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ABSTRACT Performance assessment of control loops is of great importance for industrial production. This
paper proposes a novel performance assessment and controller tuning method for non-Gaussian MIMO
feedback control systems. First, an algorithm based on minimum entropy and mutual information projection
to latent structure (ME-PLS) was proposed to replace the canonical correlation analysis algorithm (CCA).
The ME-PLS algorithm decomposes the system data into independent components related to inputs and
outputs, and this algorithm applies to both Gaussian and non-Gaussian systems. Each pair of principal
components represents a virtual non-Gaussian control loop. Next, the performance of each virtual loop is
calculated separately with the non-Gaussian minimum entropy method. Finally, to identify the parameters of
each virtual loop, the author gives a least absolute deviation iterative algorithm based on the CARMAmodel
(CARMA-LADI). When the control does not work well, based on the ME-PLS algorithm’s relationship and
the CARMA-LADI algorithm’s identification results can give the controller tuning direction.

INDEX TERMS Control loop performance assessment, independent components, MIMO system, maximum
mutual information, minimum entropy.

I. INTRODUCTION
Recently, there has been much research on control perfor-
mance assessment (CPA). The earliest idea of performance
assessment based on minimum variance was proposed by
Harris [1]. This method uses minimum variance (MV) as a
benchmark to assess the performance of single-input single-
output (SISO) feedback control systems. The control method
that achieves the best output for the system is calledminimum
variance control (MVC). This approach was later applied
to the assessment of multivariate control systems [2]. The
minimum variance benchmark of a multivariate feedback
control system can be calculated based on the interactor
matrix [3]. In order to extend the MV index of the MIMO
system, the researchers conducted further studies [4], [5],
[6], [7]. Similarly many other evaluation benchmarks exist,
such as: generalized minimum variance (GMV) bench-
mark [8], [9], generalized Hurst exponent based benchmark
[10], [11], [12], [13], linear quadratic Gaussian (LQG) bench-
mark [14], [15], etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

In these performance evaluation benchmarks, MVC has
been widely used. However, the direct use of variance as an
indicator when the disturbances are non-Gaussian distributed
is no longer applicable. Performance assessment methods
based on minimum entropy (ME) have received much atten-
tion in recent years to address this problem. Meng [16]
proposed using the minimum information entropy as a bench-
mark for performance assessment of non-Gaussian systems.
After that, many research efforts have expanded this concept.
Zhang [17] derived a feedback control algorithm based on
minimum entropy, called MEC (minimum entropy control).
The idea of MEC is also applied to a non-Gaussian cascade
control system [18]. Zhou [19] proposed a new uncertainty
measure, rational entropy, by analyzing the Shannon entropy
in continuous random variables (CRV) and gave several
benchmarks for controller performance evaluation of control
systems with a random distribution of outputs. Researchers
integrated dynamic data reconciliation (DDR) into minimum
rational entropy control (MREC) to improve management
performance [20]. Zhang [21] proposed a new benchmark
combining entropy and output mean to address the incon-
sistency of the minimum variance benchmark in evaluating
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non-Gaussian perturbed systems. However, MEC methods
applicable to multivariate systems still require continued
research.

The commonly used methods for MIMO system perfor-
mance assessment require much prior knowledge, which is
more difficult to achieve in practice. Then, MIMO systems
affected by non-Gaussian noises need a new benchmark for
assessment. These problems motivate the authors to analyze
MIMO systems from a data-driven perspective to obtain a
suitable performance assessment method.

Therefore, the idea of decoupling control is introduced
in this paper. Decoupling control requires decoupling the
relationship between input and output. If decoupling of the
MIMO system can be achieved, the decoupling relationship
can be obtained, but it is also very convenient for performance
assessment. Further, there is a specific target for controller
tuning in case of poor performance. Thus, getting the input-
output decoupling relationship is an essential part of MIMO
system performance evaluation in the MIMO system. There
are few results on stochastic decoupling control, and to the
best of the authors’ knowledge, only Prof. Wang Hong’s
team has done some work in this area. For example, the arti-
cles [22], [23] use the concept of coupling decay to approxi-
mate stochastic decoupling. It essentially allows the absolute
values of the non-diagonal elements of the covariance matrix
to decay to zero as much as possible. We extend this concept
further to establish decoupling between inputs and outputs
from a data-driven perspective. The essence of decoupling is
to obtain a correspondence between the control input and the
output quality. And many modeling methods in data-driven
methods, such as least squares (LS) and canonical correla-
tion analysis (CCA), can establish a similar correspondence.
Hence, the problem translates into establishing a one-to-one
correspondence between input and output for non-Gaussian
disturbances. The authors first draw on the ideas of the CCA
algorithm to find a suitable method to describe the latent
structure of multiple-input multiple-output systems and then
propose a performance evaluation method applicable to non-
Gaussian systems based on the latent structure. Finally, the
MIMO system can be adjusted based on the assessment of
the latent structure. The whole process is shown in Fig. 1.

FIGURE 1. Non-Gaussian MIMO system assessment and tuning flow
chart.

The rest of this article is outlined as follows: The basic
theories are given in Section II. In Section III, the based
minimum entropy andmutual information projection to latent
structure (ME-PLS) algorithm are proposed. In Section IV,
A performance assessment method based on the potential

structure of non-Gaussian MIMO systems and a least abso-
lute deviation iterative algorithm based on the CARMA
model (CARMA-LADI) are given. In Section V, perform
simulation. In Section VI, the conclusion.

II. BASIC THEORY
The canonical correlation analysis algorithm (CCA) is a
common method for principal component extraction among
multidimensional variables. This algorithm [24] extracts the
principal components t1 and m1 from the system data using
correlations, where t1 and m1 are linear combinations of the
input and output data, respectively.

t1 = X0w1,m1 = Y0c1 (1)

where X0 and Y0 are the results of normalizing the original
datasets X ,Y , andw1, c1 are the weight vectors. The criterion
function of CCA is:

argmax r (t1,m1) =
E
[
tT1 m1

]√
E
[
tT1 t1

]
E
[
mT1m1

]
=

E
[
(X0w1)

T Y0c1
]√

E
[
(X0w1)

T X0w1
]
E
[
(Y0c1)T Y0c1

]
(2)

where r denotes the Pearson correlation coefficient.
From (2), it is clear that the CCA extracts the principal

components by maximizing the Pearson correlation coeffi-
cient. This objective relies on the calculation of second-order
moments to achieve. However, second-order moments are
just one of themany properties of random variables.When the
variable obeys a non-Gaussian distribution, the second-order
moments do not fully reflect its distribution. In this case, non-
Gaussian data need to be described by other methods such as
higher order moments, distribution functions, etc. Compared
with other indicators, entropy and mutual information can
better explain the information of random variables from the
distribution perspective. Therefore, these two statistics are
used to extract the principal components of the non-Gaussian
data.

The Shannon entropy of a continuous random variable is
defined as [25]:

H = −
∫ b

a
γ (x) ln (γ (x))dx (3)

The Shannon entropy of a discrete random variable is
defined as:

H = −
n∑
i=1

pi ln pi (4)

The information measure of the jointly distributed random
variables XY (two-dimensional sources) is called the joint
entropy and is defined as:

H (XY ) = −
K∑
k=1

J∑
j=1

p(xk , yj) ln(xk , yj) (5)
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Extending to the joint entropy of N random variables
X1X2 . . .XN there are:

H (X1 . . .XN ) = −
K∑

i1,...,iN

p
(
xi1 , . . . , xiN

)
ln p

(
xi1 , . . . , xiN

)
(6)

The mutual information I (X;Y ) of the random
variables X and Y are calculated by:

I (X;Y ) = H (Y )+ H (X )− H (XY )

=

K∑
k=1

J∑
j=1

p(xk , yj) ln
[
p(xk , yj)
p(xk )p(yj)

]
(7)

where p(xk , yj) is the joint distribution between xk and yj. The
smaller I (X;Y ) is, the weaker the correlation between the
random variables X and Y, and vice versa, the stronger
the correlation. X and Y are independent of each other when
I (X;Y ) = 0. Mutual information extended to multidimen-
sional inputs and outputs with [26]:

I (X1, . . . ,Xn;Y1, . . . ,Ym)

=

∑
x1∈A1

. . .
∑
ym∈Bm

p(x1, . . . , xn, y1, . . . , ym)

× ln
p(x1, . . . , xn, y1, . . . , ym)
p(x1, . . . , xn)p(y1, . . . , ym)

(8)

III. ME-PLS ALGORITHM
The mutual information can describe the correlation between
the variables, the same as the Pearson correlation coefficient.
It is not affected by the non-Gaussian characteristics of the
variables [27]. Therefore, different from the CCA algorithm
the ME-PLS algorithm uses mutual information to extract
the principal components with the following optimization
objectives:

J = max I (t1;m1) = max I (X0w1;Y0c1)

s.t. wT1w1 = 1, cT1 c1 = 1 (9)

Equation (9) yields the first pair of principal components
t1,m1 by maximizing the mutual information, and the next
pair of principal components is to be extracted from the
residual matrix. The residual matrix is calculated as shown
below:

X1 = X0 − t1pT1 (10)

Y1 = Y0 − m1qT1 (11)

whereX1,Y1 are residual matrices and p1, q1 are load vectors.
The ME-PLS algorithm aims to obtain the latent structure of
the non-Gaussian MIMO system, which requires:

a) maximum correlation between ti and mi;
b) the principal component pairs should be independent of

each other.
Equation (9) achieves objective a, which is more general

than the Pearson correlation coefficient. Objective b can be
achieved indirectly bymaking the residualmatrix and the data

FIGURE 2. Relationship between data sets.

represented by the principal components independent of each
other, as follows:

P(t1pT1 ,X1) = P(t1pT1 )P(X1) (12)

ForGaussian data, independent and uncorrelated are equiv-
alent so that orthogonalization can ensure independence
between datasets. However, this is not applicable for non-
Gaussian data, so independence between data is still achieved
using mutual information, as follows:

argmin I
(
t1pT1 ;X1

)
(13)

But the calculation of multidimensional mutual information
is expensive and time-consuming, so the authors propose
another method.

The relationship between X0, t1pT1 ,X1 is shown in the
Fig. 2, where X0 represents the original data set kept con-
stant, X1 and t1pT1 represent the residual data and princi-
pal component data that change with the loading vector p1,
respectively.
Lemma 1: When Y = X + Z, where X and Z are both

independent random variables [25]:

I (X;Y ) = H (Y )− H (Z ) (14)

Lemma 2: Conditional entropy is less than unconditional
entropy:

H (X ) ≥ H (X |Y ) (15)

Considering Fig. 2 and Lemma 2 together, it is obtained that:

H (X1) ≥ H
(
X1|t1pT1

)
(16)

The equal sign holds when H (X1) is extremely small. When
the equal sign holds I (t1pT1 ;X1) = 0, X1 and t1pT1 are
independent of each other. At this point, it can be obtained
that:

I
(
X0; t1pT1

)
= H (X0)− H (X1) (17)

The entropy value H (X0) of the original data is fixed, so that
I (X0; t1pT1 ) takes a great value. This indicates that minimizing
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the residual entropy is equivalent to seeking a suitable p
such that t1pT1 contains as much information about X0 as
possible.
Remark: the least squares method calculates the load vec-

tor p1, p1 = XT0 t1/t
T
1 t1, which essentially minimizes the

variance of X1. Under the Gaussian distribution, entropy and
variance have a one-to-one mapping relationship. There is
no difference between the load vector found by the mini-
mum variance solution and the minimum entropy solution.
In this sense, the minimum entropy is more general than the
minimum variance and can be used to find the independent
components.

In summary, the objective function for calculating the
residual matrix and the load vector is:

argmin H (X1) = H
(
X0 − t1pT1

)
(18)

argmin H (Y1) = H
(
Y0 − m1qT1

)
s.t. pT1 p1 = 1, qT1 q1 = 1 (19)

t1 has the strongest interpretation of m1. Thus, the residual
output matrix can be computed with the following constraint:

argmin H
(
Y ∗1
)
= H

(
Y0 − t1q∗T1

)
(20)

s.t. q∗T1 q∗1 = 1

As the information of the original data is fixed, the entropy
value of the residual matrix will keep getting smaller with
the continuous extraction of the principal components. The
ME-PLS algorithm should stop when the entropy of the
residual matrix is less than the threshold ε1. There are no
explicit formulas for calculating mutual information and
entropy, so all of the above objectives can be calculated using
optimization algorithms, such as particle swarm optimization
algorithm, genetic algorithm, etc.

To reduce the computational effort, the authors propose a
method for estimating the distribution of multidimensional
random variables using histograms, as follows:

Take the three-dimensional random variable X = [X1,X2,
X3]S×3 as an example, where X1,X2,X3 are three random
variables, each row of X is the value obtained by sampling
X1,X2,X3 at the same moment, and S represents the total
number of samples.

a) Choose a suitable set of intervals N = [n1, n2, n3] that
contains all the data of X . Then make a cube O in space with
n1, n2, n3 as side lengths and X1,X2,X3 as axis.

b) Determine a fixed interval w that cuts the cube O into v
sub-cubes.

c) Each row of X is put into the cube O as a point, and
counting the number of points in different sub-cubes as the
frequencies of other groups, denoted as (l1, l2, . . . , lv).

d) The probability is obtained by dividing li by S and is
denoted as P.

P =
(
p̂1, p̂2, . . . , p̂v

)
=

(
l1
S
,
l2
S
, . . . ,

lv
S
,

)
(21)

P is an estimate of the multidimensional data distribution.
The estimation steps are the same when the number of data
dimensions is not three.

The algorithm steps are shown in the table.

AlgorithmME-PLS
Input: control input X , output Y .
Output: Principal component pairs ti,mi.
1) Normalize the data X and Y , giving X0 = [x1, x2, . . . ,

xf ]S×f and Y0 = [y1, y2, . . . , yf ]S×f .
2) Optimize (9) to obtain the first pair of principal compo-

nents t1,m1, and weight vectors w1, c1.
3) Establish the regression of X0,Y0 on t1 according to

(10)) and (11).

X1 = X0 − t1pT1
Y ∗1 = Y0 − t1q∗T1

4) Optimize (18)) and (20)) to obtain the residual matrix
X1,Y1, and the load vectors p1, q∗1.
5) Compare whether the joint entropy of the residual

matrix is less than ε1. Yes, terminate the algorithm to get the
principal components; otherwise, skip to step 2 and replace
X0,Y0 with X1,Y1 to extract the next pair of principal com-
ponents.

TheME-PLS algorithm is used to get the latent structure of
non-GaussianMIMO systems from a data-driven perspective.
This approach can be applied in more directions, such as
performance assessment, data reduction, fault diagnosis, etc.

IV. NON-GAUSSIAN MIMO SYSTEM PERFORMANCE
ASSESSMENT METHOD
The ME-PLS algorithm is first used to extract the principal
components of the non-Gaussian MIMO system data before
performing the performance assessment. It can be seen from
the above that each pair of principal components represents
an independent virtual single-loop system. The performances
of the non-Gaussian virtual loop are evaluated separately to
obtain the operation of the whole MIMO system.

The system’s data reflects the system’s operation, so the
joint entropy of the residual matrix should be zero at the
termination of the ME-PLS algorithm to completely extract
the information of the data set.

A. MIMO CONTROL SYSTEM MODLE
A MIMO closed-loop feedback discrete control system with
N inputs and N outputs is shown in Fig. 3. Gp is an N × N
process function, the input is u, and the output is y. Gc
represents the feedback controller, and e(k) is the input to the
controller. at(k) is a matrix of mutually independent noise
sequences, which is generally assumed in the study to be
white noise with mean zero and covariance matrix of6w. Gw
is an N × N matrix of noise process functions.
The system depicted in Fig. 3 is such that the set value

is 0, ysp = 0, and the input to the system is given entirely by
the noise in the disturbance path. The function of the whole
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FIGURE 3. MIMO feedback control system.

closed-loop system is:

y = (I + GpGc)−1Gwat (22)

The process model is:

y = Gpu+ Gwat (23)

The ME-PLS algorithm decomposes the system into

u = t1pT1 + t2p
T
2 + . . .+ tnp

T
n (24)

y = m1qT1 + m2qT2 + . . .+ mnq
T
n (25)

where ti and mi are one-to-one principal components, and
each pair of principal components represents a virtual loop.
According to the linear relationship in (24) and (25), the
virtual controller for different loops can be obtained as shown
in the following equation:

ĜC1 = GCw1

ĜC2 = GC (I − w1pT1 )w2 (26)

. . .

B. PERFORMANCE ASSESSMENT FOR NON-GAUSSIAN
VIRTUAL LOOPS
For the first virtual loop represented by t1,m1 there are:

u = t1pT1 + u1 (27)

y = m1qT1 + y1 (28)

t1 is the control input to the virtual single loop, and m1 is the
output. u1, y1 are the residual matrices. The process function
of this virtual loop is:

m1 = Ĝp1t1 + N̂1ât1 (29)

where Ĝp1 is the virtual process function, Ĝp1 = z−d G̃p1,
d is the virtual process time delay, G̃p1 is the process delay-
free part. N̂1 is the virtual noise function, and ât1 is the vir-
tual noise. The minimum variance performance assessment
method uses the variance of the system feedback invariants
as the evaluation benchmark [1]. The interference model N̂1
can be decomposed as follows:

N̂1 = F1 + R1z−d

= f0 + f1z−1 + . . .+ fd−1z−(d−1)︸ ︷︷ ︸
F1

+R1z−d (30)

Substituting (30)) into (29) leads to:

m1 = Ĝp1t1 +
(
F1 + R1z−d

)
ât1

= F1ât1 + z−d
(
G̃p1t1 + R1ât1

)
(31)

The output of the system is minimized when G̃p1t1 +
R1ât1 = 0 and F1ât1 is the feedback invariant of the
system. The optimal control input in the case of minimum
variance is:

t1opt = −
R1ât1
G̃p1

(32)

The minimum variance controller structure of the system can
be obtained as:

GCopt1 =
t1opt
r − y

= −
R1ât1
−yG̃p1

=
R1ât1

F1ât1G̃p1
=

R1
F1G̃p1

(33)

The minimum variance performance index is:

ηMV =
σ 2
MV

σm1
2

=

(
f 20 + f

2
1 + . . .+ f

2
d−1

)
σ 2
ât1

σ 2
m1

(34)

The variance in the non-Gaussian case is no longer suitable
to reflect the data distribution. Therefore, the entropy of the
feedback invariant F1ât1 is used as a benchmark for perfor-
mance evaluation. From the description above, the entropy of
output can be written:

H (m1) = H
(
F1ât1 + z−d

(
G̃p1t1 + R1ât1

))
(35)

The minimum entropy output of the system is obtained
when G̃p1t1+R1ât1 = 0. At this time,H (m1)ME = H (F1ât1).
The performance index of the minimum entropy benchmark
is formulated as:

ηME =
H
(
F1ât1

)
H (m1)

(36)

The same definition as the minimum variance performance
benchmark, ηME ∈ [0, 1]. When ηME is closer to 1, the better
the performance of the loop, the closer the controller is to the
minimum entropy controller; if ηME is closer to 0, it means
that the performance of the loop is poor and the system has
more room for improvement.

The time delay d plays an important role in the perfor-
mance assessment. It can be estimated by detecting the peak
of the cross-correlation function, i.e.:

d̂ = argmax
τ

E{m(k)t1(k − τ )} (37)

The following equation approximates the actual calculation:

d̂ = argmax
τ

∑
k

m(k)t1(k − τ ) (38)
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When d = 0, the noise function N̂1 does not need to be
decomposed, then:

N̂1 = F1 (39)

In this case, the system’s output is its feedback invariants, and
performance assessment is unnecessary.

To calculate the estimates of the feedback invari-
ants, we used the ARMA model to model the system,
structured as:

m1(k + d) = (
R1 − F1Ĝp1ĜC1
1+ Ĝv1ĜC1

)m1(k)+ F1ât1(k + d)

(40)

where F1ât1(k + d) are feedback invariants. The first term to
the right of the equals sign of (40) can be approximated by an
AR model, rewritten as:

m1(k) = b1m1(k − d)+ . . .+ bnm1(k − d − n+ 1)

+F1ât1(k)

=

n∑
i=1

bim1(k − d − i+ 1)+ F1ât1(k) (41)

Write (41) in matrix form.

M = Xβ + F1A (42)

In the paper [28], it is shown that the least absolute devi-
ation (LAD) outperforms the least-squares (LS) method for
the identification of non-Gaussian noise perturbations, so the
least absolute deviation is also used in this paper to identify
the parameter sequence of (42). The estimation of the residual
series can be expressed as:

φ̂1 = F1A = M − X β̂ (43)

where φ̂1 is an estimate of F1ât1(k) and β̂ is an estimate of
the coefficient bi. The entropy of φ̂1 is calculated to obtain
the performance assessment value of the minimum entropy
benchmark as follows:

η̂ME =
H (φ̂1)
H (m1)

(44)

The performance of the other virtual loops is evaluated in
the same way as above.

C. PARAMETER ESTIMATION
Controllers need to be tuned when the control performance is
poor, in which case the parameters of the virtual system need
to be identified. Equation (29) can be written as a CARMA
model.

A(z−1)m1(k) = B(z−1)t1(k − d)+ C(z−1)ât1(k)
A
(
z−1

)
= 1+ a1z−1 + a2z−2 + . . .+ an1z−n1

B
(
z−1

)
= b0 + b1z−1 + b2z−2 . . .+ bn2z−n2

C
(
z−1

)
= 1+ c1z−1 + c2z−2 + . . .+ cn3z−n3

(45)

The AIC information criterion estimates the order of the
system. The LAD method for identifying non-Gaussian sys-
tems is superior to the LS method. The authors propose a
least absolute deviation iterative algorithm (CARMA-LADI)
based on the CARMA model. Let:

M (L) = [m1(L),m1(L − 1), . . . ,m1(1)]T

φ(L) =
[
ϕT (L), ϕT (L − 1), . . . , ϕT (1)

]T
(46)

V (L) =
[
ât1(L), ât1(L − 1), . . . , ât1(1)

]T
θ = [a1, . . . , an1, b0, . . . , bn2, c1, . . . , cn3]T (47)

where L is the length of the data, M (L) is the stacked output
vector, φ(L) is the stacked information matrix, V (L) is the
stacked noise vector, and:

ϕ(t) = [−m1(t − 1),−m1(t − 2), . . . ,−m1 (t − n1)

t1(t − 1− d), t1(t − 2− d), . . . , t1 (t − n2− d) ,

ât1(t − 1), ât1(t − 2), . . . , ât1 (t − n3)
]T (48)

In summary, we can obtain:

M (L) = φ(L)θ + V (L) (49)

Define the least absolute deviation criterion function:

J (θ ) = argmin ‖M (L)− φ(L)θ‖1 (50)

Minimizing the criterion function J (θ ) yields an estimate
of the parameters. It can be calculated using the relaxation
algorithm. It is important to note that (50) does not directly
yield an estimate of the parameter because ϕ(L) contains the
unmeasurable noise ât1. Introduction of the iterative identifi-
cation principle: Let k = 1, 2, 3, . . . be an iterative variable,
θ̇k (t−i) be used as an iterative estimate of θ , and the unknown
term ât1(t − i) in the information vector ϕ(t) is replaced by
its k − 1 iterative estimate ȧt1|k−1(t − i). The substituted ϕ̇(t)
is denoted as:

ϕ̇k (t) = [−m1(t − 1),−m1(t − 2), . . . ,−m1 (t − n1)

t1(t − 1− d), t1(t − 2− d), . . . , t1 (t − n2− d) ,

ȧt1|k−1(t − 1), ȧt1|k−1(t−2), . . . , ȧt1|k−1 (t−n3)
]T

(51)

And:

ȧt1|k (t) = m1(t)− ϕ̇Tk (t)θ̇k (52)

At this point, the stacked information matrix is:

φ̇k (L) =
[
ϕ̇Tk (L), ϕ̇

T
k (L − 1), . . . , ϕ̇Tk (1)

]T
(53)

Equation (49) can be rewritten as:

M (L) = φ̇k (L)θ̇k + V̇k (L) (54)

where:

V̇k (L) =
[
ât1|k (L), ât1|k (L − 1), . . . , ât1|k (1)

]T (55)

Equation (50) can be rewritten as:

J (θ̇k ) = min ‖M (L)− φ̇k (L)θ̇k‖1 = min ‖V̇k (L)‖1 (56)
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Keep iterating when J (θ ) converges to obtain the estimates
of the system parameters θ̇k . The algorithm steps are shown
in the table.

Algorithm CARMA-LADI
Input: virtual control input t1, virtual output m1.
Output: parameter estimation θ̇k .
1) Collect the input and output data t1(t),m1(t) : t =

1, 2, . . . ,L, constructM (L) using (47), and give the parame-
ter estimation accuracy ε2.

2) Let k = 1 and assign the initial value ȧt1|0(t) as a
random.

3) Construct ϕ̇k (t), φ̇k (t) using (51) and (53).
4) Using (54) to calculate the parameter estimate φ̇k .
5) Using (55) to calculate V̇k (L).
6) Compare J (θ̇k ) with J (θ̇k−1), if |J (θ̇k ) − J (θ̇k−1)| <

ε2, terminate the algorithm to get the parameter estimate;
otherwise k + 1 go to step 3.

The CARMA-LADI algorithm is used to calculate the
noise process function N̂i and process function G̃pi for dif-
ferent virtual loops, then the optimal controller GCopti for
each virtual loop can be obtained by (33). Finally, the linear
relationship obtained by (26) combined with GCopti can give
the actual controller tuning direction tomake the systemwork
better.

V. SIMULATION EXPERIMENTS
A. EXPERIMENTAL MODEL AND PARAMETERS
Take the following MIMO system as an example [12], its
process transfer function and perturbation transfer function
are:

Gp =

 q−1

1−0.4 q−1
q−2

1−0.1 q−1

0.3 q−1

1−0.1 q−1
q−2

1−0.8 q−1

 (57)

Gw =

[ 1
1−0.5 q−1

−0.6
1−0.1 q−1

0.5
1−0.5 q−1

1
1−0.5 q−1

]
(58)

The controller is set to:

Gc =

 1−0.2q−1

1−0.5 q−1
0

0 1−0.2 q−1

(1−0.5 q−1)(1+0.5 q−1)

 (59)

Noises are introduced after forming a closed-loop loop,
as follows:

a.w ∼ f (x) = 1
√
2πσ

exp
(
−

(x−µ)2

2σ 2

)
, whereµ = 0, σ = 1.

b. w ∼ f (x) = 1
θ
e−

x
θ , where θ1 = 3, θ2 = 0.3.

c. w ∼ f (x) = βα

0(α)x
α−1e−βx , where α1 = 2, β1 = 5,

α2 = 2, β2 = 0.5.
d. w ∼ Be(α, β), where the main interference parameters

are α = 9, β = 4.

B. ME-PLS ALGORITHM RESULTS
The ME-PLS algorithm applies not only to non-Gaussian
MIMO systems but also to Gaussian systems. The variation

FIGURE 4. Mutual information between t1 and m1.

FIGURE 5. Mutual information between t2 and m2.

FIGURE 6. Entropy of residual data under the influence of Gaussian
noises.

of the mutual information between principal components
and the entropy of the residual matrix under the influ-
ence of two Gaussian noises or two beta noises is shown
in Fig. 4 – Fig. 7.

Fig.4 and Fig.5 show the changes in mutual information
among principal components during the optimization of (9).
In both figures, the blue line represents the system affected
by Gaussian noise, and the orange line represents the system
affected by beta noise. It can be seen from the figures that the
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FIGURE 7. Entropy of residual data under the influence of Beta noises.

maximum value of mutual information is reached, at which
time ti has the strongest interpretation of mi. It means that we
find the input data with the most potent control effect on the
output data and achieve the separation of the latent structure
of the MIMO system.

The blue lines in Fig.6 and Fig.7 indicate the change in
the joint entropy of the input signal residual matrix after
extracting the principal components t1,m1 according to the
ME-PLS algorithm. From the two figures, it can be seen that
the joint entropy at this time is more significant, which means
that there is still some information in the input signal, and the
algorithm needs to continue. The orange line represents the
joint entropy of the residual matrix of the input signal after
the extraction of the second pair of principal components.
It can be found that the convergence values all converge to
zero, indicating that the information of the input data has been
extracted completely to obtain the complete latent structure of
the system at this time.

C. PERFORMANCE ASSESSMENT AND CONTROLLER
TUNING RESULTS
FromFig. 4 – Fig. 7, it can be seen that theME-PLS algorithm
extracts two pairs of principal components from the system as
follows:

u = t1pT1 + t2p
T
2 (60)

y = m1qT1 + m2qT2 (61)

The time delay d of the two virtual loops is first esti-
mated before the performance evaluation. Taking the system
affected by two beta noises as an example, the time delay of
the virtual loops is estimated as shown in Fig. 8.

The correlation analysis in Fig. 8 shows that the process
delay is zero for the t1,m1 loop and 2 for the t2,m2 loop.
The system performance is essentially the ability of the con-
troller to attenuate noises at a steady state, and the virtual
output m1 of virtual loop 1 are feedback invariants that do
not require performance assessment. The controller perfor-
mance assessment of virtual loop two is performed using the
method proposed in Section 4.2. The performance assessment

FIGURE 8. Virtual loop time delay estimation.

TABLE 1. Performance assessment values for virtual loops.

values of the controller under the influence of different non-
Gaussian noise are shown in Table 1.

As seen from Table 1, the performance assessment results
of the virtual single loop are all within the interval [0,1], and
the controller needs to be adjusted.

The linear relationship between the virtual loop controller
and the actual controller can be obtained according to (26),
as follows:

ĜC1 = Gc ∗

[
0.8876
0.4606

]
(62)

ĜC2 = Gc ∗

[
−0.4394
0.8832

]
(63)

It is not possible to write the optimal controller structure
for virtual loop one, so only virtual loop two is considered
to tune the actual controller. The following is obtained by
identification:

m2 =
0.5925 q−2

1−0.1036 q−1
t2 +

1+0.077 q−1

1−0.1036 q−1
ât2 (64)

Decomposition of the virtual noise process function:

N̂2 =
1+ 0.077 q−1

1− 0.1036 q−1

= 1+ 0.1806 q−1 +
0.0187 q−2

1− 0.1036 q−1
(65)

The optimal controller for virtual loop two is obtained as
follows:

ĜCopt 2 =
0.0187

0.5925+ 0.107 q−1
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TABLE 2. Performance assessment values for virtual loops.

=
0.0316

1+ 0.1806 q−1
(66)

The requirements for controller adjustment are as
follows:

Gc ∗

[
−0.4394
0.8832

]
= GCopt 2 =

0.0316
1+0.1806 q−1

(67)

Comparing (59) and (66) reveals that the optimal controller
structure of the virtual loop is different from the actual con-
troller structure. The structure of the controller needs to be
kept unchanged when tuned. Therefore, (67) can be rewrit-
ten as

Gc ∗

[
−0.4394
0.8832

]
=

0.0316×(1−0.1806 q−1)
(1+0.1806 q−1)×(1−0.1806 q−1)

(68)

Let the denominator of the actual controller be the same
as that of the optimal controller, and the coefficients of the
numerator are obtained by computing the least squares solu-
tion of the (68). The structure of the adjusted controller is
given in the following equation:

Gcopt =

 −0.0119
1−0.1806 q−1

0

0 0.0298−0.0326 q−1

(1−0.1806 q−1)(1+0.1806 q−1)

 (69)

The new performance evaluation results obtained by
introducing the same noises into the system are shown
in Table 2.

Comparing the evaluation results in Table 1 and Table 2, the
control effectiveness of the system is improved. It shows that
the controller tuning scheme based on a linear relationship is
effective.

VI. CONCLUSION
A novel latent structure extraction algorithm, ME-PLS, for
non-Gaussian MIMO systems is proposed. The ME-PLS
achieves the extraction of principal components by maxi-
mizing mutual information. It also ensures that each pair
of main features is independent and the complete extrac-
tion of information from the original data by minimizing
the joint entropy of the residual matrix. Then, the perfor-
mance assessment method for non-Gaussian systems based
onminimum entropy gives the performance evaluation results
for mutually independent virtual loops. Finally, the tuning
direction of the actual controller is given based on the lin-
ear relationship derived from the ME-PLS algorithm and
the parameters obtained from the proposed CARMA-LADI

identification method. The results of the simulation experi-
ments verify the effectiveness of the technique. The follow-
ing work will apply this paper’s research content to actual
production data to validate further and refine the proposed
method.
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