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ABSTRACT As heart failure (HF) appears to be a growing epidemic, no case should be overlooked in
the diagnosis of HF. Two subtypes of HF by left ventricular ejection fraction (LVEF) are HF with reduced
ejection fraction (HFrEF) (LVEF≤ 40%) and HF with preserved ejection fraction (HFpEF) (LVEF≥ 50%).
HFrEF is easier to diagnose. However, the diagnosis of HFpEF is more complex and difficult even for
specialists. The diagnosis of HFpEF is a problem that is being tried to be solved in medicine. Since LVEF
appears normal (LVEF ≥ 50% also in healthy individuals), HFpEF can be confused with chest diseases
due to some similar symptoms. The diagnosis of HF subtypes is ideally made using echocardiography.
Echocardiography should be performed in all patients with HF; however, it is expensive and requires
specialists. Even in high-resource regions, this test is not always performed, and treatment may need to
be initiated before the echocardiographic data are obtained. For such situations, economical and practical
systems are required. In this study, a medical decision support system was developed to detect HFrEF and
HFpEF cases using only 3-lead ECG. From the ECG data of 61 volunteers, 37 features were extracted,
of which 16wereYule-Walker andBurg’smethod parameters, and 21were in the time domain. Consequently,
37 features were reduced by feature selection and triple classification was performed with only 4 features
with maximum accuracy. This study aimed to determine whether the individuals with HF symptoms
were HFrEF, HFpEF, or healthy. Four machine learning algorithms were used for classification. The best
classification accuracy rate was 100% for k-NN, and significant results were also obtained from the other
three algorithms: SVMs, Decision Trees, and Ensemble Bagged Trees.

INDEX TERMS Artificial intelligence, classification, electrocardiography, heart failure, HFpEF, HFrEF,
machine learning.

I. INTRODUCTION
Ejection fraction (EF) is the amount of blood ejected from a
ventricle with each beat of the heart. It can be formulated as
(Pulse Volume) / (End-Diastolic Volume). Left Ventricular
Ejection Fraction (LVEF) is a measure of pumping effi-
ciency into the systemic circulation, while right ventricular
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ejection fraction is a measure of pumping efficiency into the
pulmonary circulation. EF is usually measured by echocar-
diography and is used as an overall measure of a person’s
heart function. LVEF is usually low in patients with sys-
tolic heart failure, and it is an important determinant of
the severity of systolic heart failure. Unlike the heart rate
in a healthy person, which can be high or low and vary
in its daily course, low LVEF is always associated with
disease [1].
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Heart failure (HF) can be defined as a functional or struc-
tural disorder that induces the heart to be unable to supply
sufficient oxygen to the tissues [2]. Clinical HF is described
in the European HF Guidelines as a clinical syndrome arising
from a functional or structural disorder in the heart, and
patients have typical signs and symptoms (signs such as
ankle swelling, shortness of breath, and fatigue and symptoms
such as apex beat displacement, pulmonary crepitation, and
increased jugular vein pressure).

As heart systolic dysfunction increases, LVEF gradually
decreases, and end-systolic and end-diastolic volumes gener-
ally increase. LVEF is important not only as a manifestation
of the disease but also because inmost clinical studies patients
are identified by LVEF.

Basic clinical studies with patients with systolic HF
or reduced EF (HFrEF) generally included patients with
LVEF < 40% and currently proven treatments are effective
only in this group of patients. On the other hand, studies have
also been conducted with HF patients with LVEF > 40-45%
and no other cardiac disorders. In some of these patients,
as well as LVEF is completely normal (usually> 50%), there
is no significant reduction in systolic function either. So,
the term HF with preserved ejection fraction (HFpEF) was
improved to define these patients [3], [4].

The underlying pathophysiological failure in HFpEF
patients is thought to be LV diastolic dysfunction. No sin-
gle echocardiographic parameter is sufficiently precise and
reproducible to diagnose LV diastolic dysfunction. So, an
exhaustive echocardiographic examination with exactly cor-
related two-dimensional and Doppler data are suggested [3],
[5], [6].

Doppler Ultrasound devices are expensive, and the
echocardiographic examination requires an expert and is
laborious. HFpEF is a complicated syndrome that may ensue
from functional and structural cardiac disorders rather than
only one disease presence, correct diagnosis can be difficult
even for HF specialists [7].

In the literature, there are studies using artificial intelli-
gence (AI) and machine learning (ML) methods for various
heart failure classifications [8], [9], [10], [11], [12], [12],
[13], [14], [15]. These studies generally focused on HFrEF,
some studied only HFpEF. Classifications were made for
two classes. The features used for classification were demo-
graphic information such as age, height, and weight, or more
laborious features such as those obtained from echocardio-
graphy, magnetic resonance imaging, or invasive methods.
In recent years, AI algorithms were developed to detect heart
failure using ECG. In these studies, algorithms with AI meth-
ods were developed for conditions such as aortic stenosis,
anemia, atrial fibrillation, cardiac contractile dysfunction,
congestive heart failure, and arrhythmia prediction using
ECG [12], [16], [17], [18], [19], [20], [21], [22]. In these
studies, 12-lead ECG data were used generally.

By applying AI to ECG, it was shown that subtle changes
in QRS could be correlated with heart functions such as
myocardial fibrosis, congestive HF, the efficacy of diuresis

treatment, etc., and faster and less costly evaluation could
be made [23]. Studies were carried out to predict HF-related
death and hospital readmission using AI and ML algorithms
[24]. In some of those studies, echocardiographic data [25],
or many parameters such as clinical phenotyping, laboratory,
ECG, and echocardiography were used simultaneously [26].
Congestive heart failure (CHF) includes HFrEF and HFpEF.
The binary classificationwasmade as the presence or absence
of CHF [27]. In the study in [28], the patient class in the
data set included HFrEF, HFpEF, and Coronary Artery Dis-
ease. However, the classification was made as the presence
or absence of HF, and the patient class was also classified
according to the New York Heart Association (NYHA) func-
tional classification. The focuses of the studies in [23], [24],
[25], [26], [27], and [28] were not on the diagnosis of HFrEF
and HFpEF.

A 10-year HF risk estimation was made for HFrEF and
HFpEF with an AI-based system developed using 12-lead
ECG data. Here, LVEF < 50% for HFrEF and LVEF ≥ 50%
for HFpEF were accepted. That was, mid-range ejection frac-
tion (HFmrEF) (41% ≤ LVEF ≤ 49%) was also included in
the HFrEF. There was no evidence this system could help
distinguish between HFpEF and HFrEF [29].

HFrEF cases are easier to diagnose. HFrEF is diagnosed
when LVEF ≤ 40% is detected by echocardiography. The
underlying phenotypic heterogeneity in HFpEF is more com-
plex than in HFrEF [30]. The diagnosis of HFpEF is diffi-
cult even for specialist physicians. Because of some similar
symptoms, cases of HF can be confused with cases of chest
diseases. Since LVEF appears to be normal in the case of
HFpEF, a patient who goes to the hospital with the symptoms
of HF can be referred to a pulmonologist. When the func-
tions of the patient evaluated in terms of chest diseases are
normal, no action is taken. Therefore, the case of HFpEF is
overlooked. If the pulmonologist is careful and considers the
possibility of HFpEF and orders BNP and NT-proBNP blood
tests, the case of HFpEF will be detected. (Brain natriuretic
peptide (BNP) and N-terminal pro b-type natriuretic peptide
(NT-proBNP) blood tests are often used to diagnose HF).
To prevent such confusion and cases from being overlooked,
it was aimed to design a medical decision support system
using 3-lead ECGmeasured simply, and giving results within
seconds. Thus, before performing echocardiography or other
troublesome blood tests, a system that provides the doc-
tor with preliminary information about the individual was
HFrEF, HFpEF, or healthy was designed. It was thought that
the system, advantageous both in terms of patient comfort and
economically, would support situations that even specialist
physicians have difficulty in diagnosing.

Only features extracted from 3-lead ECG data were used
as features in the classification. To investigate whether
only these features could be used without the need for
demographic or echocardiographic data and other detailed
examinations for the medical decision support system, the
difference between classes was examined by statistical
methods.
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TABLE 1. Demographic information.

Statistically the most distinctive features were determined,
and classification studies were carried out with ML algo-
rithms by reducing the number of features. The classification
was carried out with high accuracy with the k-NN method.

II. MATERIAL AND METHODS
The data were collected from patients who visited Sakarya
University Training and Research Hospital’s cardiology out-
patient clinic as well as those who were admitted to the
inpatient service. To carry out the study, the ethics committee
report numbered 16214662/050.01.04/123was obtained from
the Sakarya University Faculty of Medicine Dean’s Office.
An Informed Consent from each volunteer was obtained.
Data collecting and recording were made with Biopac MP36
device. Data were obtained from individuals whose echocar-
diographic results were interpreted by a specialist cardiolo-
gist and were eligible for inclusion in our study.

ECG signals from 61 volunteers (25 years old or older)
were taken from the right ankle and right and left wrists
(Standard Bipolar Lead I). The sampling frequency of the
signal was 200 Hz. Recordings were taken from each indi-
vidual for 10 s. Data from the same volunteer at different
time intervals were also used. The dataset contained a total
of 180 data, of which 60 were HFrEF, 60 were HFpEF,
and 60 were healthy individuals with LVEF above 50%.
The demographic information of the volunteers was given
in Table 1.

A. PREPROCESSING THE DATA
The workflow diagram of the study was provided in Figure 1.
The study was shaped according to this flow diagram,
and the results were obtained. After data were acquired
from the volunteers, the data were labeled by a specialist
cardiologist. First, noise and artifacts in the ECG signal
were cleaned. For this, a Chebyshev Type II band-pass
filter was applied in the range of 0.25 – 100 Hz, and
Stopband Attenuation was 60 dB. A notch filter, in the
range of 49-51 Hz, was applied to clean the mains noise
at 50 Hz. Stopband Attenuation was also specified as 60 dB.
Finally, the Moving Average Filter was applied to the
signal.

A graphical representation of the ECGs of individuals with
HFrEF, HFpEF, and healthy (LVEF above 50%) was given in
Figure 2. In addition, the periodogram graph with the Fast
Fourier Transforms of the ECGs was also given in the figure.
Although the ECGs were very similar to each other, they
were differentiated in the periodogram. Therefore, using a

FIGURE 1. Flow diagram of study.

FIGURE 2. Periodogram Graph of ECG.

periodogram is a smart way for machine learning methods.
Then, feature extraction from the ECG was performed. Sta-
tistical analysis was performed and features were selected.
Finally, classificationwasmadewith the selected features and
the diagnosis algorithm was developed.

B. ECG FEATURES
First, 21 features were extracted from the ECG in the time
domain. These extracted features were given in Table 2 [31].
In the table, the numbers given to the features are in the
first column, the names of the features are in the second
column and the formulas of the features are in the third col-
umn. In addition to these features, 8 the Yule-Walker output
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TABLE 2. ECG features at time domain.

parameters (4 of the normalized autoregressive (AR) param-
eters corresponding to the model of order 4, the estimated
variance of 1 white noise input and 3 reflection coefficients)
and 8 Burg’s Method output parameters (4 of the normalized
autoregressive (AR) parameters corresponding to the model
of order 4, 1 the estimated variance of the white noise input
and 3 of the reflection coefficients) 16 features were also
added to the features. A total of 37 features were extracted.
These features were also calculated using MATLAB.

C. STATISTICAL ANALYSIS
The ECG signal is not normally distributed. So, it can be sta-
tistically analyzed with non-parametric test methods. Kruskal
Wallis Test is preferred as the data are non-normally dis-
tributed and there are three or multiple classes. The test is
the nonparametric version of the one-way ANOVA [32]. The
aim of using this test was to investigate whether there is a
significant difference between the classes (HFrEF, HFpEF,
and Healthy).

TABLE 3. p values of features as a result of Kruskal Wallis test.

TABLE 4. HFrEF - healthy binary Mann Whitney-U test results.

Asymptotic Significances (p values), obtained for each
feature as a result of the Kruskal Wallis test, were provided
in Table 3. According to the table, p < 0.05 for features 2, 6,
7, 9, 10, 12, 13, 15, 20, 21, 27, 28, 30, 31, 32, 34, 35, 36, 37.
That was, these features were distinctive for at least two of
the three classes being compared.

The Mann Whitney U test is a non-parametric test used to
determine whether the two sampled groups are from the same
population [33]. As post hoc tests, binary Mann Whitney-U
tests were performed to determine whether the features that
appeared distinctive as a result of the Kruskal Wallis test
were distinctive only for certain binary classes or for all
three classes. Mann-Whitney U test results were provided in
Tables 4, 5, and 6. Features were ranked at these tables.
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TABLE 5. HFrEF - HFpEF binary Mann Whitney-U test results.

TABLE 6. HFpEF - healthy binary Mann Whitney-U test results.

Since there is own error percentage for each of the classes,
the value 0.05 is divided by 3 (= 0.0167) (This is named
the Bonferroni correction.) [30]. When p-value is lower than
0.0167 as a result of the MannWhitney U test for the relevant
feature, the feature is said that it is distinctive for those two
classes. That is, for example, features 2, 7, 9, 10, 12, 13,
15, 20, 21, 28, 30, 31, 32, 34, 36, and 37 were distinc-
tive for HFpEF – Healthy binary classification because of
p < 0.0167 for them.

Then, a different number of features from the most relevant
ones were taken as input, and experiments were conducted.
In the relationship of fewer features/higher accuracy, the
optimum value was determined. Consequently, classification
was performed with high accuracy as a result of the algorithm
using features 2nd, 32nd, 36th, and 37th. These features

ranked highly in the Mann Whitney U test ranking. Triple
classification average performance parameters were calcu-
lated [35] and provided in Table 7.

D. CLASSIFICATION
The dataset was organized as individuals in rows and features
in columns. With tagging, a tag column was added to the
end of the feature columns. The data were separated as 80%
training and 20% testing (validation). Balanced test data were
created by randomly taking 20% of the data in each class.
Performance parameters were calculated by comparing the
results obtained from the simulation with the predetermined
label column.

Four different machine learning algorithmswere applied as
k-NN, Support Vector Machine (SVM), Decision Trees, and
Ensemble Bagged Trees.

The k-NN classifier was fine k-NN [36]. The euclidean
metric distance was used for the fine k-NN. Cubic SVM
was applied [37]. The Kernel Function was polynomial, the
Polynomial Order was 3, the Kernel Scale was automatic and
the Box Constraint was 1. The applied Fine Decision Tree
[38] Split criterion was Gini’s diversity index, the maximum
number of splits was 100, and the Surrogate decision splits
were off. Ensemble Bagged Trees, the ensemble classifier,
was ensembled with the Bag Method [39], learner type was
Decision Tree. The maximum number of splits was 179 and
the Number of learners was 30.

Performance parameters for triple classification made with
each classifier were provided in Table 7. The best results were
obtained by the k-NN algorithm. Parameters were calculated
separately for each of the three classes. For each parameter,
the final value indicated in the table is themean value of them.

The parameters were calculated using the following
formulas [35]:

FIGURE 3. Representation of Confusion Matrix.

For class i:

Sensitivityi =
TPi

TPi +
∑

FNi

Specificityi =

∑
TNi∑

TNi +
∑

FPi

F_Measure =

∑3
i=1 TPi

Grand Total

Kappa =
cs−

∑3
i=1 piti

s2 −
∑3

i=1 piti

c=
∑3

i=1 Cii the total number of elements correctly predicted
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TABLE 7. Classification performance parameters.

s =
∑3

i
∑3

j Cij the total number of elements
pi =

∑3
k Cik the number of times that class i was predicted

(column total)
ti =

∑3
k Cki the number of times that class i truly occurs

(row total).

III. RESULTS AND DISCUSSION
In this study, a new diagnostic algorithm for HFrEF and
HFpEF was developed. A machine learning based sys-
tem was developed using features derived from ECG.
A total of 37 features were derived. However, it is dif-
ficult to derive so many features in real-time systems.
Therefore, it was aimed to reduce the number of fea-
tures and improve the system. To increase the performance
of the classifier, the 37 features were selected by the
Kruskal Wallis Test and Mann Whitney-U Test methods and
used.

The Kruskal Wallis test determined which of the fea-
tures were distinctive for the triple classification (Table 3).
As a result of this test, the number of features was reduced
from 37 to 19. Then, these features were evaluated by the
MannWhitney-U Test for different binary groups, and ranked
(Tables 4, 5, 6).

After that, a different number of features from the most
relevant ones were taken as input, and experiments were
carried out. The optimum value was determined in the fewer
feature/high accuracy relationship. As a result, classification
with high accuracy was performed as a result of the algo-
rithm using the 2nd, 32nd, 36th, and 37th features. These
features ranked highly in the Mann Whitney U test ranking.
The classification performance parameters are provided in
Table 7. The results in the table were obtained with only four
features. This may be argued as an impressive performance
for a system that may be used in practice.

Patients get various diagnostic tests, invasive processes
and therapies during their illness and generate big amounts
of data that can be collected in registries or other insti-
tutional databases to assess healthcare utilization, quality
and cost of care, and prognosis [40]. For traditional analyt-
ical methods, the size, dynamic nature and complexity of
this ’big data’ can be demanding to make sense of [41].
ML methods can handle temporary, large volume and
multimodal data [42]. ML methods are well-equipped for
handling high-dimensional datasets with numerous variables,
that complicates traditional statistical approaches such as
regression. ML can also process collinear or correlated
data points and evaluate complex interactions between pre-
dictors. ML algorithms enable accurate, higher performing

computation of nonlinear relationships [43]. ML comprises
computational techniques that can take out patterns from
data, get knowledge, and implement that knowledge to tasks
such as risk prediction [44]. Providing the right care to the
patient in HF is challenged by diagnostic ambiguity, vari-
ability in treatment and complexity in risk stratification, and
restricted integration of information about care. ML can act
an important role in filling these gaps in HF and has signifi-
cant advantages over traditional human-induced models [45].
For these reasons, in this study, ML methods were preferred
for classification. This study was thought to be applicable
to larger datasets in the future and could be integrated into
measurement devices.

Classifier results with four different ML algorithms were
given in detail for each classifier in Table 8. The classification
processes were carried out in order. First, 37 ECG features
were classified without applying any feature selection algo-
rithm, and performance parameters were calculated to mea-
sure the performance of the classifier and recorded in the
relevant column. Then, 37 features were reduced to 19 with
the first feature selection stage (Kruskal Wallis Test) and the
same process was repeated. 19 features were reduced to four
with the second feature selection stage (Mann Whitney-U
Test) and the same process was repeated. The performance
parameters for the classifiers were calculated and provided in
the table.

According to the table, the best results were obtained with
the k-NN classifier. At the table, reducing the number of
features with feature selection generally did not decrease
the system performance, but increased it even more. For
k-NN, SVM, and Ensemble classifiers, this increasewas quite
evident. In addition, it was important to obtain the highest
performance parameters with 4 features instead of 37 or
19 features, for real-time systems having less workload and
for working more effectively. Although there was no signif-
icant increase in the performance parameters with feature
selection for the Decision Trees classifier, in detail, the AUC
increased for each class. It was also advantageous to obtain
the performance parameters that could be obtained with 37 or
19 features, with 4 features.

Receiver operating characteristic (ROC) curves for the
classifiers were provided in Figure 4. A ROC curve may be
evaluated as: it can better diagnose the positive class if the
curve is closer to the left axis; If the curve is closer to the
upper axis, it can better define the control group. Regarding
the figure, for example, in the ROC curve for the Healthy
class, the positive class is ‘‘Healthy’’ and the control class
is ‘‘HFrEF & HFpEF’’.
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TABLE 8. Classifier results.

According to Figure 4, when there were 37 features for
k-NN, the AUC for all three classes was 0.938. AUC values
increased for all three classes when there were 19 features.
HFpEF was ideal, the positive class was better discriminated
for the Healthy class, while the control class (HFpEF &
Healthy) was better discriminated for HFrEF.With 4 features,
ideal results were achieved for all classes.

When there were 37 features for SVM, the control classes
were better differentiated for HFpEF and Healthy classes,
while the positive class was better differentiated for HFrEF.
With 19 features, HFpEF was ideal, while AUC was slightly
reduced for other classes. HFrEF was ideal when there were
4 features, and the situations were close to ideal for HFpEF
and Healthy classes.

When there were 37 features for the Decision Tree, the
positive class was better differentiated for HFpEF, while the
control classes were better differentiated for the Healthy and
HFrEF classes. The AUC value for HFrEF was significantly
reduced when there were 19 features. Better results were
obtained for all three classes when there were 4 features.

When there were 37 features for Ensemble Classifier,
HFpEF was ideal, for HFrEF the control class was better

distinguished. When there were 19 features, the positive
class for HFrEF was better differentiated. With 4 features,
HFpEF was ideal, the control class was better differentiated
for HFrEF, and the positive class was better differentiated for
the Healthy class.

This study was considered to be implantable in measure-
ment devices in the future. The k-NN classifier was focused
on because it was widely used in industrial implementations
[46]. Three other algorithms used were also used to support
the study and to see the feasibility of this triple classification
using 3-lead ECG. According to the results, this classification
could be done with high accuracy and the best results were
obtained with the k-NN method.

Compared to other studies in the field, there are three
classes in the classificationmade in this study, namelyHFrEF,
Healthy, and HFpEF. Not only is the presence or absence of
HF but also, if HF is present, the question ‘‘which one’’ is
also answered.

This study contributed to the literature by showing that
HFrEF andHFpEF could be diagnosed onlywith 3-lead ECG.
It is thought that it will be a pioneer for future studies on
this subject. The dataset used in the study was not very large.
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FIGURE 4. The ROC Curves for Without Feature Selection (NF = 37), After Kruskal Wallis Test (NF = 19), and After Mann Whitney-U Test (NF = 4) NF
number of feature.

Therefore, traditional ML methods were used. New studies
can be done using newer ML methods with a larger dataset.

IV. CONCLUSION
Echocardiogram and electrocardiogram (ECG) are the most
frequently used tests in patients with suspected HF. LVEF is
important not only as a manifestation of the disease but also
because patients are defined by LVEF inmost clinical studies.
LVEF is generally determined by an echocardiogram. Rarely,
SPECT (Single Photon Emission Computerized Tomog-
raphy) and radionuclide ventriculography or radionuclide
angiography (Multiple-gated acquisition - MUGA) are also
used. These devices are pricey, some of the methods are
invasive and all of them require an expert. In addition, there
may be conditions where the attainment of these devices is
limited. On the other hand, ECG is not expensive, easy to
acquire, and gives fast results. Therefore, for example, when
a patient admitted to the emergency service was suspected of
HF, before carrying out detailed examinations, for informing
the doctor whether the incoming case was HFpEF, HFrEF or
healthy, a medical decision support system was developed
using 3-lead ECG. Thus, diagnosis will be easier for the
doctor, and time will be saved by preventing unnecessary and
expensive tests. Therefore, it is a useful system both in terms
of patient comfort and economics.

For HFrEF and HFpEF that was difficult to diagnose and
can be overlooked, the medical decision support system that

did not require an expert and facilitated the diagnosis of the
doctor was developed using only 3-lead ECG. It was thought
that this study would fill the gap in the literature regarding
simultaneous evaluating the diagnosis of HFrEF and HFpEF
using only ECG.
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