned path to the
drones, fly them autonomously, and download logged data
for analysis. In the experiments, the default PID controller
was implemented in the 3DR Solo.

The UAV equilateral triangle formation was tested on a
park set up with four obstacles as shown in Figure 11. The

FIGURE 10. Experimental setup.

FIGURE 11. Experimental results.

map origin is set at P0 = {−33.87645951; 151.1918842; 0}.
The relative starting locations of the drones with respect to
the origin were set at [Pm(0), P(m+1)1(0), P(m+1)2(0)] =
[15 10 20; 18.66 10 10; 20 20 20]. The corresponding target
and reference positions were chosen as Pmr = Pm(end) =
(85; 88.66; 20), P(m+1)1r = P(m+1)1(end) = (80; 80; 20),
and P(m+1)2r = P(m+1)1(end) = (90; 80; 20). The coor-
dinates of waypoints are first converted into their longi-
tude, latitude, and altitude. The speed profiles of the UAVs
are then computed according to Algorithm 4, with Vref =
1(m/s). After that, the waypoints and corresponding speeds
are uploaded to the drones using the QGround Control soft-
ware for their autonomous execution.

B. VERIFICATION RESULTS
Figure 12 shows the drones forming a triangular shape when
performing a bridge inspection task. The objectives of path
planning and formation maintenance of the three drones are
achieved with our proposed GPSO, as shown in the experi-
mental results of Figure 11, in which the solid lines are the
planned paths and the dotted lines are the actual paths of the
UAV triangle.

To evaluate tracking performance, Figure 13 presents the
position errors and speed profiles of the UAVs. It can be seen
that all the three UAVs can track their planned path with small
tracking errors of 0.4m to 0.6m maximally. In fact, those
tracking errors are mainly caused by the GPS positioning
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FIGURE 12. UAV triangular formation during experiments.

FIGURE 13. Tracking performance.

errors rather than by the tracking controller of the drones
themselves. The figure also depicts that all measured speeds
accurately track their corresponding desired values generated
from the GPSO path planning calculations. This, again, con-
firms that all UAVs reach the waypoints while maintaining
well the formation configuration.

VI. CONCLUSION
In this paper, we have presented a novel method based on
the game theory and particle swarm optimization algorithms
for the cooperative path planning problem of multiple UAVs
navigating in a desired geometric configuration. The UAV
collaborative path planning problem is solved by finding
the equilibrium of a Stackelberg-Nash game. A hierarchical
optimization framework using PSO was integrated to find the
game equilibrium by minimizing a global cost function while
simultaneously taking into account constraints for the desired
shape as well as path length, collision avoidance, altitude, and
smoothness. The proposed GPSO cooperative path planning
approach can generate a safe path for each UAV in the team
with a flexible formation size. Extensive simulation and com-
parison results are provided for evaluating its performance.
Field experiments have also been conducted to demonstrate
the feasibility and effectiveness of the proposed method in

various scenarios. Our future work will focus on improving
the algorithm for online cooperative path planning of UAVs
in the presence of dynamic obstacles.
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