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ABSTRACT Image demoiréing is an important image processing technology in computer vision, used
to remove the moiré from images and improve the image quality. In recent years, the image demoiréing
technique based on the deep learning method has gained more attention and achieved good results, but
it still has some limitations. This paper aims to provide a review and perspective on the recent advances
in deep learning-based image demoiréing techniques. First, the definition and production principle of the
image moiré pattern are given. Common datasets and image quality evalution methods in demoiréing studies
are analyzed. Then two internationally famous competitions in image demoiréing are introduced. Second,
the research status of the supervised demoiréing technique is summarized from four dimensions: sampling
method, model network design, baseline model, and training learning strategy. Recent progress made by
the mainstream model of unsupervised deep learning in the field of image demoiréing is summarized. The
typical application of the image demoiréing technique in panel defect detection and digital radiography is
analyzed. The performance and the image quality of the above mentioned models based on different data sets
are evaluated in detail. Finally, this paper analyzes and forelocks the problems to be solved in the coming
years.

INDEX TERMS Image demoiréing, screen-shot image, deep learning, convolutional neural networks
(CNN).

I. INTRODUCTION
The widespread use of digital cameras, especially smart-
phones, helps people record exciting moments in their work
and life by taking photos for review and sharing. However,
when the shooting object exist high-frequency texture similar
to the resolution of the color filter array (CFA) grid, because
the spatial frequency of the CFA pixel grid overlaps with
the high-frequency texture of the subject, resulting in col-
orful water ripple-like texture called moiré [1], as shown in
Fig. 1. According to the objects to be photographed, they can
be divided into screen-shot images moiré for photographing
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electronic displays and texture images moiré for photograph-
ing clothing with dense textures and long-distance building’s
tiles, etc., as shown in Fig. 1 and Fig. 2, respectively. The
presence of moiré drastically degrades the visual quality of
images and affects the people’s visual experience.

In recent years, researchers have focused on the moiré
problem and have studied the restoration of corresponding
clean images from moiré images. Depending on the order of
moiré removal, moiré removal methods can be divided into
two main categories: pre-processing and post-processing.
Pre-processing directly suppresses the appearance of moiré.
In literature, various pre-processing methods have been pro-
posed, including adding a low-pass filter to the camera [2],
pixel merging-based methods, and interpolation-based

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 108453

https://orcid.org/0000-0002-9418-460X
https://orcid.org/0000-0002-5852-0813


S. Hou et al.: Deep Learning for Screen-Shot Image Demoiréing: A Survey

FIGURE 1. Moiré of different scales, frequencies, and colors.

FIGURE 2. Textured moiré images.

methods [3], [4]. On the contrary, post-processing improves
the visual quality of the images by removing moiré using
image processing. Liu et al. [5] found that the energy dis-
tribution of moiré in the frequency domain is focused and
barely mixes with the image texture details and proposed
image decomposition-based methods [5], [6], [7]. In addi-
tion, there are filter-based methods [8] and image pro-
cessing methods using Adobe Photoshop. However, as the
image resolution increases, the time consuming of remov-
ing moiré using image processing methods increases dra-
matically. For example, Fang et al. [9] take 10s to process
an image with 256 × 256 resolution, so it requires faster
methods.

With the rapid development of deep learning techniques in
the past few years, deep learning-based image demoiréing
methods have been actively explored. Researchers have
proposed a variety of deep learning-based demoiréing
models, ranging from convolutional neural networks
(CNN) (e.g., DMCNN [10]) to generative adversarial nets
(GAN) [11](e.g., MR-GAN [12] and cyclic GAN [13]), can
remove moiré within 1s, and achieved the best score in
image quality evaluation. In general, the methods of image
demoiréing with deep learning differ in the following aspects:
sampling methods [10], [14], [15], network design [14], [16],
[17], baseline model [15], [16], [18], [21], [60], [61], and
learning strategies [12], [18], [19], [20], [21], [22].

While there is a screen-shots image demoiréing sur-
vey [23], only two methods are involved, which is not com-
prehensive. Thus, this paper aims to comprehensively survey
the latest developments in deep learning-based screen-shot
image demoiréing. The rest is organized: Section II defines
the moiré and introduces the moiré benchmark datasets and
image quality evaluation metrics.

Section III compares the supervised image demoiréing
model in terms of network composition. Section IV

FIGURE 3. Differential shooting principle.

FIGURE 4. Simulation of screen-shots at different angles.

provides an analysis of unsupervised image demoiréingmeth-
ods. Section V introduces domain-specific image demoiréing
applications. Section VI shows the demoiréing results of
some models on different datasets, and Section VII sum-
marizes current existing problems and proposes possible
research directions in the future.

II. PROBLEM SETTING AND TERMINOLOGY
A. MOIRÉ DEFINITIONS
The moiré is a manifestation of the difference shot princi-
ple. Two equal amplitude sine waves of similar frequencies
are superimposed, and the amplitude of the combined signal
depends on the difference between the two frequencies [24],
as shown in Fig. 3. Similarly, the difference shot principle also
applies to the spatial frequency, i.e., moiré is generated when
the spatial frequency of the camera’s photosensitive unit is
close to the spatial frequency of the photographed object
[25]. Ideally, moiré can be avoided when the resolution of
the camera lens is smaller than that of the camera sensor [26].
However, in practice, the resolution of the lens often exceeds
the resolution of the sensor, which is why moiré is easily
formed.

Image demoiréing can be classified as an image recov-
ery task, aiming to restore the corresponding clean image
from the moiré image. However, the distribution, appearance,
and color of the moiré in the image vary with the type of
camera and external factors such as the shooting distance
between the subject, angle, and lighting. As shown in Fig. 4,
moiré is generated in the simulated screen-shot image, and
by changing the angle of the shot, the appearance of the
moiré changes accordingly. Besides, as shown in Fig. 5, the
moiré pattern is present both in the low-frequency region of
the image and mixed with the high-frequency details of the
image, which spans a wide range of frequencies. Therefore,
image demoiréing is a considerable challenge.

B. DATASET FOR IMAGE DEMOIRÉING
Various datasets were created for image demoiréing
studies with significantly different numbers of images,
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TABLE 1. Public image datasets for demoiréing benchmarks.

FIGURE 5. The frequency spectrum of the moiré image and the clean
image.

resolution, moiré type, variety, etc. Some provide paired
moiré images and corresponding moiré-free images, while
others offer unpaired moiré images and clean images for
training unsupervised models. Table 1 lists some frequently
used moiré datasets and specifies their amount, resolution,
moiré type, and category keywords.

C. IMAGE QUALITY ASSESSMENT
Researchers usually use objective evaluations as an assess-
ment criterion to evaluate the model’s power for demoiréing.
The following are several commonly used objective evalua-
tion methods: peak signal-to-noise ratio (PSNR) [27], struc-
tural similarity (SSIM) [28], and learned perceptual image
patch similarity (LPIPS) [29].

1) PEAK SIGNAL-TO-NOISE RATIO
The PSNR is one of the most commonly used image qual-
ity evaluation metrics. For image demoiréing, the PSNR is
defined by calculating the difference between the correspond-
ing pixel points of the image. Given the ground truth image I
(height and width H and W, respectively) and the reconstruc-
tion image Id , the mean square error (MSE) [33] and PSNR
between I and Id are described as follows:

MSE =
1
H

1
W

∑H

i=1

∑W

j=1
(I (i, j)− Id (i, j))2, (1)

PSNR = 10 · log10

(
(2n − 1)
MSE

)
, (2)

where n equals 8. Because PSNR only calculates the differ-
ences between corresponding pixels and does not consider
the perceptual characteristics of the human eye, it may lead
to poor performance in terms of the visual quality of the
reconstructed image. However, owing to the absence of pre-
cise perceptual metric methods, PSNR remains the utmost
commonly applied evaluation criterion for image demoiréing.

2) STRUCTURAL SIMILARITY
Considering that the sensitivity of the human visual system
(HVS) to image noise depends on local brightness, contrast,
and structure [34], so the SSIM is used to measures the struc-
tural similarity between images. The SSIM between I and Id
are described as follows:

SSIM (I , Id ) =

(
2uIuId + c1

) (
2σIId + c2

)(
u2I + u

2
Id + c1

) (
u2I + u

2
Id + c2

) , (3)

where uI is the mean ofI , σ 2
I is the variance of I , uId is the

mean of Id , σ 2
Id is the variance of Id , σIId is the covariance

of Id and I , c1 and c2 are minimal numbers used to avoid
the denominator being equal to 0. The value domain of the
SSIM is [0, 1], where a more considerable value indicates less
image distortion and more similar images. Because of HVS
characteristics, it is more in line with the needs of computer
vision.

3) LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY
LPIPS is derived from the weighted MSE distance between
the depth features of an image and is used to measure the
difference between images. The smaller LPIPS value indi-
cates more similar images. The LPIPS between Id and I are
described as follows:

LPIPS (I , Id ) =
∑
l

1
HlWl

∑
h,w

‖ ωl �

(
_

I
l

hw −
_

I
l

dhw

)
‖
2
2,

(4)

where
_

I
l

hw is the l layer feature of
_

I hw, and ωl is used to
scale the activations channel-wise. LPIPS has an excellent
correlation with human perceptual similarity and is closer to
human visual perception than PSNR and SSIM [29].
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D. IMAGE DEMOIRÉING CHALLENGES
Because of the wide application prospects of image
demoiréing, the technology has also attracted the attention
of some academic organizations, and the survey has found
that there are two noted challenges about image demoiréing
in recent years, namely, AIM [30], [35] and NTIRE [32].

The Advances in Image Manipulation (AIM) held in con-
junction with ICCV 2019 contains several different chal-
lenges such as screen-shot image demoiréing [30], image
and video super-resolution[36], [37], image denoising, image
deblurring, etc. For image demoiréing, the AIM demoiréing
challenge is based on the LCDMoiré [30] dataset. It con-
sists of fidelity and perceptual quality tracks that aim to
contribute to further development of screen-shot image
demoiréing.

The New Trends in Image Restoration and Enhancement
(NTIRE) held with CVPR 2020 contains several different
challenges such as real-world image super-resolution [38],
image and video deblurring [39], image dehazing [40], tex-
ture image demoiréing [32], etc. For image demoiréing, the
NTIRE demoiréing challenge is based on the CFAMoiré [32]
dataset and includes two tracks. Track 1 focuses on the single
image demoiréing issue, which aims to remove moiré from a
single texture image. Track 2 targeted the burst demoiréing
problem, where a set of moiré images of the same scene
as input, aiming to produce a single demoiréd image. The
NTIRE demoiréing challenge intends to promote the devel-
opment of texture image demoiréing.

III. SUPERVISED DEMOIRÉING
Nowadays, researchers have proposed various demoiréing
methods based on deep learning. Most of these methods are
based on supervised image demoiréing, trained with moiré
and corresponding moiré-free images. Although the mod-
els differ significantly, they are essentially a combination
of up-and-down sampling methods, network design, base-
line model, and learning strategies. Therefore, the researchers
mainly consider how to effectively organize and improve
the above structures to achieve a better removal effect.
In this section, we will analyze and summarize the advan-
tages and limitations of various components of model
design.

A. UP-AND-DOWN SAMPLING METHODS
Moiré exists, from low to high, in different frequency
domains of an image, and has distinctive characteristics in
different frequency domains. It is challenging to completely
eliminate moiré at only a single scale [8], so researchers
devoted their attention to removing moiré on multiple scales.
By downsampling the moiré image several times to highlight
the moiré in different frequency domains and then removing
the moiré. Experiments show that multi-scale can remove
moiré better than single-scale. This part will compare and
analyze the commonly used sampling methods based on deep
learning.

1) CONVOLUTION
Convolution can extract different features of the input layer
and is combined with back-propagation to optimize the
parameters of the convolution layer to extract the target fea-
tures. In particular, convolution for downsampling is achieved
by changing padding and stride to reduce the image resolu-
tion. Convolutional downsampling, which extracts the fea-
tures of the image and reduces the resolution of the image,
is widely used as a downsampling layer in image demoiréing
studies [10], [14], [17], [19], [22], [41], [42].

After downsampling the image several times, the output
of each branch must be upsampled to recover the image’s
original resolution. The commonly used upsampling methods
include transposed and sub-pixel convolution. The transposed
convolution, i.e., the deconvolution, performs the opposite
operation of a standard convolution. Precisely, it scales the
input image to twice the original resolution by inserting the
corresponding zero values and performs the default con-
volution. The obtained output was twice as large as the
input size. Because of its simplicity, transposed convolution
is broadly used in multi-scale frameworks for demoiréing
research [10], [17], [18], [22], [43]. However, it easily causes
‘‘uneven overlap,’’ which leads to a checkerboard shape [44]
of the result and degrades the quality of the image, affecting
the result of moiré removal.

The sub-pixel convolution generates multiple channels by
convolution and then reshapes the channels to achieve upsam-
pling. In general, assuming that the input size is h × w
× c, the first convolution is used to obtain the output size
h × w × cs2, where s is the enlargement factor. Subse-
quently, performing the reshaping operation to produce out-
put size is hs × ws × c. Sub-pixel convolution can solve
the checkerboard phenomenon in transposed convolution,
and this method is widely used in demoiréing studies [14],
[19], [41], [42], [45], [46]. Sub-pixel convolution has a larger
perceptual field and provides more contextual information
than transposed convolution. However, as the distribution of
the receptive field during convolution at the image edges is
uneven, it may result in artifacts at the boundary of the image.

2) WAVELET TRANSFORM
Because traditional convolution is irreversible, it causes infor-
mation loss when used for upsampling and downsampling.
The wavelet transform is reversible, has perfect reconstruc-
tion capability, and can avoid information loss during sig-
nal decomposition. Liu et al. [31] used discrete wavelet
transform (DWT), and inverse discrete wavelet transform
(IDWT) to replace downsampling and upsampling. In gen-
eral, for the input features, the low-pass and high-pass fil-
ters are first used to filter the corresponding low-frequency
part (high-frequency is filtered out) and high-frequency part
(low-frequency is filtered out). Then, the low-pass and high-
pass filters are used again for the obtained features, obtaining
low-frequency information of the image and high-frequency
information in horizontal, vertical, and diagonal directions.
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FIGURE 6. Network design strategies.

It is easy to extract the image’s structural and texture detail
information.

B. NETWORK DESIGN
One of the most important parts of deep learning is network
design. In demoiréing studies, researchers have applied var-
ious components to build their multi-branch demoiréing net-
works. In this part, we analyze the advantages and limitations
of the most commonly used essential principles and strategies
for network design.

1) RESIDUAL LEARNING
Because of the unique construction of residual learning [47],
as shown in Fig. 6a, deeper neural networks can be
trained. Thus, residual learning is also used in demoiréing
research [16]. Image demoiréing is an image transformation
problem that converts amoiré image into a clean one. Because
residual learning only learns the variation in the difference
between clean and moiré images without learning the com-
plete transformation between images, it reduces learning dif-
ficulty and complexity [22]. In addition, residual learning can
avoid the gradient diffusion problem caused by adding layers
to the network and increasing the network’s performance and
stability [15].

In practical applications, as well as stacking residual
blocks, residual learning is used in combination with the
attention mechanism [14], [17], [42] and dense connectiv-
ity [45], [46] to address the dynamic properties of moiré
pattern and the variability between different branches.

2) DENSE CONNECTIONS
To address the problem of gradient disappearance that occurs
as the number of network layers increases, Huang et al. [48]
proposed a dense connection. A dense connection conveys
the output features of each layer to all subsequent layers.
In particular, in traditional convolutional neural networks,
each layer has only one input and output to the following
layer. With dense connections, each layer’s inputs are the

outputs of all previous layers, as shown in Fig. 6b. The dense
connection alleviates the gradient disappearance problem,
enhances feature transfer, and more effectively uses the fea-
tures. Because the network does not need to learn additional
feature maps, the number of parameters is reduced.

To fuse high-level features that contain more semantic
information and less spatial information with low-level fea-
tures that include more spatial information and less seman-
tic information, Gao et al. [18] introduced a dense con-
nection. The dense connection takes each branch’s out-
put as the previous branch’s input so that each branch of
the network learns more semantic and spatial information.
Yang et al. [46] used dense connections to compose infor-
mation exchange modules that combine features from differ-
ent branches. Zheng et al. [19], Liu et al. [31], Zheng et al.
[41], and Vien et al. [45] also employ dense connections
in networks, and their dense connection are used between
each branch to mitigate gradient disappearance and reduce
network parameters.

3) ATTENTION MECHANISM
The human visual attention mechanism is a survival mech-
anism that humans developed during long-term evolution.
Focusing on target regions and suppressing secondary infor-
mation enables humans to use their limited attention to
quickly filter the information that needs more attention from
a massive amount of information. The attention mechanism
in deep learning is derived from the human visual attention
mechanism. In deep learning, through the attention mech-
anism, the network can choose only the information that
needs to be focused on from a large amount of information
received, savingmost computational resources. Among them,
the attention mechanisms can be divided into channel atten-
tion and spatial attention.

a: CHANNEL ATTENTION
Yang et al. [7] found that moiré artifacts pollute the R and
B channels more than the G channel for RGB images. The
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channel-based attention mechanism is modeling each chan-
nel to learn the interdependence between different chan-
nels, as shown in Fig.6c. For the dynamic characteristics of
moiré at different scales, Cheng et al. [14], [42] combined
residual blocks with channel attention encoding dynamically
moiré pattern, which significantly improved the ability of
demoiréing. Because most moiré shapes are curved and have
distinct edges, He et al. [43] used a channel-based edge pre-
dictor based on channel attention to predict a moiré edge
map to guide feature extraction. To avoid the effect of the
moiré pattern on image color recovery, Zheng et al. [19], [41]
proposed an improved channel attention-based colormapping
module to achieve accurate color recovery.

b: SPATIAL ATTENTION
The area containing the moiré pattern requires more atten-
tion, and spatial attention is used to look for the target area,
as shown in Fig. 6d. Liu et al. [31] designed a direction-aware
module combined with spatial attention and dense connec-
tions to determine the location of moiré effectively. Guo et
al. [17] combined channel attention and spatial attention and
used channel-level attention maps to guide the production of
spatial attention maps that accurately find the most critical
information in multi-scale features. Sun et al. [15] proposed
an efficient attention fusion module that combines channel
attention, spatial attention, and local residual learning, adap-
tively learning the different features of each branch.

4) DILATION CONVOLUTION
Yu et al. [49] introduced dilation convolution, which
increases the convolution kernel’s perceptual field while
maintaining the constant number of parameters. For 3 ×
3 kernel convolution with a dilation rate of 2, the percep-
tual field of the convolution kernel after dilation is the same
as that of the 5 × 5 convolution kernel, but the number of
parameters is only equal to that of the 3 × 3 convolution
kernel. To produce more realistic details in the demoiréing
images, Guo et al. [17], Zheng et al. [19], and Zheng et al. [41]
employed dilation convolution instead of standard convolu-
tion and increasing the perceptual field of the convolution
kernel by more than a few times to get better demoiréing
performance. Liu et al. [31] proposed that when dilation con-
volution is performed with a fixed dilation rate, some pix-
els not be involved, which may lead to the production of
tessellated artifacts. Unlike using a continuous convolution
rate r={1,2,3,4,5. . . }, Liu et al. [31] applied the Fibonacci
series r={1,2,3,5,8. . . } as the dilation rate, which effectively
reduced the tessellated artifacts.

5) GLOBAL-LOCAL STRATEGY
Because the moiré pattern is diverse, as shown in Fig. 1,
ranging from curved stripes covering a large area with low
periodicity to fine, densely distributed vertical stripes. It is
difficult to remove all moiré adopting a network with the
same receptive field. He et al. [20] proposed a cascadedmoiré
removal strategy that first removed large-scale moiré using

global branches and then removed residual moiré using local
branches. Likewise, to solve the color degradation problem
caused by moiré, Zheng et al. [19], [41] studied and observed
a color shift between moiré images and moiré-free images
and then proposed a two-step tone mapping strategy. The
global tone mapping module was first applied to learn the
global color shift between moiré and clean images. The local
tone mapping module is then used to perform local color
recovery, effectively solving the color degradation problem
caused by moiré through global and local tone mapping.

6) MULTI-BRANCH FUSION STRATEGY
For the multi-branch demoiréing network, fuse the outputs
of each branch to achieve better output results. This subpart
will analyze and compare the weight distribution and fusion
strategies in multi-branches.

a: DIRECT SUMMATION
For multi-scale fusion, the simplest method is to be equi-
table to the outputs of each branch and add the results of
each branch directly, i.e., set the weights of each branch as
1 [10], [18]. The advantage of the direct summation method
is that it is computationally simple. Still, the disadvantage is
not considering the significance and effect of the output of
each branch to image reconstruction.

b: BRANCH SCALING MODULE
Cheng et al. [14], [42] proposed that each branch’s moiré
texture and image details are different and have different
importance for image recovery. Therefore, proposed a branch
scaling module that automatically learns the importance of
each branch by back-propagation assigns different impor-
tance weights and then sums.

c: SQUEEZE AND EXCITATION MODULE (SE)
Based on channel attention, Hu et al. [50] proposed an SE
block that learns the weights of each channel by expressly
modeling the mutual dependencies between channels and
adaptively aligning the extracted features. The SE block
proved to have a significant performance in image classifica-
tion. He et al. [20], He et al. [43], andYang et al. [46] also used
the SE block for demoiréing studies. SE block reweighted the
output of each branch, emphasis on branches with SE block
dominant bands.

7) OTHER STRATEGIES
In addition to often used modules and strategies, there are
also fewer used demoiréing modules. Migration learning is
a machine learning method that uses pre-trained models in
other tasks. Liu et al. [16] were first using a synthetic moiré
dataset to train the remove moiré network. Then the network
was further trained using a real moiré dataset. Zheng et al.
[19], [41] employed a learnable bandpass filter for learning
moiré prior to accurately distinguishing the moiré pattern
from the image texture. Liu et al. [51] applied paired focused
moiré images and scattered moiré-free images as datasets to
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remove moiré images using a fuzzy kernel constraint. In this
way, the authors proposed that the network does not require
training and can be easily used on any smartphone or digi-
tal camera. Because images have different characteristics in
different domains, for example, the spatial domain contains
more structural information, and the frequency domain is rich
in image details. Wang et al. [22] used a complementary dual-
domain network (3DNet) that combined the spatial and fre-
quency domains to remove moiré. 3DNet yields better PSNR
values, 6.24 dB and 3.79 dB higher than a single spatial or
frequency domain.

C. BASELINE MODEL
In this part, we analyze the baseline models used in
demoiréing studies, including U-Net, and Transformer.

1) U-NET
U-Net was originally a multi-scale model for medical image
segmentation [52], as shown in Fig. 7. Due to the symmetric
contraction architecture of the U-Net model, precise local-
ization while capturing contextual information. U-Net and
its variants have achieved excellent results on other com-
puter vision tasks [53], [54], [55]. Researchers have started to
study the method of demoiréing based on the U-Net model.
Gao et al. [18] proposed a Multi-scale feature enhancing net-
work (MSFE) based on the U-Net architecture, residual learn-
ing, and dense connectivity. MSFE utilizes the multi-branch
U-Net combined with residual learning to learn the differ-
ences between the moiré in different branches and make use
of dense connections to fuse the semantic and spatial infor-
mation in different frequencies. Sun et al. [15] used the U-Net
architecture as a baseline model to perform a demoiréing
study in the wavelet domain and achieved excellent results.

FIGURE 7. U-Net model.

2) TRANSFORMER
Transformers are a neural network framework featuring the
self-attention mechanism [57]. They were initially applied
in natural language processing and then in computer vision
tasks, including low-level vision very recently [58], [59].
Chen et al. [59] show that the transformer is more advan-
tageous than CNN in large-scale data pre-training low-level
vision. Besides, the transformer significantly reduces the
computational resources required. Thus Wang et al. [60]
designed a transformer network UFormer based on the U-Net

model, which can handle local context information while
efficiently capturing long-range inter-texture dependencies.
Compared with the U-Net family, the computation cost and
the number of model parameters of UFormer are significantly
reduced. Liu et al. [61] take a self-attentive mechanism to
separate generalized priors of images as additional priors for
the transformer to investigate the nature of image restora-
tion tasks rather than task-specific restoration. With the help
of task-agnostic generalized image prior, it can be easy to
address new image restoration tasks.

D. LEARNING STRATEGIES
1) LOSS FUNCTION
In deep learning, loss functions are used to guide model
optimization and reduce errors in model prediction values.
The proper loss function can help the model focus on the
features that need attention and obtain the best and fastest
convergence. In this part, we will look closely at the broadly
used loss functions used in demoiréing studies.

a: PIXEL LOSS
Pixel loss is used to calculate the difference in the correspond-
ing pixel points between the output image

_

I and the target
image I , which includes L1 loss (MAE) [19], [31], [41], [45]
and L2 loss (MSE) [10], [16], [17], [18]:

L1loss
(
I ,

_

I
)
=

1
HWC

∑
i,j,k

∣∣∣Ii,j,k − _

I i,j,k
∣∣∣, (5)

L2loss
(
I ,

_

I
)
=

1
HWC

∑
i,j,k

(
Ii,j,k −

_

I i,j,k
)2
, (6)

where H ,W , andCare the image length, width, and the num-
ber of image channels, respectively. Besides, a variant of
frequently used L1 loss, L1 Charbonnier loss [15], [16], [18],
[42], [46]:

L1 Chaloss
(
I ,

_

I
)
=

1
HWC

∑
i,j,k

√(
Ii,j,k −

_

I i,j,k
)2
+ ε2,

(7)

where ε is a minor constant used to stabilize training. The L1
loss calculates the absolute value of the difference between
image pixels with a fixed penalty for any difference in size.
Compared with L1 loss, L2 loss is insensitive to more minor
errors (less than 1) and more concerned with more significant
errors (greater than 1). L2 calculates the square of the pixel
difference, which often results in the over-smoothing of the
produced image. Because the image quality evaluation metric
PSNR is negatively correlated with L2 loss (Section 2.3), i.e.,
the smaller the L2 loss, the larger the PSNR, and L2 loss is
the more commonly utilized loss function. However, because
pixel loss often does not consider image structural fea-
tures, it leads to results with poor performance at perceptual
quality.
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FIGURE 8. Activation functions and derivative functions.

b: PERCEPTUAL LOSS (CONTENT LOSS)
Because pixel loss only calculates the difference between the
corresponding pixels, a slight misalignment between images
can cause a considerable error value. In view of this, John-
son et al. [62] proposed a perceptual loss for comparing two
different images that look similar, which is used to compare
the semantic differences between images:

Lpercep
(
I ,

_

I , ϕ, l
)
=

1
HlWlCl

√√√√∑
i,j,k

(
ϕ
(l)
i,j,k (I )−ϕ

(l)
i,j,k

(
_

I
))2

,

(8)

where ϕ(l)i,j,k refers to the l layer feature map of a VGG-16
or VGG-19 classification network pre-trained using Ima-
geNet [63]. Perceptual loss does not minimize the differences
between image pixels but rather a perceptual similarity and is
extensively used in demoiréing studies [15], [20], [22], [31].

c: IMPROVED SOBEL LOSS
To explore the structural information of moiré images, Zheng
et al. [19] proposed an improved Sobel loss (ASL):

ASL
(
I ,

_

I
)
=

1
HWC

∑∣∣∣Sobel∗ (I )− Sobel∗ (_I )∣∣∣, (9)

where Sobel∗ denotes the improved Sobel filter. Zheng et
al. [41] proposed a Sobel loss by adding dilation convolution,
which adjusted the perceptual frequency domain through dif-
ferent dilation rates of the ASL:

D− ASL{d1,d2,...,dn} =
∑n

i=1
ASL

∣∣dilation_rate=di , (10)

where ASL
∣∣dilation_rate=di denotes the ASL with dilation

rate di.

d: WAVELET LOSS
Because the low-frequency and high-frequency details of
the moiré are more easily observed in wavelet sub-bands,

Sun et al. [15] applied the L1 Charbonnier loss in the wavelet
domain (11), as shown at the bottom of the next page, whereω
denotes the wavelet decomposition, and w means the number
of wavelet subbands. In addition to calculating the L1 Char-
bonnier loss in thewavelet domain, Liu et al. [31] added detail
loss to prevent the wavelet coefficients from converging to
zero. Detail loss can be expressed as follows:

Ldetail
(
I ,

_

I
)
=

4∑
w=1

max
(
α |Iw|2 −

∣∣∣_I w∣∣∣2 , 0), (12)

where α is set to 0, avoid Ldetail convergence to 0.
Additionally, there are various rarely used loss functions,

such as contextual bilateral loss [20], Euclidean loss [43],
L1 Sobel loss [46], and attentional loss [31]. In fact,
researchers usually combine several loss functions by assign-
ing different weights to different loss functions to help the
model learn the mapping of moiré images to clean images
from different perspectives. However, the application of loss
functions and the size of the assigned weights must be
explored to achieve higher performance for removing moiré.

2) ACTIVATION FUNCTION
The activation function is the key to distinguishing a per-
ceptron from a neural network. With its activation function,
the neural network has unlimited creativity. Activation func-
tions are divided into saturating and non-saturating activation
functions. This part will take a closer look at the advantages
and limitations of the activation functions commonly used in
demoiréing research.

a: SATURATING ACTIVATION FUNCTION
The saturating activation function is a function in which the
derivative value tends to zero as x tends toward positive and
negative infinity. The saturated activation functions include
the Sigmoid function [14], [41] and Tanh function [16], [46].
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As shown in Fig. 8a, the sigmoid function is continuous
everywhere, which is easy to get the derivative and back-
propagation. The disadvantage of the Sigmoid function is that
its maximum derivative is 0.25. As shown in Fig. 8e, when
the back-propagation has been performed, the gradient of
each layer is multiplied, which easily leads gradients to zero,
resulting in ‘‘gradient disappearance.’’ In addition, the Sig-
moid function is not centrosymmetric, and the output value is
always positive, which makes back-propagation difficult and
hardly converges with a deeper network. In order to solve
the problem that the Sigmoid function is difficult to con-
verge, proposed Tanh function, as shown in Fig. 8b. The Tanh
function is centrosymmetric and converges easily compared
to the Sigmoid function. However, as shown in Fig. 8f, the
maximumderivative of the Tanh function is 1, which still does
not solve the ‘‘gradient disappearance’’ problem.

b: NON-SATURATING ACTIVATION FUNCTION
The non-saturating activation function satisfies either left
or right saturation or neither. In the study of demoiréing,
the commonly used non-saturated activation functions are
the ReLU function [10], [18], [19], [31], [46] and its vari-
ants LeakyReLU function [20], [22], and PReLU function
[14], [16]. As shown in Fig. 8c (ReLU function), compared
with the saturated activation function, the derivative of the
ReLU function is always 1 in the range greater than zero,
so it does not produce the gradient disappearance problem.
However, in the region less than zero, as shown in Fig. 8g,
the derivative of the ReLU function is zero, which causes the
neuron to stop updating when the input of the ReLU func-
tion is negative during back-propagation. A variant of ReLU,
LeakyReLU, was proposed to solve the problem of neurons
stopping updating. In the negative region, the derivative of
the LeakyReLU function is set to 0.01, as shown in Fig. 8d,
which avoids the situation in which the derivative is zero and
causes the neurons to stop updating. Similarly, another variant
of ReLU, the PReLU function, has a small gradient in the
negative area, i.e., the derivative, as shown in Fig. 8h, the
negative value was updated with the momentum and learn-
ing rate [65]. The PReLU function was the ReLU function
when the slope was equal to zero. The PReLU function is a
LeakyReLU function when the slope equals 0.01.

IV. UNSUPERVISED DEMOIRÉING
Existing works on screen-shot images demoiréing studies
mainly concentrated on supervised learning, i.e., training
with pairs of moiré and corresponding clean images. How-
ever, it is difficult to collect clean images corresponding to
moiré images in some scenes, such as outdoor LED dis-
plays and dense textures in realistic environments. the moiré

FIGURE 9. GAN model.

removal network training used existing screen-shot datasets
and synthetic datasets can neither effectively remove the
moiré produced by LED displays well, nor have excellent
robustness. To solve this problem, researchers started to
study unsupervised image demoiréing. Unsupervised learn-
ing refers to training with unpaired moiré images and clean
images, and the networks are maybe more suitable for the
moiré problem in real-world scenarios. GAN is a deep neural
network based on game theory, is a commonly used unsuper-
vised baseline based model that consists of two networks: a
generator and a discriminator. as shown in Fig. 9, the gen-
erator network produces a pseudo-output image in image-to-
image transformation by learning the mapping between the
input and target images. The discriminator network tries to
distinguish the pseudo-output image from the target image.
The generator and discriminator play the game back and forth
until the discriminator can no longer distinguish between
the generator-generated image and the target image. In the
following, we will analyze several existing deep learning-
based unsupervised moiré removal methods, and more meth-
ods should be explored.

A. AMNet
Yue et al. [21] indicated that moiré not only decreases the
visual quality but also affects the brightness of the image.
Therefore, Yue et al. [21] proposed an additive and multi-
plicative network (AMNet) as the generator to improve the
image brightness while removing moiré. Since moiré is dis-
tributed in different frequency domains, the additive module
combines U-Net and atrous spatial pyramid pooling to extract
image features from different frequency domains. inspired
by SE [50], the multiplication module generates multiplica-
tion coefficients that, when combined with the additive mod-
ule’s output, improve the image’s brightness. PatchGAN [56],
which is good at distinguishing high-frequency details of
images, is used as the discriminator to better distinguish
between real and fake images. Experiments have proven
that AMNet improves image brightness well while removing
moiré. Still, the large brightness difference between the moiré

Lwavelet
(
I ,

_

I
)
=

1
HWC

∑
i,j,k

√(∑4

w=1
ω
(
Ii,j,k

)
−

∑4

w=1
ω
(
_

I i,j,k
))2
− ε2, (11)
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images and its corresponding clean image leads to the lower
PSNR values between the demoiréing image and the clean
image, as shown in table 4.

B. MR-GAN
Yue et al. [12] used CycleGAN [66] as a benchmark model
to build an unsupervised moiré removal model (MR-GAN).
Unlike conventional GAN networks, MR-GAN contains two
generator networks (Gmoiré→clean and Gclean→moiré) with
discriminator networks (DL and DS ). The moiré removal
generator Gmoiré→clean translates the moiré image Im to
the non-moiré image

_

I c, and the moiré synthesis genera-
tor Gclean→moiré re-translates the generated non-moiré image
_

I c to the moiré image
_

I m, using a cycle of dual genera-
tors learning the mapping between the moiré and moiré-
free images. Considering the multi-scale characteristics of
moiré, MR-GAN uses dual discriminators DL and DS , which
DL is used to distinguish large-scale moiré pattern from
image features and DS focuses on distinguishing small-scale
moiré pattern from image details. A set of self-supervised
and adversarial loss functions to maintain the effect of learn-
ing effectiveness and training stability. The self-supervised
loss includes cycle consistent loss (pixel layer, feature layer),
identity loss, cosine similarity loss, and content leakage loss,
which are guided in different ways to produce high-quality
images. The self-supervised losses are as follows:

Lpcyc
= ‖Gclean→moiré (Gmoiré→clean (Im))− Im‖1
+‖Gmoiré→clean (Gclean→moiré (Ic))− Ic‖1 , (13)

Lfcyc

=

∑
i

(
‖ψi (Gclean→moiré (Gmoiré→clean (Im)))− ψi (Im)‖1

)
+‖ψi (Gmoiré→clean (Gclean→moiré (Ic)))− ψi (Ic)‖1 ,

(14)

Lidt
= ‖Gmoiré→clean (Ic)− Ic‖1
+‖Gclean→moiré (Im)− Im‖1 , (15)

Lcos
= 1− cos (Gmoiré→clean (Ic) , Ic)

+ 1− cos (Gclean→moiré (Im) , Im), (16)

Lcl
=
∥∥ψj (I synm

)
− ψj (Ic)

∥∥
1 , (17)

where Lpcyc,Lfcyc,Lidt ,Lcos, and Lcl denote pixel-layer cycle
consistent loss, feature-layer cycle consistent loss, iden-
tity loss, cosine similarity loss, and content leakage loss,
respectively; ψi and ψj are the layer i and j features of
the VGG-19 model trained using ImageNet, respectively,
I synm denotes a synthetic moiré image. The main contribu-
tion of the MR-GAN is the proposed self-supervised loss
function, which proved to enhance the PSNR and SSIM
effectively.

C. CYCLIC GAN
Inspired by Cycle GAN [66] and conditional generative
adversarial network (CGAN) [67], Park et al. [64] proposed a
cyclic GAN model that includes a moiré generation network
and demoiréing network. Specifically, in the moiré generator
network, the moiré image Im is fed to the generator GDe
to produce a pseudo-clean image

_

I c. Subsequently,
_

I c is
input to another generator GM to restore the moiré image

_

I m.
To reconstruct the realistic

_

I m, in addition to generating the
moiré texture, it also considers the color degradation caused
by moiré. The demoiréing network is based on CGAN and
is trained in a supervised manner using clean images and the
corresponding pseudo-moiré images GM (Ic).
To further improve the demoiréing capability of cyclic

GAN, Park et al. [13] improved on [64]. Park et al. [13]
found that the appearance of moiré in screen-shot images
is accompanied by global pixel intensity degradation.
When using the generator to generate the moiré pattern, a
256- dimensional image histogram was used to estimate the
global pixel intensity degradation degree and added to the
moiré generator network to make the generated moiré more
realistic. It is experimentally proved the improved Cyclic
GAN model improves 1.77 dB in PSNR compared with the
Cyclic GAN model.

V. DOMAIN-SPECIFIC APPLICATIONS
In addition to people’s daily use of the camera, which pro-
duces moiré and degrades image quality, moiré also occurs
in some special applications, such as Mura defect detection
in the LCD panel manufacturing process and X-ray maps in
medical diagnosis.

A. DEFECT IMAGE DEMOIRÉING OF THIN-FILM
TRANSISTOR LIQUID-CRYSTAL DISPLAY IMAGE
In manufacturing thin-film transistor liquid crystal displays
(TFT-LCDs), displays are composed of multiple materials
and bonded substrate layers. During bonding, various gaps,
contaminants, air bubbles, and other defects may intersperse,
resulting in Mura defects in the fabricated display. Common
Mura defects include stains, dark clusters, and bright clusters,
which result in non-uniform display brightness and affect
display performance. Although automated optical inspection
(AOI) was used to detect defective panels [68], AOI is also
difficult to identify Mura defects [69]. Owing to the outstand-
ing performance of deep learning, researchers use it to detect
and identify panel defects. However, when using a digital
camera to capture a monitor’s panel, moiré is often present
in the panel image captured by the camera, making it more
challenging to detect Mura defects when mixed with moiré.
In order to eliminate the effects of moiré, some researchers
first explored removingmoiré from the panel images and then
detecting and classifying Mura defects.
For training model, in the process for checking semi-

finished panel, Lu et al. [70] first collected moiré images
with Mura defects. Then continue processing semi-finished
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FIGURE 10. Demoiréing results on the TIP 2018 dataset.

panels that should be scrapped. Finally, obtain Mura defects
images without moiré by computer image acquisition. How-
ever, continue processing semi-finished panels that should
have been scrapped would cause additional time and material
costs, which leads the training dataset scale is limited. In addi-
tion, Lu et al. [70] used U-Net as a generator of GAN. They
used a recurrent neural network combined with the attention
mechanism to yield the moiré place graph that guides the
U-Net model to removemoiré while preservingMura defects.
Because of the difficulty in collecting large-scale screen-shot
panel moiré images, Lu et al. [71] used the migration learning
method, that is, first training the CGAN model on a com-
mon image dataset to extract typical features suitable for all
images, and then continuing the training with a screen-shot
panel image moiré dataset to improve the demoiréing
capability.

To solve the problem of limited moiré datasets containing
Mura defects, Kim et al. [72] proposed to use a smartphone
to display images with Mura defects and fixed the camera
to collect moiré images containing Mura defects by moving
or rotating the phone, and by inserting ArUco markers to
align the Mura defect image and the corresponding moiré
image. Besides, Kim et al. [72] used U-Net as a baseline
model and combined it with Fourier transform to calculate the
frequency domain loss between images to ensure the removal
of moiré, which significantly improved the PSNR of the
images.

B. DEMOIRÉING OF DIGITAL RADIOGRAPHY IMAGE
Digital radiography (DR) is an analytical instrument used in
preventive medicine and public health, mainly for medical
diagnosis. The core technology of DR is the flat panel detec-
tor. As X-rays pass through the body, they produce scattered
rays of longer wavelengths and variable directions, resulting
in blurred images from the flat panel detector. To solve this

problem, using X-ray filter grids to absorb scattered rays can
effectively reduce scattered rays and enhance image quality.
However, X-ray filter grids lead to moiré in the image, which
seriously affects clinical diagnosis. To address the moiré in
DR images, Chen et al. [73] proposed to employ a CNN
model based on U-Net. Confronted with the difficulty in
collecting the DR imaging moiré dataset, they subsequently
proposed a fast signal processing method to combine the
moiré dataset for training. Experiments have proven that the
proposedmodel significantly reduces themoiré in DR images
and maintains the image resolution.

VI. SCREEN-SHOT IMAGE DEMOIRÉING MODELS’
PERFORMANCE
To better show the real effect of demoiréing, as shown in
Fig. 10, Fig. 11, and Fig. 12, we selected some supervised
and unsupervised models to compare their performance in
moiré removal based on the TIP 2018, LCDMoiré, and
MBRI datasets respectively. Considering the limited com-
puting power of mobile phones and embedded devices, the
model’s size is also a critical problem in addition to its
demoiréing capability. In this section, we tabulate the per-
formance and size of some of the previously discussed deep
learning-based image demoiréing models on the TIP2018,
LCDMoiré, and MBRI datasets.

Table 2 focuses on the TIP 2018 dataset, the first large-
scale moiré benchmark dataset. In table 2, PSNR and
SSIM are used to demonstrate the model’s performance in
demoiréing, while FLOPs and Parameters indicate the calcu-
lation volume and size of the model.

Table 3 shows the test results based on the LCDMoiré
dataset, which is a synthesis moiré dataset for benchmarking
example-based image demoiréing. Table 3 shows the perfor-
mance of the model in terms of demoiréing. Compared to the
real moiré pattern, synthetic moiré is easier to remove.
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FIGURE 11. Demoiréing results on the LCDMoiré dataset.

FIGURE 12. Demoiréing results on the MBRI dataset.

TABLE 2. Performance comparison of screen-shot image demoiréing models on The TIP2018 dataset.

TABLE 3. Performance comparison of synthesis screen-shot image demoiréing models on the LCDMoiré dataset.
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TABLE 4. Performance comparison of screen-shot image demoiréing models on The MRBI dataset.

Table 4 provides the test performance based on the MBRI
dataset. Apart from demoiréing, it also focuses on improving
the brightness reduction caused by moiré. However, as shown
in Table 4, the large brightness difference between image
pairs in the MBRI dataset leads to low PSNR of the removed
moiré images.

In summary, image demoiréing models based on deep
learning have received increasing attention and significantly
improved both effectiveness in moiré removal and time effi-
ciency. While some studies do not provide source code and
lack reproducibility, as the research progresses, more and
more researchers are open-sourcing their studies, promoting
the development of image demoiréing research.

VII. CONCLUSION AND FUTURE DIRECTIONS
This paper extensively surveys recent advances in screen-shot
image demoiréing based on deep learning. First, we present
the definition of the moiré problem and introduce some
moiré-related problems, including moiré datasets, image
quality assessment methods, and moiré removal contests.
Then, we focus on the current state of supervised and unsu-
pervised learning image demoiréing and introduced domain-
specific demoiréing applications. Finally, we show the moiré
removal performance of different models based on differ-
ent datasets. Despite the remarkable results that have been
achieved in the research of screen-shot image demoiréing,
some problems remain to be improved and solved. In the fol-
lowing, we will summarize the current problems and propose
possible future research directions.

A. MODEL LIGHT-WEIGHTING
The performance of deep learning-based image demoiréing
models has been dramatically improved with more pro-
found research. However, the models built are also getting
more complex and require more arithmetic power, which
is unsuitable for the mobile and embedded devices. The
trade-off between the moiré removal effectiveness and effi-
ciency is a problem worth investigating. Recently, the issue
of lightweight models [74], [75] has caught the attention of
researchers. For example, deep learning-based lightweight
models have achieved excellent results in image denois-
ing [76], deraining [77], deblurring [78], and dehazing [79]
studies. Thus constructing lightweight demoiréing models is
a potential research direction.

B. LOSS FUNCTIONS
The loss function is considered to establish constraints
between moiré and moiré-free images and guide the model

for optimization. Different loss functions have different char-
acteristics. In training, various loss functions are often com-
bined by weighting, and the most suitable loss function
for image demoiréing is still uncertain. Therefore, the most
suitable loss functions and weight assignments should be
explored in future work.

C. EVALUATION METRICES
Currently, the most commonly used evaluation metrics in
computer vision research are the PSNR and SSIM. However,
PSNR only calculates the inter-pixel differences in images
without considering the perceptual quality of the images.
Although HVS-based SSIM can evaluate images in terms
of brightness, contrast, and structure, it cannot accurately
measure the perceptual quality of images. The evaluation of
demoiréing still faces the challenge of perceived quality and
requires further exploration.

D. UNSUPERVISED IMAGE DEMOIRÉING
As analyzed in Section IV, in some cases, it is difficult to
get clean images corresponding to moiré images and cannot
be trained by supervised learning. Unsupervised learning can
solve this problem, but its performance is lower than that of
supervised learning. Better unsupervised demoiréing models
should be further explored.

Furthermore, autoencoders are a class of neural networks
used in semi-supervised and unsupervised learning, which
use a back-propagation algorithm to make the output equal
to the input. Researchers have already studied autoencoder-
based image denoising [80], and image super-resolution [81]
and have achieved some attainments. Thus, autoencoder-
based image demoiréing studies are a promising direction for
future development.

E. TEXTURE IMAGE DEMOIRÉING
Moiré also appears in images when a digital camera is used
to capture the richly textured object in practical applications,
such as tall buildings and clothing, as shown in Fig. 2. How-
ever, there are few deep learning-based studies on texture
image demoiréing, except for the NTIRE2020 demoiréing
challenge (moiré pattern is synthetic). Therefore, there is also
a great demand for research in texture image demoiréing.

F. VIDEO DEMOIRÉING
In addition to moiré when taking photos, moiré can also
occur in videos. Researchers have already studied video
dehazing [82] and video deblurring [83] techniques and
have achieved some progress. Likewise, video demoiréing is
bound to be a field waiting to be explored in the future.
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