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ABSTRACT Selective catalytic reduction (SCR) systems are distributed systems with strong time-varying
parameter characteristics such that an accurate model for it is difficult to establish. Its control task
simultaneously achieving high NOx conversion efficiency and low NH3 slip is a typical multi-objective and
multi-constraint problem, which is suitable to be solved in the framework of the model predictive control
(MPC). However, how to find a data-driven identification method based on the dynamic characteristics of an
SCR system and a corresponding MPC method for satisfying its emission requirements remain a formidable
challenge. The sufficient identification for the traditional identification method with fixed subspace model
requires an excessively high order subspace matrix, such that a degradation in real-time performance is
caused and the generality of the method under non-identification conditions is limited. In this paper, utilizing
the transient data of the SCR system under the WHTC cycle, a novel identification method for some lower
order subspace matrices excited by the segmented data referring to the dynamic of the ammonia coverage
ratio is established. A corresponding predictive controller with the switched subspace matrices according
to working conditions is designed in order to further improve its real-time performance, generality and
robustness. The simulation results show that under the identification condition the proposed predictive
controller compared to the traditional method can improve the emissions of NOx and NH3, that under
the non-identification condition the proposed predictive controller can also improve the emissions and its
optimization effects have better robustness to uncertainties of the transient cycle, and that the proposed
predictive controller saves an significant computation time.

INDEX TERMS Subspace identification, data-driven predictive control, SCR systems.

I. INTRODUCTION
Selective catalytic reduction (SCR) systems are the most
promising aftertreatment technologies for reducing the NOx
emission [1]. The working principle of SCR systems is that
NOx exhausted by engines can be reduced by ammonia (NH3)
generated from a 32.5% aqueous urea solution (AdBlue), and
the excess NH3 is also a harmful emission [2]. Therefore, the
key to controlling SCR systems is how to improve the NOx
conversion rate while ensuring that the NH3 slip does not
exceed the limit. Researchers introduce ammonia coverage
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rates in the modeling process and balance the NOx and NH3
emissions by optimizing them [3]. That is a typical multi-
objective problem with constraints, which is suitable to be
solved under the model predictive control (MPC) frame-
work [4]. The working processes of SCR systems involve
many complex chemical reactions and transfer processes of
heat and mass. SCR systems are distributed systems with
strong time-varying parameter characteristics such that an
accurate system model for it is difficult to establish [5], [6].

In recent years, large amounts of data can be obtained
in modern industries with the development of the computer
technology. Modeling through data-driven methods not only
becomes possible but also new challenges both in theory
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and applications [7]. These data-based methods get around
the difficulty of mechanism modeling. In addition, the MPC
strategy takes time-domain constraints into account explicitly
and deals with multiple objectives in a somewhat optimal
sense, so it has a great potential for the control of an auto-
mated machinery [8]. In [9], a data-driven predictive con-
trol algorithmwith elegantly combining data-driven subspace
identification and MPC is proposed.

The data-driven technology has been widely used in indus-
trial occasions such as multidimensional blast furnace sys-
tem, wind power generation, vapor compression refrigeration
cycle and superheated steam temperature system in power
plant. In [10], a data-driven model based on Volterra series is
developed for multidimensional blast furnace system. Three
different low-order Volterra filters are designed to effectively
describe the evolution of the studied silicon sequence. In [11],
based on the data-driven technology, a predictive controller
of wind turbine torque is designed. The engine torque is
controlled by the prediction of wind force to change the
rotation speed, so as to obtain the best power coefficient and
maximize the power. And different data mining algorithms
are used to improve the accuracy and robustness properties
of the wind speed model. In [12], a controller of vapor com-
pression refrigeration cycle system driven by multivariable
data is proposed, which controls the opening of expansion
valve to realize the overheating of evaporator and constant
pressure. The controller shows satisfactory robustness to the
disturbance caused by the change of temperature variable.
In [13], a pre-set adaptive predictive controller using the
data-driven technology for superheated steam temperature
system in power plant is designed, which shows strong anti-
interference ability and desirable robustness in off-design
system.

Moreover, the data-driven technology has been used in
many aspects of vehicle mechanical components control.
In [14], a torque coordination controller of hybrid electric
vehicle (HEV) drive system based on a data-driven method is
proposed. Excellent quality in the dynamic process of HEV
mode switching from pure electric to hybrid drive is achieved
by the controller, which can significantly improve the driver
comfort and economy of HEV. In addition, the latest vehicle
operation data collected online can be used to update the sub-
space prediction model for ensuring the higher performance
of the proposed control strategy for a long time. In [15], an air-
fuel ratio controller for the engine is designed by using the
data-driven technology to achieve small air-fuel ratio error,
reasonable injection duration and injection pulse width incre-
ment. It remains effective in real-time simulation experiments
with interference. In [16], a combustion controller for the
diesel engine is designed by using the data-driven technology
with the system matrix put forward from the kernel function
to realize the real-time coordinated control of power and
emission. In [17], a data-driven predictive controller for the
starting process of automatic manual transmission (AMT)
vehicle is designed to obtain satisfied startup performance by
controlling slip speed of the clutch. In [18], a shift controller

is designedwith the data-driven predictive control technology
to improve the shift quality of dual clutch transmission (DCT)
vehicles. The controller is robust to the disturbance caused by
the uncertainty of working conditions.

Additionally, researchers have made considerable efforts
to solve the problems of the modeling and optimal control
for SCR systems utilizing the data-driven technology during
recent years. In [19], a urea dosing controller of the SNCR
denitration system based on the data-driven technology is
designed, which strictly controls the concentration of NOx
at the outlet of the SNCR. The experimental results show that
the fluctuation of the concentration of NOx at the outlet is
relatively gentle, and the ammonia dosing amount and ammo-
nia escape amount are generally reduced. In [20], a data-
driven method is used to establish the NOx model at the
outlet of an SCR system, and an optimal control strategy of
urea dosing is proposed, which can ensure the denitration
efficiency and reduce the ammonia escape when the working
conditions change. In [21], a fixed subspace matrix and a
data-driven model using the engine data of the ETC transient
cycle are identified, and a urea dosing controller is designed.
Thus, Utilizing the experimental data of commercial SCR
systems, a data-driven subspace model can be established to
avoid the problem ofmechanistic modeling and a correspond-
ing MPC method can also solve their problem of emission
optimization.

Overall, there are many researches on the data-driven tech-
nology applied to SCR systems, most of which are based
on the traditional identification method with fixed subspace
model, and the dynamic characteristics of SCR systems are
rarely considered in the identification process. Compared to
the traditional identification method and corresponding MPC
method, there are several challenges in the development of a
data-driven predictive controller for SCR systems:

1). How to find a data-driven identification method based
on the dynamic characteristics of an SCR system and a cor-
responding MPC method for satisfying its emission require-
ments remain a formidable challenge.

2). The sufficient identification for the traditional identifi-
cation method with fixed subspace model requires an exces-
sively high order subspace matrix, such that a degradation
in real-time performance is caused and the generality of the
method under non-identification conditions is limited.

To address the associated challenges as mentioned above,
the primary merits of the design procedure cover the follow-
ing points:

1). A novel identification method for some lower order
subspace matrices excited by the segmented data referring to
the dynamic of the ammonia coverage ratio is established.

2). A corresponding predictive controller with the switched
subspace matrices according to working conditions is
designed in order to further improve the real-time perfor-
mance, generality and robustness.

The rest of this paper is organized as follows.
Section 1 explains the problem statement of the SCR system.
Section 2 presents the traditional data-driven predictive
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controller with fixed subspace identification model.
Section 3 primarily elaborates the proposed data-driven pre-
dictive controller with segmented subspace identification
model and shows its optimization results. Section 4 presents
the conclusion.

II. PROBLEM STATEMENT OF SCR SYSTEM
SCR systems are complex dynamic systems of chemical reac-
tion with highly nonlinear properties. Their chemical reac-
tion primarily includes the following several processes. The
AdBlue (Ureain) is pyrolyzed to produce ammonia (NH3,in)
and isocyanate (HNCO) at the upstream of an SCR system.
Inside the catalyst, one part of NH3,in is adsorbed on the
catalyst substrate (NH3(ads)), while the other part remains in
the gaseous phase (NH3(g)). Both parts can be transformed
into each other, i.e.,

NH3(ads)↔ NH3(g). (1)

TheNH3(ads) can catalytically react with the NOx(NOx,in)
generated by the engine, and then they are converted into N2
and H2O. When the temperature is higher than 200 degrees
Celsius, the SCR system is governed by an Eley-Rideal mech-
anism [22] consuming NH3(ads) and gaseous NOx ,

4NH3(ads)+ 4NOx + zO2→ 4N2 + 6H2O . (2)

The NH3(ads) can also be oxidized to N2 and H2O by the
following reaction:

4NH3(ads)+ 3O2→ 2N2 + 6H2O. (3)

Proceeding through the chemical reaction described above,
the remaining NOx (NOx,out ) and NH3 (NH3,out ) are dis-
charged as pollutants. The ratio of the amount of NH3(ads)
and the ammonia storage capacity is defined as the ammonia
coverage ratio θNH3 .

A schematic diagram of problem statement for an SCR
system is shown in Fig. 1. For the SCR system, the primary
inputs are NOx,in, NH3,in, EFM (the exhaust gas mass flow)
and Tengine (the exhaust gas temperature of engine), and the
primary outputs are NOx,out and NH3,out , and the primary
internal state is θNH3 . The control task of the SCR system is to
simultaneously achieve high NOx conversion efficiency (the
ratio of (NOx,in −NOx,out ) to NOx,in) and low ammonia slip
NH3,out . The task can be achieved through the optimization
and tracking control of θNH3 , which is used to balance the
NOx and NH3 emissions [2, 3].

FIGURE 1. Schematic of the problem statement for the SCR system.

III. TRDAIONAL DATA-DRIVEN PREDICTIVE CONTROLLER
In this section, a traditional data-driven predictive controller
with fixed subspace identification model is designed and

verified for an SCR system. Firstly, a subspace identification
model and an incremental subspace identification model are
presented. Secondly, a traditional data-driven predictive con-
troller is proposed. Thirdly, a few simulations are performed
to verify the traditional data-driven predictive controller with
fixed subspace identification model under the WHTC cycle.
Finally, the computation times of the data-driven predictive
controllers between the different order subspace matrices are
compared and discussed.

A. SUBSPACE IDENTIFICATION MODEL
According to the problem statement of SCR systems, a state-
spacemodel with discretized form considered for deriving the
subspace matrices is presented as follows:

x(k + 1) = Ax(k)+ Buu(k)+ Kd(k),
yc(k) = Cx(k),
yb(k) = Cbx(k),

(4)

which is a system with four inputs and two outputs,
the control input u (k) = NH3,in, the control output
yc (k) = NOx,out , the system constrained output yb (k) =
NH3,out and the disturbance input d (k) is constructed as
follows:

d(k) =
[
d1(k) d2(k) d3(k)

]T
=
[
NOx,in EFM Tengine

]
.

The state of the system is x(k) ∈ Rn (n is the state
order), and the matrices A,Bu,K , C,Cb are the state-space
matrices. The data of u (k), d (k), yc (k) and yb (k) for
k ∈ {0, 1, · · · , 2i+ j− 1} are collected through the high-
precision model of an SCR system. The prediction horizon
and the control horizon are denoted as Np and Nu, satisfying
Np ≥ Nu. The number of counting elements are denoted as j
with i = Np. The data block Hankel matrices Up,Uf ,Yp and
Yf are constructed as follows:

Up =



u0 u1 · · · uj−1

d10 d11 · · · d1j−1

d20 d21 · · · d2j−1

d30 d31 · · · d3j−1

u1 u2 · · · uj

d11 d12 · · · d1j

...
...

...

ui−1 u2i · · · ui+j−2

d1i−1 d12i · · · d1i+j−2

d2i−1 d22i · · · d2i+j−2

d3i−1 d32i · · · d3i+j−2


4i×j

,

107618 VOLUME 10, 2022



J. Zhao et al.: Data-Driven Predictive Control With Switched Subspace Matrices for an SCR System

Uf =



ui ui+1 · · · ui+j−1

d1i d1i+1 · · · d1i+j−1
d2i d2i+1 · · · d2i+j−1
d3i d3i+1 · · · d3i+j−1
ui+1 ui+2 · · · ui+j

d1i+1 d1i+2 · · · d1i+j
...

...
...

u2i−1 u2i · · · u2i+j−2

d12i−1 d12i · · · d12i+j−2
d22i−1 d22i · · · d22i+j−2
d32i−1 d32i · · · d32i+j−2


4i×j

,

Yp =



yc0 yc1 · · · ycj−1
yb0 yb1 · · · ybj−1
yc1 yc2 · · · ycj
yb1 yb2 · · · ybj
...

...
...

yci−1 yci · · · yci+j−2
ybi−1 ybi · · · ybi+j−2


2i×j

,

Yf =



yci yci+1 · · · yci+j−1
ybi ybi+1 · · · ybi+j−1
yci+1 yci+2 · · · yci+j
ybi+1 ybi+2 . . . ybi+j
...

...
...

yc2i−1 yc2i · · · yc2i+j−2
yb2i−1 yb2i · · · yb2i+j−2


2i×j

,

where p and f denote the past and future block obser-
vations. According to the deviation of the subspace lin-
ear predictor presented in literature [23], we will recur-
sively develop the subspace input–output matrix equa-
tion in the field of subspace identification. The prediction
Eq. (5) for subspace identification is obtained by recursive
method [24].

Ŷf = LwWp + LuUf , (5)

where

Wp =

[
Yp
Up

]
6i×j

and subspace matrices Lw and Lu are obtained by finding the
prediction of future output Yf and by solving the following
least squares problem:

min
Lw,Lu

∥∥∥∥Yf − [ Lw Lu
] [Wp

Uf

]∥∥∥∥2 . (6)

The solution is the orthogonal projection of the row space of
Yf into the row space spanned byWf and Uf as [25]:

Lwu =
[
Lw Lu

]
= Yf

[
Wp
Uf

]†
= Yf

[
W T
p UT

f

]([Wp
Uf

] [
W T
p UT

f

])−1
, (7)

where † represents the Moore–Penrose pseudoinverse.
In terms of (6) and (7), we can obtain subspace matrices Lw
and Lu as follow:

Lw = [Lwu (:, 1) , · · · ,Lwu (:,NP × 6)]2NP×6NP ,

Lu = [Lwu (:,NP × 6+ 1) , · · · ,Lwu (:,NP × 10)]2NP×4NP .

In order to simplify the derivation of the predictive con-
troller and reduce the computation time, the first column of
Ŷf is only used to predict the future dynamics of the system:

ŷf = Lwwp + Luuf (8)

where

wp =
[
yp
up

]
,

up =



u(k − Nu + 1)
d1(k − Nu + 1)
d2(k − Nu + 1)
d3(k − Nu + 1)
u(k − Nu + 2)
d1(k − Nu + 2)

...

u(k)
d1(k)
d2(k)
d3(k)


4Nu×1

, uf =



u(k + 1)
d1(k + 1)
d2(k + 1)
d3(k + 1)
u(k + 2)
d1(k + 2)

...

u(k + Nu)
d1(k + Nu)
d2(k + Nu)
d3(k + Nu)


4Nu×1

,

yp =



yc(k − Np + 1)
yb(k − Np + 1)
yc(k − Np + 2)
yb(k − Np + 2)

...

yc(k)
yb(k)


2Np×1

, ŷf =



yc(k + 1)
yb(k + 1)
yc(k + 2)
yb(k + 2)

...

yc(k + Np)
yb(k + Np)


2Np×1

.

Since the disturbance of the system is unpredictable, it is
assumed to be constant in the prediction horizon. Extract-
ing the disturbance from the control input, Eq. (8) can be
expressed as:

ŷf = L̃ww̃p + L
p
ddp + L̃uũf + L

f
ddf . (9)

B. INCREMENTAL SUBSPACE IDENTIFICATION MODEL
In order to guarantee zero steady-state error for the tracking
of the system output to the reference input, an integral form
is introduced. The Eq. (9) is transformed into an incremental
form:

1ŷf = L̃w1w̃p + L
p
d1dp + L̃u1ũf + L

f
d1df . (10)
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Assuming that the future disturbance input df is unchanged
in the control horizon, the incremental form of the predicted
output sequence at the k sampling time is:

1
∧
y
f
(k) = L̃wI (1 : NP, :)

[
1yp
1ũp

]
+LpdI

(
1 : Np, :

)
1dp

+L fdI
(
1 : Np, :

)
1df

+L fuI
(
1 : Np, 1 : Nu

)
1ũf (k) , (11)

where

L̃wI = 5L̃w, LpdI = 5L
p
d , L

f
dI = 5L

f
d , L̃uI = 5Lu,

1yp =
[
1y(k − Np + 1) 1y(k − Np + 2) · · · 1y(k)

]T
,

1ũp =
[
1u(k − Np) 1u(k − Np + 1) · · · 1y(k − 1)

]T
,

1dp =
[
1d(k − Np + 1) 1d(k − Nu + 2) · · · 1d(k)

]T
,

1dp =
[
1d(k) 0 · · · 0

]T
,

5 =


I 0 · · · 0
I I · · · 0
...

... 0
I I · · · I


2Np×2Np

.

To design a data-driven predictive controller with con-
straints, the incremental predicted outputs shown in Eq. (11)
are accumulated. The predicted control output ŷcf and the
predicted constraint output ŷbf are further extracted from ŷf
as: {

1ŷcf (k) = 0c1ŷf (k)

1ŷbf (k) = 0b1ŷf (k),
(12)

where

0c =


1 0 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1 0


Np×2Np

,

0b =


0 1 0 0 0 · · · 0 0
0 0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1


Np×2Np

.

In Eq. (12), the predicted control output and the predicted
constraint output are{

ŷcf (k + 1) = Fc + Scf 1ũf (k)

ŷbf (k + 1) = Fb + Sbf 1ũf (k),
(13)

where 

Fc = yc(k)+ 0cL̃wI
(
1 : Np, :

) [1yp
1ũp

]
+0cL

p
dI

(
1 : Np, :

)
1dp

+0cL
f
dI

(
1 : Np, 1 : Nu

)
1df

Fb = yb(k)+ 0bL̃wI
(
1 : Np, :

) [1yp
1ũp

]
+0bL

p
dI

(
1 : Np, :

)
1dp

+0bL
f
dI

(
1 : Np, 1 : Nu

)
1df ,{

Scf = 0cL̃uI
(
1 : Np, 1 : Nu

)
Sbf = 0bL̃uI

(
1 : Np, 1 : Nu

)
,

yc (k) =


yc(k)
yc(k)
...

yc(k)


Np×1

yb (k) =


yb(k)
yb(k)
...

yb(k)


Np×1

,

where Fc and Fb are the system free response, and Scf and S
b
f

are the system control response.

C. TRADITIONAL DATA-DRIVEN PREDICTIVE CONTROLLER
WITH INCREMENTED SUBSPACE IDENTIFICATION MODEL
In this subsection, a data-driven predictive controller with
incremental subspace identification model is developed to
account for the emission objectives and constraints and opti-
mize NH3,in for the SCR system, as shown in Fig. 2.

FIGURE 2. Schematic of data-driven predictive controller for
optimizing NH3,in.

The key to controlling SCR systems is how to improve the
NOx conversion rate while ensuring that the NH3 slip does
not exceed the limit. Thus, the optimization problem with the
input and output constraints of the SCR system is described
as follows:

min
1uf (k)

J
(
ycf (k),1uf (k),Np,Nu

)
, (14)

where

J =
[
Re(k + 1)− Fc − Sc1ũf (k)

]T
×
[
Re(k + 1)− Fc − S1ũf (k)

]
+1ũf (k)T (3I )1ũf (k),
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FIGURE 3. Input and output data of the SCR system under the WHTC cycle with cold-initial engine.

umin(k + q) ≤ u(k + q) ≤ umax(k + q),

1umin(k + q) ≤ 1u(k + q) ≤ 1umax(k + q),

ybmin(k + m) ≤ ŷb(k + q) ≤ yb
max

(k + m),

3 = 0u/0y,

0y =


γy,1 0 · · · 0
0 γy,2 · · · 0
...

...
...

0 0 · · · γy,Np

 ,

0u =


γu,1 0 · · · 0
0 γu,2 · · · 0
...

...
...

0 0 · · · γu,Nu

 . (15)

The optimization function J consists of two parts: the
predictive control output ŷcf (k + 1) tracks the desired refer-
ence value (Re(k + 1)); the change rate of the control action
1uf (k) is as small as possible. Because of the physical con-
straints of the SCR system, the range of control input u(k) and
constraint output yb(k) are: umin = 1umin = 0mol/s, umax =

0.003mol/s, 1umax = 0.0005mol/s, ybmin = 0mol/s and
ybmax = 0.00002mol/s. The weight factor matrices 0u and 0y
are given to trade off the two objectives. The ratio of weight
coefficient 0u and 0y is 3.
Since problem (15) is a multi-objective optimization prob-

lem with constraints [26], [27], the efficient set method can
be used to solve it [28]. In order to facilitate the solution
by the efficient set method, the relevant constraints can be

organized as:

A1ũf ≤ b, (16)

where

A =


−I
−R
−Sb

I
R
Sb


6Np×Nu

, b =


−L1
−L2
−L3
U1
U2
U3


6Np×1

,

L1 =
[
1umin(k) · · · 1umin (k + q+ 1)

]T
,

U1 =
[
1umax(k) · · · 1umax (k + q+ 1)

]T
,

L2 =
[
umin(k)−u(k−1) · · · umin(k + q−1)− u(k−1)

]T
,

U2 =
[
umax(k)−u(k−1) · · · umax(k + q−1)− u(k−1)

]T
,

L3 =
[
ybmin(k + 1) · · · ymin(k + m)

]T
− Fb,

U3 =

[
yb
max

(k + 1) · · · ymax(k + m)
]T
− Fb,

I =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 ,

R =


1 0 · · · 0
1 1 · · · 0
...

...
...

1 1 · · · 1

 .
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FIGURE 4. Subspace matrices Lu and Lw .

D. IDENTIFICATION OF SUBSPACE IDENTIFICATION
MODEL AND VERIFICATION OF THE TRADITIONAL
DATA-DRIVEN PREDICTIVE CONTROLLER
In this section, an identification and verification of sub-
space identification model is presented and a few simu-
lations are performed to verify the emission optimization
effects of the traditional data-driven predictive controller
with fixed subspace identification model. The simulation is
conducted in MATLAB/Simulink environment utilizing an
Intel(R) Core(TM) i7-10700 CPU (2.90GHz).

1) IDENTIFCATION AND VERIFCATION OF SUBSPACE
IDENTIFICATION MODEL
The identification data of the SCR system (as shown in Fig. 3)
under the WHTC cycle with cold-initial engine are adopted,
which come from the high-precision model in our previ-
ous work [29]. They consist of four inputs (NOx,in,NH3,in,
Tengine, EFM ) and two outputs (NOx,out ,NH3,out ), which has
1650 seconds with a sampling time of 0.1 seconds. And,
the two outputs are calibrated by the control strategy of the
original ECU in accordance with the China/Euro VI emission
regulations.

The normalized input and output data are used to derive
the Lu and Lw matrices by the identification method
described above, that is, the subspace identification model
is obtained. As shown in Fig. 4, Two sets of matrices Lu =
50 × 100,Lw = 50 × 150 and Lu = 80 × 160,Lw =
80 × 240 are derived to compare the predicted accuracy.

FIGURE 5. Predicted results of subspace identification model under the
WHTC cycle with cold-initial engine: (1) NOx,out , (2) NH3,out .

As shown in Fig. 5, when the input data are the same,
the comparison between the identification data (Real marked
by red solid line) and the predicted data of subspace identi-
fication model is performed. When the dimension of Lu is
50 × 100 and Lw is 50 × 150, the predicted accuracy of
the subspace identification model for NOx,out and NH3,out
are 90.17% and 74.23%, respectively. When the dimension
of Lu is 80 × 160 and Lw is 80 × 240, the predicted accu-
racy of the subspace identification model for NOx,out and
NH3,out are 97.84% and 96.23%, respectively. Its predicted
accuracy can satisfy the test requirements of the control
system.
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FIGURE 6. Comparison results of the emission control between the
identification data controlled by the original ECU and optimized data
controlled by the traditional data-driven predictive controller under the
WHTC cycle with cold-initial engine: (1) NOx,out , (2) NH3,out ,
(3) computation time.

FIGURE 7. Comparison results of the emission control between the
identification data controlled by the original ECU and optimized data
controlled by the traditional data-driven predictive controller under the
WHTC cycle with hot-initial engine: (1) NOx,out , (2) NH3,out ,
(3) computation time.

2) VERIFICATION OF THE TRADITIONAL DATA-DRIVEN
PREDICTIVE CONTROLLER
In this subsection, a few simulation comparisons of the NOx
and NH3 emissions are performed under the WHTC cycle
with cold-initial and hot-initial engine, respectively. The
emission optimization effects of the traditional data-driven
predictive controller with Lu = 80× 160, Lw = 80× 240 are
verified through the comparisons with the identification data
of NOx,out and NH3,out controlled by the original ECU.
As shown in Fig. 6, the emission comparisons between the
identification data (NOx,out − exp and NH3,out − exp) and
optimized data (NOx,out − opt and NH3,out − opt) con-
trolled by the traditional data-driven predictive controller are
performed under the WHTC cycle with cold-initial engine.

FIGURE 8. Comparison results of the computation times under the
different dimensions of the subspace matrices

FIGURE 9. Schematic of tracking controller for the ammonia coverage
ratio.

As compared to those of the identification data controlled by
the original ECU, the average NOx and NH3 emissions of
the traditional predictive controller are improved by 75.10%
and 66.40%, respectively. The worst computation time of the
traditional data-driven predictive controller is approximately
0.016 s with an average 0.0028 s. The worst computa-
tion time exceeds the reasonable real-time computation
time (0.01 s).

As shown in Fig. 7, the emission comparisons between the
identification data and optimized data controlled by the tradi-
tional data-driven predictive controller are performed under
the WHTC cycle with hot-initial engine to verify its gener-
ality and robustness. As compared to those of the original
ECU, the average NOx and NH3 emissions of the traditional
predictive controller are improved by −0.93% and 25.79%,
respectively. The worst computation time of the traditional
data-driven predictive controller is approximately 0.0098 s
with an average 0.0028 s.

E. COMPARSION AND DISCUSSION OF THE
COMPUTATION TIMES
The computation time of the predictive controller is affected
by the complexity of the subspace identification method,
which is determined by the dimension of the subspace
matrices. As shown in Fig. 8, under the WHTC cycle with
cold-initial engine the computation times of the traditional
data-driven predictive controller are compared, whose sub-
space matrices Lw and Lu are divided into four different
dimensions. When the dimension of Lu is 50 × 100 and Lw
is 50 × 150, the average computation time of the predictive
controller saves a 17.86% compared with that of the con-
troller when Lu is 80× 160 and Lw is 80× 240. The reduced
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FIGURE 10. Updated input and output data by the different tracking target of the ammonia coverage ratio: (1) NH3,in,
(2) NOx,out , (3) NH3,out .

dimension of the subspace matrices will inevitably lead to
a decrease in model accuracy. In the following sections, a
segmented identification model excited by the segmented
data will be discussed to guarantee model accuracy, and a
corresponding predictive control method is proposed.

IV. PROPOSED DATA-DRIVE PREDICTIVE CONTROLLER
WITH SWITCHED SUBSPACE MATRICES
In this section, a novel identification method for some lower
order subspace matrices excited by the segmented data is
established, and a corresponding data-driven predictive con-
troller is designed and verified.

A. IDENTIFCARION OF SEGMENTED SUBSPACE MODEL
REFERRING TO THE DYNAMIC OF THE AMMONIA
COVERAGE RATIO
In this subsection, subspace matrices are excited by the
segmented data referring to the dynamic of the ammonia
coverage ratio. For obtaining the segmented data, a tracking
controller of the ammonia coverage ratio [5] is employed,

which controls NH3,in for tracking the target of the ammonia
coverage ratio θ∗NH3

, as shown in Fig. 9.
Under the same working conditions (NOx,in, Tengine and

EFM ), several sets of segmented data for NH3,in, NOx,out
and NH3,out are obtained by the controller tracking the
different θ∗NH3

. The target θ∗NH3
are set to 0.05, 0.1, 0.15,

0.2, 0.25, 0.3, 0.35 and 0.4, respectively, and 8 sets of
segmented data collected are shown in Fig. 10. Subspace
matrices Lu and Lw excited under the different θ∗NH3

are
shown in Tab. 1.

B. VERIFCATION OF THE PROPOSED DATA-DRIVEN
PREDICTIVE CONTROLLER
In this subsection, based on the previous segmented sub-
space matrices a data-driven predictive controller with the
switched subspace matrices according to the dynamic of
the ammonia coverage ratio is designed. The switched reg-
ulation of the subspace matrices is described as Eq. (17).
The input data collected of the proposed controller
includes θNH3 . When 0 < θNH3 < 0.075, Lw is assigned Lw1,
and Lu is assigned Lu1. Similarly, when θNH3 takes values in
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TABLE 1. Subspace matrices Lu with the dimension of 50 × 100 and Lw with the dimension of 50 × 150 excited under THE different tracking targets of
the ammonia coverage ratio.
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TABLE 1. (Continued.) Subspace matrices Lu with the dimension of 50 × 100 and Lw with the dimension of 50 × 150 excited under THE different tracking
targets of the ammonia coverage ratio.
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TABLE 1. (Continued.) Subspace matrices Lu with the dimension of 50 × 100 and Lw with the dimension of 50 × 150 excited under THE different tracking
targets of the ammonia coverage ratio.

different ranges, Lw switches between Lw1, Lw2, . . . ,Lw8, and
Lu switches between Lu1, Lu2, . . . ,Lu8. Based on the current
Lw and Lu, the proposed controller starts to calculate.

Lw Lu =



Lw1 Lu1 when 0 < θNH3 < 0.075
Lw2 Lu2 when 0.075 ≤ θNH3 < 0.125
Lw3 Lu3 when 0.125 ≤ θNH3 < 0.175
Lw4 Lu4 when 0.175 ≤ θNH3 < 0.225
Lw5 Lu5 when 0.225 ≤ θNH3 < 0.275
Lw6 Lu6 when 0.275 ≤ θNH3 < 0.325
Lw7 Lu7 when 0.325 ≤ θNH3 < 0.375
Lw8 Lu8 when 0.375 < θNH3

(17)

The proposed data-driven predictive controller with the
switched subspace matrices is verified under the WHTC
cycle with cold-initial and hot-initial engine, respectively.
As shown in Fig. 11, the emission comparisons between
the identification data (NOx,out − exp and NH3,out − exp)
and optimized data (NOx,out − opt and NH3,out − opt) con-
trolled by the proposed data-driven predictive controller are
performed under the WHTC cycle with cold-initial engine.
As compared to those of identification data controlled by
the original ECU, the average NOx and NH3 emissions of
the proposed data-driven predictive controller are improved
by 81.13% and 66.31%, respectively. The worst computa-
tion time of the proposed data-driven predictive controller
is approximately 0.0034 s with an average 0.0023 s. More-
over, the average NOx and NH3 emissions of the traditional
predictive controller mentioned in section III are improved
by 75.10% and 66.40%, respectively. The worst computation
time of it is approximately 0.016 s with an average 0.0028 s.
As compared to those of the traditional controller, the average
NOx and NH3 emissions of the proposed data-driven pre-
dictive controller are improved by 6.03% and −0.09%, the
worst and average computation time are improved by 0.0126 s
and 0.0005 s.

FIGURE 11. Comparison results of the emission control between the
identification data controlled by the original ECU and optimized data
controlled by the proposed data-driven predictive controller under the
WHTC cycle with cold-initial engine: (1) NOx,out , (2) NH3,out ,
(3) computation time.

As shown in Fig. 12, the emission comparisons between the
identification data and optimized data controlled by the pro-
posed data-driven predictive controller are performed under
the WHTC cycle with hot-initial engine to verify its general-
ity and robustness. As compared to those of the identification
data, the average NOx and NH3 emissions of the proposed
data-driven predictive controller are improved by 2.71% and
31.46%, respectively. The worst computation time of the
proposed data-driven predictive controller is approximately
0.0031 s with an average 0.0023 s. Moreover, the average
NOx and NH3 emissions of the traditional predictive con-
troller mentioned in section III are improved by−0.93% and
25.79%, respectively. The worst computation time of it is
approximately 0.0098 s with an average 0.0028 s. As com-
pared to those of the traditional controller, the average NOx
and NH3 emissions of the proposed predictive controller
are improved by 3.64% and 5.67%, the worst and average
computation time are improved by 0.0067 s and 0.0005 s.
Under the non-identification condition of the WHTC cycle
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FIGURE 12. Comparison results of the emission control between the
identification data controlled by the original ECU and optimized data
controlled by the proposed data-driven predictive controller under the
WHTC cycle with hot-initial engine: (1) NOx,out , (2) NH3,out ,
(3) computation time.

with hot-initial engine, the proposed data-driven predictive
controller can also improve the emissions and computation
time, and its optimization effects have better robustness to
uncertainties of the transient cycle.

V. CONCLUSION
To simultaneously achieve high NOx conversion efficiency
and low NH3 slip, this paper presents a data-driven pre-
dictive controller with switched subspace matrices for an
SCR system. The segmented identification method for some
lower order subspace matrices excited by the segmented
data referring to the dynamic of the ammonia coverage
ratio is established. The corresponding predictive controller
with the switched subspace matrices according to working
conditions is designed in order to further improve its real-
time performance, generality and robustness. The simulation
results show that under the identification condition of the
WHTC cycle with cold-initial engine the proposed predic-
tive controller compared to those of the traditional method
can improve the average emission amount of NOx and NH3
by 6.03% and −0.09% and reduce the worst and average
computation time by 0.0126 s and 0.0005 s, that under the
non-identification condition of the WHTC cycle with hot-
initial engine the proposed predictive controller compared to
those of the traditional method can also improve the average
emission amount of NOx and NH3 by 3.64% and 5.67% and
reduce the worst and average computation time by 0.0067 s
and 0.0005 s. Our future work will focus on using real-time
calculation methods to solve the optimization problems, and
performing experimental verification for the control strategy
proposed in this paper.
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