
Received 21 September 2022, accepted 5 October 2022, date of publication 10 October 2022, date of current version 17 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213079

Image Creation Based on Transformer and
Generative Adversarial Networks
HANGYU LIU AND QICHENG LIU
School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China

Corresponding author: Qicheng Liu (ytliuqc@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 62172351.

ABSTRACT To address the problem of low authenticity of generated images in existing generative
models, the transformer super-resolution generative adversarial network(TransSRGAN) model based on
the generative adversarial network is proposed. The generator of the model uses the transformer encoder
sub-module as the basic module. The features of the input vector are extracted. low-definition images are
generated through the transformer encoder submodule, and the low-definition image is up-sampled by the
convolutional neural network to complete the image generation. The discriminator of this model uses the
convolutional neural network as the basic module. To discriminate the real samples from the generated fake
samples, the discriminator extracts the image features by the convolutional neural network. The experimental
results show that the TransSRGAN model brings the distribution of the generated samples closer to the
training samples, effectively raises the quality of the generated samples, improves the authenticity of the
generated samples, and enriches the diversity of the generated samples. During the training process, there
was no mode collapse or instability.

INDEX TERMS Image generation, generative adversarial network, transformer, self-attention.

I. INTRODUCTION
The generative model is a sort of algorithm that can learn
reusable features in large unlabeled datasets and generate
data that do not exist in the dataset. Generative models have
been focus of research in recent years. The earliest generative
model is the variational autoencoder [1] based on variational
inference and Bayesian theory. Variational autoencoder can
generate not only pictures, but also text [2] and audio [3].
Although the variational autoencoder is simple and effective,
it tends to generate noisy data irrelevant to the trainset owing
to the assumption of a simple normal distribution as the
original sample distribution.

With the development of deep learning, its application to
generative models has begun. Deep learning not only has a
better learning ability for the characteristics of the data set
but also has a better ability to fit the real data distribution of
the samples. The generative adversarial network (GAN) [4]
based on deep learning has an excellent generation effect in
the generative model. GANs can utilize a large number of

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Li .

unlabeled samples to learn good intermediate feature repre-
sentations of samples. Because GAN has excellent adaptabil-
ity to samples, it can be suitable for various generative tasks,
such as the generation of videos [5], images [6], and audio [7]
with different styles. In recent years, generative adversarial
networks have been widely used in the energy field, such as
energy scheduling [8], [9].

With the development of computer vision, increasing
number of generative models have become accustomed to
generating images. Because the network structure of GAN
determines its ability to extract the features of the sample,
a reasonable network structure can make GAN generate more
real and high-definition pictures. The exploration of a reason-
able GAN structure has become a research hotspot today [10].

II. RELATED WORK
The variational autoencoder [1] proposed by King Ma et al.
first learns reusable features in large unlabeled images. It gen-
erates images that do not exist in the dataset, but the gener-
ated images are relatively blurry. Owing to the development
of deep learning, GANs can generate clearer images than
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variational autoencoders. The GAN [4] was proposed by Ian
Goodfellow of the University of Montreal in 2014, which is a
machine learning architecture. It is a neural network based on
the game theory minimax algorithm. The GAN consists of a
discriminator and a generator. The purpose of the generator is
to maximize the realism of fake samples. The purpose of the
discriminator is to attempt to discriminate between real and
the fake samples. During the training process, the discrimina-
tor and generator continue to converge to the optimal state.

Because GAN is an unsupervised learning model, it can-
not extract the features of labeled data. For labeled data,
researchers have proposed many GANs with labeled classifi-
cations, such as CGAN [11] and ACGAN [12]. ACGAN is a
generative model proposed by Odena et al. in 2016 which can
generate images based on tags. ACGAN performs supervised
learning on labeled data by fusing the classification tags into
a loss function.

Although a GAN can effectively generate images, it is dif-
ficult to train [13]. When the generating adversarial network
is trained, two situations occur. First, if the distributions of the
real and generated samples do not overlap, the gradient of the
generator is always 0. This causes the generator not to update.
Second, the generator tends to generating repeated and safe
samples, leadings to mode collapse. One solution is to use
methods based on integral probability metrics, such as the
Wasserstein distance (WGAN) [14], kernel MMD [15], and
Cramer distance [16]. Another methold is to add a gradient
penalty term to maintain stabilization during the training of
GANs [16], [17], [18]. Among them, DRAGAN [18] is a
method that adds a gradient penalty term to maintain stabi-
lization in the training of GANs. DRAGAN was proposed
by Kodali et al.The DRAGAN stabilizes the GAN training
by adding a gradient penalty to the discriminator. It can be
observed that restricting the discriminator D(x) to a Lipschitz
continuity for K. Compared with WGAN, the training of
DRAGAN is more stable, and the update direction is the
same as the gradient direction when the momentum-based
optimization algorithm is used for training.

The generator and discriminator of GAN can be con-
structed using by various networks. The DCGAN [19],
proposed by Alec Radford, uses a multilayer convolutional
neural network (CNN) to build a GAN. The DCGAN dra-
matically improves the quality and style richness of the
generated adversarial network results compared to the GAN
containing the multilayer perceptron. However, there are still
some problems with DCGAN. First, the generated samples
deviated from the real sample distribution. Second, the gen-
erator is prone to collapse during training. To solve the prob-
lem of generated samples deviating from the distribution of
real samples, StyleGan [20] based on style is proposed by
T Karras et al. StyleGan introduced a style network to gener-
ate images through feature fusion after learning the features
of style images. StyleGan makes the distribution of generated
samples and real samples closer, but there are still some
defects, such as a single generation style and complex net-
work structure. Because the input of StyleGan is not a random

vector, but a styled vector, StyleGan does not generate images
from scratch. It is closer to a style transfer. However, This
method is not suitable for images with changing styles.

SRResNet [21], based on DCGAN, was proposed by
Y Jin et al. In contrast of the vanilla DCGAN, the generator
and discriminator of this network introduced the residual
neural network ResNet [22] proposed by K He. Moreover,
the CNNs of the network generator and discriminator wear
deepened. The SRResNet generator can generate images with
a higher resolution, and the discriminator has a stronger
discriminative ability. Compared with the vanilla DCGAN,
the model can generate more realistic images. However, the
model still has the problem of the low authenticity of the
generated samples.

At present, generative models based on GAN have the
problem that the generated samples deviate from the original
samples. In order to make the generated samples closer to the
original samples, a GAN consisting of Transformer Encoder
and CNN is proposed. This network can effectively minimize
the distance between the generated sample distribution and
the original sample distribution without using a style transfer.
This method can generate more realistic images. Compared
with the existing models, this model adopts super-resolution
technology after the transformer generator generates the
images. Compared with DCGAN, the model in this study
has more realistic generated samples. Compared to a GAN
composed of a full transformer, the proposed model requires
less computation.

III. RELATED CONCEPTS
A. CONVOLUTIONAL NEURAL NETWORK
The convolutional neural network (CNN) refers to a neural
network that uses convolution operations for feature extrac-
tion. A general CNN consists of a pooling layer, a normaliza-
tion layer, a convolutional layer, and a fully connected layer.
Each layer is usually followed by an activation function.

The convolutional layer refers to a neural network com-
posed of convolution operations. The convolution operations
are obtained by sliding the convolution kernel and multiply-
ing and adding the corresponding image pixels. The convolu-
tion operation can be explained as follows:

Conv(X ) = w · X [i : i+ h− 1]+ b (1)

where b is the bias parameter, w is the weight matrix of h×k
dimension, X [i:i+h-1] represents the i-th row to the i+h-1th
row of the matrix X, and the size is h×k the convolution
kernel.

Generally, a CNN consists of multiple pooling layers and
convolutional layers. Which can be explained as:{
Convn+1(x) = Conv(f n(Convn(x))) n ∈ {1, 2, . . . ,m}
MultiConvn (X ) = Conv(fn (Convn(x))) n = m− 1

(2)

where f(x) is the normalization function or activation function
or pooling function, n is the number of iterations.
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Normalization can reduce the influence of distribution
changes caused by parameter updates in CNN, and map the
data distribution to a specific interval. Normalization can be
explained as:

BatchNorm(x) =
x − Eb[x]
√
Varb[x]+ ε

∗ γ + β (3)

LayerNorm(x) =
x − El[x]
√
Var l[x]+ ε

∗ γ + β (4)

where Var is the standard deviation, E is the expectation, ε is
the value prevent the denominator from being 0, and β and γ
are learnable parameters.

BatchNorm calculates the expectation and standard devi-
ation on the input batch dimension. LayerNorm calculates
the expectation and standard deviation on the input channel
dimension.

The activation function can de-linearize the linearly trans-
formed feature matrix, and the commonly used activation
functions are ReLU, tanh, sigmoid, etc. These activation
functions can be explained as:

sigmoid(x) =
1

1+ e−x
(5)

tanh(x) =
ex − e−x

ex + e−x
(6)

ReLu(x) = max(0, x) (7)

where max is the maximum value.

B. GENERATIVE ADVERSARIAL NETWORK
Generative adversarial network (GAN) can be explained as:

Min
G

Max
D

L(D,G)

= Ez∼Pz(z)[log(1− D(G(z)))+ Ex∼Pdata(x)[logD(x)] (8)

where G refers to the generator, D refers to the discriminator,
z refers to the noise vector, x refers to the real data, E refers
to the expectation, and P refers to the distribution function.
Y Jin proposed a new network SRResNet based on DCGAN.
The network can be represented as:

H (x) = F(x)+ x
F(x) = MultiConvn(x)
D(x) = sigmoid(MultiConvn(H (x)))
G(x) = tanh(MultiConvn(H (x)))

(9)

where H(x) is the residual neural network. ACGAN is a
generative model that can generate images based on tags. For
the sample set, using this model needs not only the sample
image but also the class tag corresponding to each sample,
and the loss function can be explained as:

Ls=Es∼real[logP(S|Xreal)]+Es∼fake[logP(S|Xfake)] (10)

Lcls=Ec∼class[logP(C|Xreal)]+Ec∼class[logP(C|Xfake)]

(11)

where Ls is the true and false discrimination loss, Lcls is the
classification loss, P is the distribution function, and E is the

expectation. DRAGAN is a stable training method. The loss
function of DRAGAN can be explained as:

LD = −Ex∼Pdata[logD(x)]

+ λEx∼Pdata,σ∼N (0,cl)[‖∇xD(x + σ )‖ − K ]2

−Ez∼Pz [log(1− D(G(z)))] (12)

LG = Ez∼Pz [log(D(G(z)))] (13)

where ∇ represents the gradient, N is the normal
distribution,cl and λ is a parameter, and K is the gradient
penalty parameter.

C. TRANSFORMER
Transformer [23] neural network was proposed by Ashish
Vaswani et al. and originally was used for natural language
processing. The Transformer is composed of Encoder and
Decoder. The Encoder is responsible for encoding the data
into hidden vectors.The Decoder is responsible for decod-
ing the hidden vector into data. The Transformer Encoder
consists of two blocks. The first block is a multi-head self-
attention block. The second block is a feed-forward fully
connected network with Relu activation function. Normal-
ization is used before the two blocks. Both blocks have
residual network links. The Transformer Decoder has three
blocks. The first block is a multi-head self-attention block.
The second block is a multi-head attention block that extracts
the relationship between latent vectors and input attention.
The third block is a feed-forward fully connected network
with Relu activation function. Normalization was used before
the two blocks. All three blocks have residual network links.

D. SELF-ATTENTION
The self-attention was first proposed by Ashish Vaswani
et al. and applied in Transformer. The difference between
the self-attention and the convolution operation is a range
of receptive field. The receptive field of the convolution
operation is the local receptive field. In contrast, the recep-
tive field of the self-attention is the global receptive field.
The self-attention describes the dependency between any
two data. It can be regarded as a particular case of embed-
ding Gaussian [24]. The input data is linearly transformed
into three matrices Q, K, and V. After that, Q and K are
dot-multiplied and then divided by the square root of the
scaling factor to calculate Softmax, and finally dot-multiplied
with the matrix V. The self-attention can be explained as:

Q = DWq,K = DWk ,V = DWv (14)

softmax(X )i =
exi∑
j e
xj

(15)

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (16)

where Wq, Wk , Wv are trainable parameters, dk is the scal-
ing parameter, and D is the input data. Using a single
self-attention can only make the model extract the feature
information of one space. Using multi-head attention can
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make the model extract the feature information of multiple
subspaces. The multi-head self-attention can be explained as:{
headi = Attention(QWQ

i ,KW
K
i ,VW

V
i )

MultiHead(Q,K ,V )h = Concat(head1, . . . , headh)W 0

(17)

whereW 0,WQ,WK ,WV are trainable parameters, and Con-
cat is matrix splicing. The multi-head attention is the result
of linear transformation after splicing multiple attention.

IV. TRANSFORMER-BASED GENERATIVE
MODEL TransSRGAN
In order to minimize the distance between the generated
sample distribution and the original sample distribution, the
TransSRGAN model based on GAN is proposed. Differ-
ent from vanilla GAN, the generator of TransSRGAN uses
Transformer Encoder to build sub-modules and uses CNN
sub-modules for upsampling operations. The discriminator of
TransSRGAN is constructed using a CNN as a sub-module.
The CNN submodule used by TransSRGAN uses only nor-
malization and convolutional layers and uses an activation
function for delinearization.

TransSRGAN can be explained as:{
D(x) = MultiConvn(MultiConvn(x)+ x)
G(x) = tanh(MultiConvn(Transformern(x)+ x))

(18)

where Transformer refers to Transformer Encoder
(Figure (2)), MultiConv refers to the calculation of multiple
convolutions by formula (2), and tanh refers to the calculation
of hyperbolic tangent by formula (6).

The network structure of the generator is shown in
Figure (1), and the structure of the Transformer Encoder is
shown in Figure (2). In Figure (1), s is the convolution stride,
k is the convolution kernel dimension, and n is the number of
output channels. The generator contains 16 layers of Trans-
former Encoder. Each Transformer Encoder includes a multi-
head self-attention layer composed of four self-attentions.
Constructing generative adversarial networks entirely with
Transformer Encode will result in extremely high mem-
ory consumption. Therefore, three-layer CNNs are used to
upsample the 16*16 image generated by the Transformer
Encoder. First, the generator inputs a 162-dimensional noise
vector consisting of 128-dimensional random floating-point
numbers and 34-dimensional classification tags. The random
floating-point numbers are randomly generated from a nor-
mal distribution with an expectation of 0 and a standard
deviation of 1. 34-dimensional one-hot encoding was used for
the classification tags. Then, the noise vector passes through
a fully connected network to output a feature vector with a
dimensions of 64*16*16. After the normalized feature vector,
a 16*16*64 image is generated through a 16-layer Trans-
former Encoder and normalization, then upsampled through a
three-layer CNNs, and the final output is 128*128*3 image.
A residual neural network was used to abstract the shallow

features. It can not only solve the problem of vanishing gra-
dients or exploding gradients but also improve the extraction
of shallow network features.

Since the calculation of the large-dimensional attention
matrix will consume a lot of computing resources, the net-
work will divide the data into 64 sequences for calculation,
and the length of each sequence is 256. In this manner, only
a 64*64 attention matrix will be generated. The sequence can
output a 16*16*64 image after going through multiple layers
of the Transformer Encoder. Since Transformer Encoder out-
puts larger images, the memory footprint increases, so CNN
is used for upsampling. Under normal circumstances, the
convolution operation, which is a downsampling operation,
reduces the height and width of the feature matrix. However,
the Pixel Shuffle algorithm [25] can obtain the feature matrix
of r2 channels through the convolution operation and then
perform upsampling through the method of periodic screen-
ing. It can increase the resolution of the output image by a
factor of r compared to the input image. After using the above
methods, the memory occupation and calculation amount of
the algorithm can be effectively reduced, and the calculation
speed can be accelerated.

The generator is represented as Algorithm (1). WhereW 1,
W 2,W 3,W 4,W q,W k ,W v are the parameters of the generator.
Before training, the initial values of the parameters of the
generator are randomly selected from a normal distribution
with the standard deviation of 0.02 and the expectation of 0.
After training, the parameters of the generator will be fixed
to the local optimal solution of the generator. The parameters
were used after training when using the generator to gener-
ate images. The feature vector z is a 162-dimensional noise
vector, of which the first 128 bits are randomly generated by a
normal distribution with the expectation of 0 and the standard
deviation of 1, and the last 34 bits are randomly generated by
One-Hot encoding.

The discriminator is shown in Figure (3). Since the addition
of the sigmoid activation function will cause the mode to
collapse, the final sigmoid activation function in the discrim-
inator based on ACGAN is canceled. The main structure of
the discriminator is composed of a multi-layer CNNs. The
input of the network is 3*128*128 images, and the output is a
35-dimensional vector composed of 34-dimensional tags and
1-dimensional true and false samples. If the output of the true
and false sample flag is 0, it is discriminated as the generated
sample; if the output is 1, it is discriminated as the original
sample. The initial values of all parameters of the discrimi-
nator network obey the normal distribution with the standard
deviation of 0.02 and the expectation of 0.

Since the vanilla generative adversarial network cannot
perform feature extraction on the data with classification tags,
the auxiliary classifier is included in the vanilla GAN loss
function in the form of a multiplier. To solve the problem
of mode collapse in the GAN, the gradient penalty term is
included in the vanilla GAN loss function in the form of a
multiplier. Through these two schemes, the GAN can extract
the features of image classification tags while stably training.
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Algorithm 1 Generator

Input: feature vector z, parameters W 1, W 2, W 3, W 4,
W q,W k , W v

Output: image im
1: O1← W1z

{Get the feature matrix O1 through the fully connected
network}

2: O2← BatchNorm(Relu(O1))
{Using formula (3) and formula (7) to normalize O1 to
obtain characteristic matrix O2}

3: Otemp← W2
4: for i from 1 to 16 do {Use 16 layer Transformer Encoder

to generate small image}
5: O3← LayerNorm(O2)

{Use formula (4) for normalization to get the feature
matrix O3}

6: Qi,Ki,Vi← O3Wqi,O3Wki,O3Wvi
{Calculate Q, K , V using formula (14)}

7: O4← W2MultiHead(Qi,Ki,Vi)4 + O2
{Use formula (17) to calculate the attention, and cal-
culate the feature matrix O4 through a fully connected
layer}

8: O5← W4Relu(W3LayerNorm(O4))+ O4
{Use formula (4) for normalization and then use for-
mula (7) to calculate the feature matrix O5}

9: O2← O5
{Store the result of one iteration to O2 and go to the
next iteration}

10: end for
11: O6← BatchNorm(Relu(O5))+ Otemp

{Normalize the output small image O5 using formula (3)
and formula (7) to obtain the feature matrix O6}

12: for i from 1 to 3 do {Upsampling using a 3-layer deep
CNNs }

13: O7← BatchNorm(Relu(PixelShuffle(Conv(O6))))
{Use formula (1), formula (3), formula (7) and Pix-
elShuffle algorithm to continuously upsample. get
high resolution image O7}

14: O6← O7
{Store the result of one iteration to O6 and go to the
next iteration}

15: end for
16: im← tanh(Conv(O7))

{Output image im through formula (6)}

The loss function of the network is shown in formula (19):

LG = λ2Ec∼class[logP(C|Xfake)]+ Ez∼Pz [log(D(G(z)))]
LD = −Ez∼Pz [log(1− D(G(z)))]
−Ex∼Pdata[logD(x)]
+ λ1Ex∼Pdata,σ∼N (0,cl)[‖∇xD(x + σ )‖ − K ]2

+ λ2{Ec∼class[logP(C|Xreal)]
+Ec∼class[logP(C|Xfake)]}

(19)

where, LD is the discriminator loss, LD item 1 is the real-
fake loss, LD item 2 is the classification loss, LG is the
discriminator loss, LG item 1 and 2 are the real-fake loss,
the third is the gradient penalty loss, and the fourth is the
classification loss, λ1 is the parameter of the gradient penalty
formula (12, 13), λ2 is the parameter of the gradient penalty
formula (10, 11), z is the noise vector, x is the real data,
σ is a random variable, E is the expectation, and P is the
Distribution function.

The training model adopts the stochastic gradient descent
method. Stochastic gradient descent is an optimization algo-
rithm of batch, which can make the network parameters
converge to the minimum value of the loss function through
continuous iteration. Due to the limited memory size, it is
impossible to process all the data in one iteration, so it
is necessary to split the training samples into batches for
training.

The training process of the network is shown in Algo-
rithm (2). Where N is normal distribution, U is uniform dis-
tribution, BCE is binary cross-entropy, CE is cross-entropy,
GradientDescent is gradient descent algorithm, grad is gradi-
ent, and GradClip is gradient clip.

Algorithm 2Model Training

Input: real data r , real data tag rl , real data quantity rn,
feature vector z,D(x) is the discriminator,G(x) is the gen-
erator, learning rate lr , number of epoch e, batch size b,
gradient Cut parameter C, gradient penalty parameter K.

Output: new discriminator parameters Dθ2, new generator
parameters Gθ2.

1: Dθ ,Gθ ∼ N (0, 0.0004)
{Initialize generator and discriminator parameters Gθ ,
Dθ}

2: for i from 1 to e do
3: for i from 1 to rn/b do {Optimize the discriminator:}
4: x, xl ← D(r)

{Input real samples to the discriminator to get a
34-dimensional tag xl and a 1-dimensional true and
false sample mark x }

5: Lrd ← BCE(x, 1)+ 0.02 ∗ CE(rl, xl)
{After inputting the real sample, the loss function
Lrd of the discriminator is obtained }

6: x, xl ← D(G(z))
{After inputting the generated samples to the
discriminator, the 34-dimensional tag xl and the
1-dimensional true and false sample mark x}

7: Lfd ← BCE(x, 0)+ 0.02 ∗ CE(zl, xl)
{After inputting the generated samples, the loss
function Lfd of the discriminator is obtained, where
zl is the last 34 dimensions of z}

8: xr ∼ U (0, 1)
{Generate random matrix xr from uniform distribu-
tion}

9: Ld ← Lrd + Lfd + 0.5 ∗ (‖grad(D(xr ),Dθ )‖ − K )
{Use formula (19.2) to calculate the loss function
Ld of the discriminator}
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10: Ldgrad ← GradClip(grad(Ld ,Dθ ),C)
{Find the gradient of the discriminator through the
loss function, and truncate the gradient of the dis-
criminator to C }

11: Dθ2← GradientDescent(Ldgrad , lr)
{Get a new discriminator parameter Dθ2 through
gradient descent }

12: Dθ ← Dθ2
{Update discriminator parameters Dθ }
{Optimization generator: }

13: x, xl ← D(G(z))
{Input generated samples through the discriminator
to get 34-dimensional tags and 1-dimensional true
and false sample flags}

14: Lg← BCE(x, 1)+ 0.02 ∗ CE(zl, xl)
{Calculate the loss function Lg of the generator
using formula (19.1), where zl is the last 34 dimen-
sions of z}

15: Lggrad ← grad(Lg,Gθ )
{Find the gradient Lggrad of the generator through
the loss function}

16: Gθ2← GradientDescent(Lggrad , lr )
{Get the new generator parameter Gθ2 by gradient
descent}

17: Gθ ← Gθ2
{Update generator parameters gθ }

18: lr ← lr ∗ 0.1((rn∗j+i∗b)/50000)

{Update the learning rate lr }
19: end for
20: end for

V. EXPERIMENT AND RESULT ANALYSIS
In this chapter, the model SRResNet [21] proposed by
Y Jin et al. is used as the baseline model, and experiments
show that TransSRGAN has better generation ability.

A. DATASET
The training set of the model comes from crawling
43,740 pictures of anime characters from the Internet through
crawler. These images come from different characters and
have different resolutions. To intercept the avatar of the char-
acter, the Lbpcascade Animeface based on Adaboost is used
to locate and crop the face of the character in the big picture.
These face images need to be uniformly scaled to a size of
128× 128.

Illustration2Vec is used to classify the samples in the
training set. This is a CNN-based classifier that can add
categorical tags to images (eg ‘‘green hair’’, ‘‘red eyes’’, etc.).
To compare TransSRGAN with the baseline model, 34 tags
consistent with the baseline model are selected for image
classification. The classification tags are shown in Table (1).

B. INCEPTION SCORE
The Inception Score (IS) is introduced to evaluate the defini-
tion and diversity of generative adversarial networks. In 2016,
IS [26] was proposed by T Salimans et al., which calculates

TABLE 1. Tags.

the KL divergence between the edge distribution of the clas-
sification vector and the classification vector through the
pre-trained InceptionV3 neural network as a measure of the
quality of the generated model. The representation is:

IS(x) = exp(Ex∼PgDKL(p(y | x) | p(y))) (20)

where x represents the generated sample, Y represents the
classification vector, and Dkl is the KL divergence. The larger
the value of IS, the clearer the generation effect IS and the
more diverse the generated samples are.

C. FRÉCHET INCEPTION DISTANCE
To evaluate the performance of the samples generated by the
GAN, the Fréchet Inception distance (FID) [27] is used to
evaluate the realism of the samples generated by the GAN.
FID was proposed byMartin Heusel et al. in 2017. It is calcu-
lated on the final output of the pre-trained InceptionV3 neural
network, and the Fréchet distance of the approximate normal
distribution of the real sample features and the generated
sample features is calculated as a measure of the quality of
the generated model. The representation is:

FID(x, g) = Tr(6x +6g − 2
√
6x6g)+

∥∥µx − µg∥∥22 (21)

where x and g represent the generated sample and the real
sample, Tr is the trace of the matrix, µx and µg represent the
feature mean of the middle layer extracted by the generated
sample and the real sample through the same InceptionV3,
and 6x and 6g are the covariance matrix of the eigenvalues
of the middle layer. The smaller value of FID is, the generated
sample is closer to the real sample and better the generation
effect.

FID is more sensitive to model collapse and also has better
robustness to noise. If there is only one photo, the FID score
will be very high. Therefore, FID can evaluate not only the
similarity between the generated sample set and the real
sample set, but also the diversity of the generated sample set.

D. HYPERPARAMETERS
Several groups of different hyperparameters are tested in
the experiment by binary search. It is found that different
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FIGURE 1. Generator Architecture.

FIGURE 2. Transformer Encoder Architecture.

hyperparameter values have different results on the training
of the model. A better set of hyperparameters is chosen for

model training. Table (2) describes the hyperparameters used
and lists their values.
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FIGURE 3. Discriminator Architecture.

FIGURE 4. Generated samples.

This model uses 43740 data for training. Both the
discriminator and the generator are optimized by the
momentum-based stochastic gradient descent optimization
algorithm Adam [28]. For all pictures, all are scaled to
128*128 size. To prevent the loss function from jumping
out of the minimum value due to the high learning rate at
the end of the training, which leads to training failure, the
dynamic learning rate is used to stabilize the training process.
The learning rate drops to 0.1 times the learning rate of the
previous round after 50,000 iterations.

E. GENERATING RESULTS
Figure (4) shows the image generated by the generator of this
model. The 128-bit random noise and the 34-bit tag vector

are input to the generator. The 128-bit random noise is ran-
domly generated from a normal distribution with a standard
deviation of 1 and an expectation of 0. The 34-bit tag vector
is a randomly generated One-Hot code.

To evaluate the IS score of the model, we generated
10000 images through the generator. Generator input vector
and label vector are random vectors. This is to ensure that
the prior distribution of the sampled labels is the same as that
of the training dataset labels. Then input all the images into
InceptionV3. Each image outputs a 1000-dimensional clas-
sification vector. Then, the feature vectors were substituted
into formula (20) to calculate the average IS of 10000 images.
Table 3 shows the average value of IS between the proposed
model and other models. It can be seen that compared with
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FIGURE 5. TransSRGAN and other models for FID.

TABLE 2. Hyperparameter.

the baseline model, the model in this study has higher IS and
can generate clearer and more diverse images.

To evaluate the FID score of the model, 10,000 images
are sampled from the real dataset. Then generate fake data
with tags as same as the tags of real data. The generator
input vector is a random vector. The tag vector is the same
as the real dataset. It is to ensure that the sample tags have
the same prior distribution as the training dataset tags. Then
all images are input into InceptionV3. Each image outputs a
2048-dimensional feature vector. After that, the feature vec-
tors are substituted into formula (21) to calculate FID. Five
groups of images are generated, and five FIDs are calculated.
Then calculate the average of five FIDs. Table (3) shows the
average value of the FID of the TransSRGAN model and the
other models. The TransSRGANmodel has a lower FID than
the baseline model. While generating images that are closer

TABLE 3. FID and IS of TransSRGAN and other models.

to real samples, the model also avoids mode collapse and
ensures the diversity of generated samples.

Figure (5) and Figure (6) show the change of FID and IS of
themodel under different epoch times. It can be seen that after
the 100th epoch, the FID and IS of each epoch of TransSR-
GAN training are lower than the baseline model, while the
FID and IS of TransSRGAN tend to be stable after the 250th
epoch of training. DCGAN suffered a mode collapse after
350 rounds.WGANcannot learn sample distributionwell due
to weight clipping.

F. COMPUTATIONAL COST
Table (4) shows the video memory occupancy compar-
ison between TransSRGAN and pure CNN model and
pure Transformer model at 30 batchs. It can be seen
that compared with full Transformer model, TransSRGAN
can achieve better generation quality improvement only by
increasing lower video memory consumption than full CNN
model.
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FIGURE 6. TransSRGAN and other models for IS.

TABLE 4. Computer Cost.

VI. CONCLUSION
In order to make the generation model produce more real-
istic images, TransSRGAN based on the GAN is proposed,
which generates clear images of anime characters. The main
improvement of this study is that Transformer Encoder is
used as a sub-module to generate adversarial network gen-
erator. After a series of self-attention calculation and feature
up-sampling, the generated samples are closer to the distribu-
tion of original samples. How to further reduce the memory
usage of the model while making the image more realistic is
still a problem worthy of further research.
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