
Received 8 September 2022, accepted 3 October 2022, date of publication 10 October 2022, date of current version 14 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3213059

Predefined Time Nonsingular Fast Terminal
Sliding Mode Control for Trajectory
Tracking of ROVs
GUOYAN YU, ZHUOCHENG LI , HAITAO LIU , (Member, IEEE), AND QIHENG ZHU
School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
Guangdong Provincial Marine Equipment and Manufacturing Engineering Technology Research Center, Zhanjiang 524088, China

Corresponding author: Zhuocheng Li (1204146125@qq.com)

This work was supported by the Guangdong Inter-regional Collaborative Fund 2019B1515120017, the Guangdong Special Project of
Ocean Economic Development GDNRC [2021] 42, Zhanjiang Key Laboratory of Modern Marine Fishery Equipment 2021A05023, and
Zhanjiang City Innovation and Entrepreneurship Team Cultivation ‘‘Pilot Program’’ Project (2020LHJH003).

ABSTRACT A predetermined time nonsingular fast terminal sliding mode control (PTNFTSMC) is
proposed to solve the problem of long convergence time and instability in the orbit control of remotely
operated vehicles (ROVs). First, a new concise method is proposed to design a predetermined-time controller
by setting control parameter conditions that self-adjust according to the system state. Then, the control law
of PTNFTSMC is formulated by combining the proposed theory of prescribed time control and the theory
of fast termination nonsingular sliding control mode. Finally, the stability and tunability of the proposed
controller in a specific period are demonstrated by rigorous arguments. Simulation experiments show that the
proposed PTNFTSMC achieves stability at any initial state of the system for a specified time with guaranteed
convergence accuracy, and the actual convergence time of the system is very close to the parameters of the
specified time compared with other existing control schemes. This confirms the effectiveness and superiority
of the proposed PTNFTSMC.

INDEX TERMS Remotely operated vehicle (ROV), nonsingular fast terminal sliding mode control, fixed
time stability, predefined time stability, predefined time control.

I. INTRODUCTION
The ocean, especially the deep sea, is rich in mineral and bio-
logical resources and is an expansion of human living space.
The rational exploration, development, and utilization of
marine resources will greatly promote a human society in the
direction of sustainable development [1]. A remotely oper-
ated vehicle (ROV) is an unmanned underwater robot that
transmits control signals and collects information through a
series of cables connected to a master console. Compared to
autonomous underwater vehicles (AUVs), ROVs are the best
choice for specific investigations that tend to be conducted
underwater because they can transmit information in real
time and can freely switch between automatic operation and
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manual control modes [2]. However, the uncertainty of the
ROV model and unpredictable external disturbance design of
a suitable controller to ensure stable motion and fast dynamic
response of the ROV is a great challenge [3]. On the one
hand, the mathematical model of the ROV is highly nonlin-
ear and strongly coupled, and its hydrodynamic parameters,
estimated by software or obtained from tank experiments,
differ from actual values. On the other hand, in the oceanic
operating environment, ROVs are subject to unpredictable
external disturbances such as waves and currents. With these
complex factors, the control performance of the traditional
linear control of the ROV is significantly reduced and cannot
provide high-precision motion control capability [4].

For these reasons, several different control technologies
have been applied to the control of ROVs in recent years,
such as PID control [5], [6], backstepping control [7], [8],

107864 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7016-4818
https://orcid.org/0000-0003-0995-4655
https://orcid.org/0000-0003-2297-7050


G. Yu et al.: Predefined Time Nonsingular Fast Terminal SMC for Trajectory Tracking of ROVs

sliding mode control (SMC) [9], [10], [11], [12], fuzzy logic
control (FLC) [13], [14], [15], group optimization algorithm
control [16], [17] and adaptive control [18], [19], [20].
However, all of the above control methods use asymptotic
Lyapunov stability analysis to solve the trajectory tracking
problem of ROVs, and theoretically, the trajectory tracking
error takes infinite time to converge to the equilibrium state.
However, in practice, a fast and stable response is one of
the most important and desirable features of ROV trajectory
tracking. Therefore, in practice, it is necessary to develop
control systems that can achieve ROV convergence in a finite
time.

With the increasing development of finite-time control
technology [21], [22], [23], several finite-time controllers
have been designed and applied to the field of underwa-
ter robot control. In [24], an AUV trajectory tracking con-
troller was designed based on finite-time control theory and
a consensus tracking control algorithm, combined with a
finite-time observer to estimate its state information. In [25],
an AUV trajectory tracking controller was designed based
on finite-time control theory and supertwisting sliding mode
control theory. In [26], finite-time control theory and sliding
mode control theory with fast integration constraints, as well
as a multi-AUV orbit tracking controller combined with
neural networks, were developed. All of the above control
methods are effective in converging the system error to zero
in finite time. However, the finite-time convergence of the
above schemes is highly dependent on the initial state of
the system, and the effective convergence time increases
when the initial state of the system is far from the equi-
librium point, so the above schemes may not provide fast
convergence when the initial state of the system increases
significantly.

The above fixed time effectively solves the problem that
the convergence time of the system depends on the ini-
tial state of the system, but the estimation of its conver-
gence time needs to be calculated using multiple control
parameters in the controller and cannot be adjusted directly
by the designer, and changing the control parameters will
have a significant impact on the convergence performance
of the controller, which is not conducive to the reasonable
allocation of the system convergence time. To solve this
problem, an advanced stability control concept, i.e., a pre-
defined time control strategy, has been recently proposed
[27], [28], [29], [30]. The convergence time estimate of this
control strategy is a predefined time parameter, which can
be adjusted to maintain the actual convergence time of the
system within the designer’s preset time and achieve the
tunability of system convergence. Recently, [31], [32] applied
predefined time control to complex second-order systems
such as rigid spacecraft and underwater robots and realized
that the system convergence time can be adjusted by the time
parameter. However, the aforementioned control strategies
[27], [28], [29], [30], [31], [32] suffer from a complex and
tedious design process and conservative convergence time
estimation, i.e., the actual convergence time of the system

FIGURE 1. Coordinate systems of the ROV.

is smaller than the predefined convergence time. Based on
this, a predefined nonsingular fast terminal sliding mode
control is proposed in this paper for the trajectory tracking
problem of ROVs. The main contributions of this paper are
as follows.

(1) A new predefined time controller design method is
proposed to ensure system convergence time tunability
while simplifying the design process of existing prede-
fined time controllers.

(2) By combining the new predefined time control scheme
with the nonsingular fast terminal sliding mode con-
trol scheme, the controller can adjust the dominant
convergence term by itself according to the system
state, which makes the actual convergence time of the
system very close to the predefined convergence time
and greatly improves the adjustment accuracy of the
system convergence time.

(3) The stability and convergence time tunability of
the proposed predefined-time nonlinear fast termi-
nal sliding mode controller is critically demonstrated,
and the feasibility and superiority of the control
scheme are verified using comparative simulation
experiments.

The rest of this paper is as follows. Section II introduces
the mathematical model of an ROV and the underlying
theories of finite-time convergence, fixed-time convergence,
and predefined-time convergence. Section III describes the
design process of predefined nonsingular fast terminal sliding
mode control and provides rigorous proof of controller stabil-
ity and convergence time tunability. Section IV presents the
proposed control scheme with three existing control schemes
for comparative simulation experiments. Section V concludes
the paper.

II. PRELIMINARIES AND PROBLEM DESCRIPTION
A. ESTABLISHMENT OF THE ROV MATHEMATICAL MODEL
The kinematic and dynamic model of an ROV must be
established under two reference systems: a body-fixed system
and an Earth-fixed system, as shown in Fig. 1 [33].
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TABLE 1. Units for the magnetic properties.

The ROV performs six degrees of freedom in the water,
three-axis movement, and three-axis rotation. For ease of
calculation, the underwater vehicle motion parameters are
defined in Table 1.

The kinematic equation is given by

η̇ = J (η) v (1)

where the pose η = [x y z φ θ ψ]T ∈ R6 contains the global
position η1 = [x y z]T and Euler angles η2 = [φ θ ψ]T

expressed in the Earth-fixed frame; the velocity vector v =
[u v w p q r]T ∈ R6 is composed of the linear velocity vector
v1 = [u v w]T and angular velocity vector v2 = [p q r]T ,
both according to the body-fixed frame; and J (η) is the
transformation matrix between the velocity of the ROV in
the body-fixed frame and the pose velocity in the Earth-fixed
frame.

The hydrodynamic model is given by [33]

M (v)v̇+ C (v) v+ D (v) v+ g (η) = τ + τd (2)

formed by the vectors v ∈ R6 and η ∈ R6, which are
defined above. M (v) = M0(v) + 1M (v) ∈ R6×6 is the
matrix of inertia, C(v) = C0(v) + 1C(v) ∈ R6×6 is the
matrix of Coriolis and centripetal terms, and D(v) = D0(v)+
1D(v) ∈ R6×6 is the damping matrix. The vector g(η) =
g0(η) + 1g(η) ∈ R6 is the combined force generated by
gravity and buoyancy, τ ∈ R6 is the force and moment
of the ROV under 6 DOFs, and τd ∈ R6 is the force and
moment of external disturbance. 1M (v), 1C(v), 1D(v) and
1g(η) are the system uncertainties caused by factors such as
the mathematical modeling error and parameter measurement
error of the ROV.

To facilitate the controller design, the coordinate con-
version of the ROV dynamic equation in (2) is as follows
(assuming that J (η) is nonsingular) [33]:{
η̇ = J (η) v ⇔ v = J−1 (η) η̇

η̈ = J (η) v̇+J̇ (η) v ⇔ v̇=J−1 (η)
[
η̈−J̇ (η) J−1 (η) η̇

]
(3)

After some calculations, the Earth-fixed expression is
given below:

MT (η) η̈ + CT (η) η̇ + DT (η) η̇ + g (η) = τ + τd (4)

with

MT (η) = MJ−1 +1MJ−1η̈ (5)

CT (η) = CJ−1 +1CJ−1 −MJ−1J̇ J−1 −1MJ−1J̇ J−1

(6)

DT (η) = DJ−1 +1DJ−1 (7)

Assumption 1: The system uncertainty and external inter-
ference of the ROV are time-varying but bounded, and its
corresponding first derivative is bounded.
Remark 1:The damping effect is the various forces ofwater

on the ROV, which continuously change with the movement
of the ROV in water, so the hydrodynamic damping model of
the ROV is difficult to accurately express. The marine envi-
ronment is often changing and unpredictable, but its energy
is limited. Therefore, the disturbance acting on the ship can
be considered a finite rate of change of the signal, which is
unknown and time-varying but bounded. Then, Assumption 1
is reasonable.

B. FUNDAMENTAL THEORY OF PREDEFINED TIME
STABILITY
This section introduces some definitions and lemmas about
finite time, fixed time, and predefined time stability. To facil-
itate the predefined time and accuracy stability analysis,
consider the following nonlinear system:

ẋ = f (x), x (0) = x0 (8)

where x is the system state vector, the function
f (x) : Rn

→ Rn is a continuous and smooth nonlinear
function, and x0 is the initial state of system (8).
Definition 1 [34], [35]: Assuming that system (8) is glob-

ally asymptotically stable and any solution of system (8)
reaches equilibrium in a finite time, system (8) is said to be
globally finite time stable, i.e.,

∀t > T (x0) : x (x0) = 0 (9)

where T (x)is the actual convergence time function of
system (8).
Definition 2 [36], [37]: Assuming that system (8) can

converge to a stable state in a finite time and that the stable
time function T (x0) is globally bounded and independent of
the initial state of system (8), system (8) is called a globally
fixed time stable system, i.e.,

∃Tmax > 0 : ∀x0 ∈ Rn, T (x0) < Tmax (10)

where Tmax is the estimated value of the convergence time of
system (8).
Definition 3 [38], [39]: Suppose that system (8) is stable

for a fixed time, and there is an adjustable parameter Tc so
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that the actual convergence time of the system T : Rn
→ Rn

satisfies:

T (x0) ≤ Tc, ∀x0 ∈ Rn (11)

Then, system (8) is called a globally predefined time-stable
system.
Lemma 1 [40]: If xi ∈ R+, 0 < p < 1, q > 1is satisfied,

then
n∑
i=1

xpi ≥

(
n∑
i=1

xi

)p
,

n∑
i=1

xqi ≥ n
1−q

(
n∑
i=1

xi

)q
(12)

Lemma 2 [30], [37], [41]: Suppose system (8) is stable
for a fixed time. Define a continuous positive definite radial
unbounded function V (x) : Rn

→ R+ that satisfies
V (x) = 0 when x = 0, and there are k1, k2 > 0, 0 < p < 1,
q > 1 such that any x satisfies the following inequality:

V̇ (x) ≤ −k1V p (x)− k2V q (x) (13)

Then, the convergence time estimation of the system can
be calculated by the following formula:

Tmax =
1

k1 (1− p)
+

1
k2 (q− 1)

(14)

III. MAIN RESULTS
In this section, first, a design method of predefined time
control is proposed that can estimate the system convergence
time closer to the predefined time parameters according to the
dominant term of system state adaptive transformation. Then,
a predefined time nonsingular fast terminal sliding mode
control law is designed by combining the predefined time
control method with NFTSMC. Finally, the stability and the
predefined time convergence of the controller are analyzed.

A. DESIGN OF THE PREDEFINED TIME NONSINGULAR
FAST TERMINAL SLIDING MODE CONTROLLER
The controller design process is described below.
Theorem 1: Define a continuous positive definite radial

unbounded function V (x) : Rn
→ R+ that satisfies the

following:
(1) V (x) = 0 ⇒ x ∈ M , where M ∈ Rn is a nonempty

set.
(2) Tc is an adjustable parameter predefined by the user.
(3) For ∀V (x) > 0, there are k1, k2 > 0, 0 < p2 < 1, and

q2 > 1 such that

V̇ ≤ −
Cv
Tc

(
k1V p2 + k2V q2

)
(15)

where
Cv =

1

k
1
q2
2

1
1− q2

k
1−q2
q2

2 0 < V (x) < 1

Cv =
1

k
1
p2
1

2(p2−1)

1− p2
k

1−p2
p2

1 V (x) > 1
(16)

Then, system (8) is stable within the predetermined time,
and the convergence time is Tc.

Remark 2: Fixed-time stability makes it difficult to find
the explicit relationship between system parameters and the
system stability time, which leads to inaccurate estimation of
the convergence time, difficult adjustment, and unpredictabil-
ity. The predetermined time stability solves these problems
well and facilitates a direct relationship between system
gain and convergence time estimation. The scheduled time
stability is a special kind of fixed time stability. Therefore,
the convergence time estimation of the predetermined time
stability is independent of the initial value and only related to
the predetermined parametersCv.
Remark 3: Equation (15) shows that the control law adapts

to the system state.When the system state is far from the equi-
librium point, fast convergence is achieved by the nonlinear
term V̇ (x) ≤ −k2V q2 (x). When the system state approaches
the equilibrium point, fast convergence is achieved by the
nonlinear term V̇ (x) ≤ −k1V p2 (x), and Cv also switches
with the system state to ensure that the system can converge
within a predetermined time Tc.
The trajectory tracking errors are defined as

e = η − ηd (17)

where ηd ∈ R6 is the desired trajectory.
At this point, the first- and second-time derivatives of (17)

can be computed, which yields:

ė = η̇ − η̇d (18)

ë = η̈ − η̈d = M−1T (τ − CT (η) η̇ − DT (η) η̇ − g)− η̈d
(19)

To further improve the convergence performance of the
system state and realize fast convergence of the system
state using different dominant terms when it is far from the
equilibrium point and close to the equilibrium point while
completely solving the singularity problem of the traditional
terminal sliding mode, the following improved NFTSMC
sliding surface is proposed:

s = e+
1
α
|e|p1 sgn (e)+

1
β
|ė|q1 sgn (ė) (20)

where s = [s1 s2 · · · s6]T is the sliding mode vector, α, β ∈
R+, p1 > 1 and 0 < q1 < 1. The use of |e| and |ė| in the
slide surface in (20) instead of e and ė in the conventional
terminal slide completely solves the problem of singularity
in the terminal slide.

The derivative of the sliding surface in (20) can be calcu-
lated as follows:

ṡ = ė+
p1
α
|e|p1−1 ė+

q1
β
|ė|q1−1 ë (21)

Combining Lemma 3with the above sliding surface in (20),
the proposed PTNFTSMC can be expressed as follows:

τ =MT

{
β

q1
|ė|1−q1

[
−
Cv
Tc

(
k1
2p2

s2p2−1+
k2
2q2

s2q2−1
)
sgn (s)

− ė−
p1
α
|e|p1−1 ė

]
+η̈d

}
+CT (η) η̇+DT (η) η̇+g

(22)
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The control block diagram of PTNFTSMC proposed
by (17)-(22) is shown in Fig. 2. To avoid singularity prob-
lems in the control output, the parameter selection range
of (15) is narrowed to 0.5 ≤ p2 < 1, and {q2| q2 =
2n+ 1, n ∈ N+}.
Remark 4: In practical applications, the chattering phe-

nomenon of PTNFTSMC can be improved by some common
methods to suppress chattering, such as the replacement
saturation function method.

B. PROOF OF CONTROLLER STABILITY AND PREDEFINED
TIME CONVERGENCE
The Lyapunov function V is constructed as follows:

V =
1
2
s2 (23)

The Lyapunov function V satisfies V ≥ 0, s ∈ Rn.
Combinedwith (21), the first derivative of the function in (23)
can be calculated as follows:

V̇ = sṡ

= s
(
ė+

p1
α
|e|p1−1 ė+

q1
β
|ė|q1−1 ë

)
= s

{
ė+

p1
α
|e|p1−1 ė+

q1
β
|ė|q1−1[

M−1T (τ − CT (η) η̇ − DT (η) η̇ − g)− η̈d
]}

(24)

By substituting the designed predefined time nonsingular
fast terminal sliding mode control law in (22) into (24), the
first derivative of the Lyapunov function V̇ can be obtained
as follows:

V̇ ≤ −
Cv
Tc

(
k1V p2 + k2V q2

)
(25)

The first derivative of the Lyapunov function V̇ satisfies
V̇ ≤ 0. According to the Lyapunov stability principle, the
function in (23) is positive definite, and the derivative in (25)
is negative definite. Therefore, the proposed PTNFTSMC is
asymptotically stable. The controller stability is proved.

From (25), we have

−
Tc
Cv

1
(k1V p2 + k2V q2)

dV ≥ dt (26)

Integrating (26) from t = T (x0) yields

T (x0) =
∫ T (x0)

0
dt ≤−

∫ 0

V (x0)

Tc
Cv

1
(k1V p2 + k2V q2)

dV

(27)

As shown in (16), the control parameters in the predefined
time controller presented in this paper will be dynamically
adjusted as the system state changes to adjust the convergence
dominant term according to the system state. To facilitate
the convergence analysis of the controller in a predetermined
time, the system state is divided into two parts: far away from

the equilibrium point and near the equilibrium point, so (27)
can be rewritten as follows:

T (x0) ≤ −
∫ 0

V (x0)

Tc
Cv

1
(k1V p2 + k2V q2)

dV

=

∫ V (x0)

V (x1)

Tc1
Cv1

1
(k1V p2 + k2V q2)

dV

+

∫ V (x1)

0

Tc2
Cv2

1
(k1V p2 + k2V q2)

dV (28)

where Tc1 is the estimation of the convergence time required
for the system state to go from far away to near the equi-
librium point, Tc2 is the estimation of the convergence time
required for the system state to go from near the equilibrium
point to system stability, and x1 is a system state close to the
equilibrium point, which satisfies 0 < V (x1) < 1. The time
convergence analysis of the two convergence processes is as
follows:

1) SYSTEM STATE FAR FROM THE EQUILIBRIUM POINT
From (28), we have

T1 (x0) ≤
∫ V (x0)

V (x1)

Tc1
Cv1

1
(k1V p2 + k2V q2)

dV

≤

∫ V (x0)

V (x1)

Tc1
Cv1

1
k1V p2

dV (29)

where T1 (x0) is the actual convergence time required for the
system state to go from far away to near the equilibrium point.
Since P2 > 1, according to Lemma 1, we have∫ V (x0)

V (x1)

Tc1
Cv1

1
k1V p2

dV

≤
Tc1
Cv1

1

k
1
p2
1

2(p2−1)

1− p2

(
k

1
p2
1 V

)1−p2

∣∣∣∣∣∣∣
V (x0)

V (x1)

=
Tc1
Cv1

1

k
1
p2
1

2(p2−1)

1− p2
k

1−p2
p2

1

(
V 1−p2 (x0)− V 1−p2 (x1)

)
(30)

If V (x0)→∞, since 0 < V (x1) < 1, we have

T1 (x0) ≤
∫ V (x0)

V (x1)

Tc1
Cv1

1
k1V p2

dV

≤
Tc1
Cv1

1

k
1
p2
1

2(p2−1)

1− p2
k

1−p2
p2

1 = Tc1 (31)

2) SYSTEM STATE APPROACHING THE EQUILIBRIUM POINT
From (28), we have

T2 (x0) ≤
∫ V (x1)

0

Tc2
Cv2

1
(k1V p2 + k2V q2)

dV

≤

∫ V (x1)

0

Tc2
Cv2

1
k2V q2

dV (32)
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FIGURE 2. Block diagram of PTNFTSMC.

where T2 (x0) is the actual convergence time required for the
system state to go from approaching the equilibrium point to
system stability. Since 0 < q2 < 1, according to Lemma 1,
we have∫ V (x1)

0

Tc2
Cv2

1
k2V q2

dV

≤
Tc2
Cv2

1

k
1
q2
2

1
1− q2

(
k

1
q2
2 V

)1−q2

∣∣∣∣∣∣∣
V (x1)

0

=
Tc2
Cv2

1

k
1
q2
2

1
1− q2

k
1−q2
q2

2 V 1−q2 (x1) (33)

Since 0 < V (x1) < 1and 0 < q2 < 1, we have

T2 (x0) ≤
∫ V (x1)

0

Tc2
Cv2

1
k2V q2

dV

≤
Tc2
Cv2

1

k
1
q2
2

1
1− q2

k
1−q2
q2

2 = Tc2 (34)

From the analysis of (26)-(34), it can be seen that

T (x0) = T1 (x0)+ T2 (x0) ≤ Tc1 + Tc2 = Tc (35)

Therefore, the proposed PTNFTSMC is predefined as
time-stable. The proof is complete.
Remark 5: When the initial state of the system is close

to the system equilibrium point, the controller does not
change the system state from far away from the equilibrium
point to near the equilibrium point through the control law,
so T (x0) ≤ Tc = Tc2. As the proof is the same, it will not be
repeated here.

IV. SIMULATION RESULTS
In this section, to verify the convergence, adjustability, and
high accuracy of the predefined time of the proposed PTN-
FTSMC control scheme, mathematical simulation compara-
tive experiments are carried out. The experiment is mainly
divided into three parts: (1) Under the same predefined time
parameters, the system conducts comparative experiments on
systems under different initial states. (2) The system uses
different predefined time parameters for comparative exper-
iments under the same initial state. (3) The system is tested
under different controllers. The first two mainly verify the
accuracy of the predefined time convergence of the proposed
PTNFTSMC. The third part compares different controllers
to verify the advantages of the proposed PTNFTSMC in
predefined time convergence and error control. The structural
parameters of the ROV used in the experiment are shown in

TABLE 2. ROV structural parameters.

TABLE 3. ROV additional mass and hydrodynamic coefficient.

Table 2, and the added mass and hydrodynamic coefficient
are shown in Table 3.

To ensure the unity of simulation experiments, all experi-
ments use the same controller parameters and the same ROV
target trajectory. Except for the predefined time parameter
Tc, the other parameters of PTNFTSMC in all simulation
experiments are set as follows: α = 76, β = 11.5, p1 = 3,
q1 = 0.5, k1 = 0.4, k2 = 0.1, p2 = 1.5 and q2 = 0.5.
The desired trajectory of the ROV is designed to track the
following spiral:

xd = 5 cos (0.05π t)+ 5
yd = 5 sin (0.05π t)+ 5
zd = −0.25t
φd = t
θd = t
ψd = −0.25

(36)

A. SIMULATION ANALYSIS OF THE PREDEFINED TIME
CONVERGENCE OF PTNFTSMC
In this subsection, to verify the convergence of the proposed
PTNFTSMC within the predefined time, several groups of
different system initial states are set under the condition of
a fixed predefined time parameter Tc = 10s, as shown in
Table 4.
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FIGURE 3. Error convergence trajectories of the ROV under different initial states of the system.

TABLE 4. ROV system initial states.

In the initial states of different systems, the trajectory
tracking errors of the ROV for various degrees of freedom
are shown in Fig. 3.

Figure 3 shows that when the predefined parameter of
PTNFTSMC is set to Tc = 10s, under different initial states
of the system, the errors of each degree of freedom of the
ROV can converge in approximately 10 s, and the actual con-
vergence time is very close to the preset time parameter Tc.
At the same time, after the controller converges, the system
error is controlled within a very small fraction. In summary,
the stability and predefined time convergence of the proposed
PTNFTSMC are verified.

B. SIMULATION ANALYSIS OF THE PREDEFINED TIME
ADJUSTABILITY OF PTNFTSMC
In this subsection, to verify the predefined time adjustability
of the proposed PTNFTSMC, several groups of different
predefined time parameters are set under the same initial state
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FIGURE 4. Error convergence trajectories of the ROV for different predefined time parameters.

FIGURE 5. The three-dimensional trajectory of the ROV for different
predefined time parameters.

of the system as follows: Tc = 1s, Tc = 5s, Tc = 10s, Tc =
15s, Tc = 20s and Tc = 30s. The initial state of the system

is set to x0 = [20, 10,−10,−10, 10, 10]. Under different
predefined time parameters, the ROV trajectory tracking error
of each degree of freedom is shown in Fig. 4, and the three-
dimensional trajectory of the ROV is shown in Fig. 5.

Combining Fig. 4 and Fig. 5, it can be seen that the
actual convergence time of the ROV changes dynamically
with the predefined time parameter Tc, and the actual con-
vergence time of the system almost sums up with the pre-
defined time. In summary, the actual convergence time of
the proposed PTNFTSMC depends on the predefined time
parameter Tc, which verifies the predefined time adjustability
of PTNFTSMC.

C. COMPARATIVE SIMULATION ANALYSIS OF PTNFTSMC
AND OTHER EXISTING CONTROL SCHEMES
In this subsection, the PTNFTSMC proposed in this paper,
the nonsingular terminal sliding mode control (NFTSMC)
in [42], the fixed time sliding mode control (FTSMC) in
[43] and the predefined time sliding mode control (PTSMC)
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FIGURE 6. The actual and target trajectories of four different controllers.

in [30] are compared and simulated to prove the superiority
of the proposed method.

The control law of NFTSMC is designed as follows:

τ = MT

[
β

q
|ė|1−q

(
−k1s−k2sign (s)−ė−

p
α
|e|p−1 ė

)
+η̈d

]
+CT (η) η̇ + DT (η) η̇ + g

where s = e + 1
α
|e|p sign (e) + 1

β
|ė|q sign (ė) , p > 1,

0 < q < 1, and k1, k2, α and β are positive constants.
The control law of FTSMC is designed as follows:

τ = MT

[
−

(
1
2p
s2p−1 +

1
2q
s2q−1

)
sign (s)+ η̈d − cė

]
+CT (η) η̇ + DT (η) η̇ + g (37)

where s = ce + ė, p > 1, 0 < q < 1, and c is a positive
constant. The estimation of the controller convergence time
can be calculated as follows:

T =
2

(p− 1)
+

2
(1− q)

(38)

The control law of PTSMC is designed as follows:

τ = MT

[
−
Cv
Tc

(
α

2p
s2p−1 +

β

2q
s2q−1

)
sign (s)+ η̈d − cė

]
+CT (η) η̇ + DT (η) η̇ + g (39)

where s = ce + ė, p > 1, 0 < q < 1, α, β and c are
positive constants, Tcis a predefined time parameter and the
expression of CV is the same as (16).

To compare the fairness and rationality of the simulation
experiment, the parameters of the three control algorithms
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FIGURE 7. The control errors of the four controllers in each degree of freedom.

TABLE 5. Control parameters of the three different controls.

used for comparison refer to the parameters used in the orig-
inal text and are adjusted according to the actual simulation
results of the ROV in this paper to ensure that each control
scheme can achieve a better control effect. The parameters of
each control instrument are shown in Table 5.

The comparative simulation results of the four control
schemes are shown in Figs. 6-8. Fig. 6 shows the actual

trajectory and target trajectory of the ROV under the action
of four different controllers; Fig. 7 shows the control errors
of the four different controllers in each degree of freedom;
and Fig. 8 shows the control forces and moments of the four
different controllers in each degree of freedom.

By analyzing the simulation results in Figs. 6-8, the
following conclusions can be drawn.

1) COMPARATIVE ANALYSIS WITH NFTSMC
As seen from Fig. 7, the tracking error convergence
accuracy of NFTSMC is the worst among all compared
control algorithms. There are obvious error fluctuations
after convergence, and at approximately 55 s, NFTSMC
exhibits the largest error fluctuations among the four con-
trol schemes. Compared with NFTSMC, the proposed
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FIGURE 8. Control forces and moments of the four different controllers for each degree of freedom.

PTNFTSMC improves the system tracking error accuracy by
approximately two orders of magnitude, and PTNFTSMC
significantly outperforms the other control schemes in terms
of error fluctuation suppression. In addition, it can be seen
from Fig. 8 that the control output of NFTSMC shows a sig-
nificant chattering phenomenon. Compared with NFTSMC,
although the control output of PTNFTSMC still has a chat-
tering phenomenon due to the absence of the chattering
suppression term, PTNFTSMC can reasonably allocate the
energy consumption by adjusting the convergence time and
effectively reducing the amplitude and frequency of output
chattering. Most importantly, NFTSMC exhibits finite time
convergence, but its convergence time depends on the initial

state of the system, which is detrimental to the ROV to
complete the position adjustment within the specified time.

2) COMPARATIVE ANALYSIS WITH FTSMC AND PTSMC
FTSMC achieves the convergence of the system in a fixed
time range under different initial states, but the convergence
time estimate of FTSMC is too conservative. The conver-
gence time of FTSMC is estimated to be 8 s by (38), but
it can be seen from Fig. 7 that FTSMC controls the error
within a smaller range of approximately 3 s. In general,
we always hope that the actual convergence time of the
system tracking error is closer to the predefined convergence
time set, which will facilitate the reasonable setting of the
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system convergence time because a faster convergence time
often means more energy consumption. As seen in Fig. 7, the
faster convergence of FTSMC leads to a great initial control
output within approximately 0.3 s at the beginning of system
operation. Due to the introduction of the predefined time
design method, PTSMC exhibits a significant improvement
in the tunability and estimation accuracy of the convergence
time compared with FTSMC, but because PTSMC adopts
the sliding mode control strategy, the sliding mode control
has the problem of a slow convergence speed, which leads
to the actual convergence time of PTSMC being larger than
the predefined convergence time. As seen from Fig. 7, the
actual convergence time of PTSMC is approximately 14 s for
a predefined time Tc = 10s. Meanwhile, a similar problem
exists for FTSMC,which needs approximately 40 s to achieve
a more desirable convergence effect.

The proposed PTNFTSMC effectively combines the
advantages of predefined time control and NFTSMC. Com-
bining Fig. 4 and Fig. 7, it can be seen that PTNFTSMC uses
different dominant terms when the system state is far from the
equilibrium point and close to the equilibrium point, which
makes PTNFTSMC switch to another dominant term when
the convergence rate of one dominant term tends to level
off, ensuring fast and stable convergence of PTNFTSMC in
different system states. As seen from Fig. 7, compared with
those of FTSMC and PTSMC, the actual convergence time
of PTNFTSMC in each degree of freedom is approximately
10 s, which is very close to the predetermined convergence
time, and the error of the converged system is stable and
the error fluctuation is the smallest among the four control
schemes.

In summary, the proposed PTNFTSMC scheme has better
convergence accuracy and smaller control output amplitude
and chattering than NFTSMC and has predefined time con-
vergence characteristics, and its actual convergence time is
closer to the predefined convergence time than those of
FTSMC and PTSMC, which is more conducive to the rea-
sonable setting of the system convergence time.

V. CONCLUSION
In this paper, a new predefined time-nonsingular fast terminal
slidingmode control method is proposed for the tracking con-
trol of a 6-degrees-of-freedomROV. First, a simplified design
method for a predefined-time controller is proposed. Then,
predefined-time nonsingular fast terminal sliding-mode con-
trol is developed by combining the proposed design method
with a nonsingular fast terminal sliding-mode surface. It is
rigorously demonstrated that the actual convergence time of
the tracking error in the proposed control method is inde-
pendent of the initial state of the system and can be set with
a prescribed time parameter. Finally, simulation comparison
experiments show that the proposed control scheme has more
accurate convergence time estimation, higher convergence
accuracy, and more stable control results compared with
existing control schemes, which demonstrates the superiority
of the proposed scheme. The next target is to solve the

chattering problem of the proposed PTNFTSMC and apply
it to a real ROV.
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