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ABSTRACT Astrocyte cells, themost existing abundant cells in central nervous system, play an essential role
in modulating the neuronal activities, information processing, and regulating the synaptic plasticity through
calcium (Ca2+) fluctuations of ions hemostasis by using a feedback mechanism. The pathophysiological
and hypersynchronous neuronal activity can lead to the epileptic seizures, which is known as one of the
neurodegenerative disorders in the field of neuroscience. This paper presents a modified neuron-astrocyte
interaction (tripartite synapse) model based on leaky and integrate fire neuron and the astrocyte-synapse
models using an area-efficient hardware approach called stochastic computing paradigm. The proposed
model is synthesized physically on field-programmable gate array as a proof of concept. The implementation
results of the presented model can mimic the bidirectional communication in biological minimal network of
pre-postsynaptic and Ca2+-based model for astrocyte with considerably lower hardware cost. The influence
of astrocytes on neural network behavioral has been investigated by providing a proper feedback mechanism
and considering the role of gap junction coupling and the various coefficients on desynchronizing the
impaired synchronization of the coupled neurons.

INDEX TERMS Astrocytes, desynchronization, field programmable gate array (FPGA), neural-glial
interaction.

I. INTRODUCTION
Epilepsy is one of the neurological malfunction disorders
which occurs due to the unusual patterns of neuronal firing
and hypersynchronous neuronal activities. Authors in [1]
and [2] have investigated the impact of astrocytes during
epilepsy in synchronizing the coupled neurons in network
level by proposing different functional modeling. One of the
fundamental elements which are involved in the development
of enormous neuron motor disorders are astrocytic cells.
Astrocytes within central nervous system (CNS) are involved
for modulating synaptic plasticity and transmission between
neurons through hemostasis and metabolic processes [3].

Recently, neuromorphic VLSI implementation of neural
networks has been investigated to discover the implemen-
tation of the large-scale Spiking Neural networks [4], [5].
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Hardware implementation of various biological models can
be achieved using mainly two different platforms. First
approach is analog implementation which provides an effi-
cient and low-cost design in terms of occupied area, hardware
resources, and power consumption but its development time
is longer, its vulnerability to noise is higher, and it is an
inflexible approach in comparison to digital platforms. In [6]
and [7], analog designs are proposed for the biological mod-
els. Alternatively, digital implementation, which has recently
become a popular approach to bio-inspired computing which
can offer a flexible and reconfigurable design. Digital plat-
forms require a shorter development time in comparison to
analog platforms. In this sense, FPGA-based designs can
provide a higher level of precision and stability than other
types of designs [8].

In this paper, a computationally low-cost hardware based
tripartite synapse model according to a neuroglial interaction
model has been proposed and implemented on FPGA which
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is able to mimic the original behavior of the tripartite synapse
model. The main contributions of this paper are listed as
follows:
• An efficient digital design for a minimal network using
Stochastic Computing technique which can mimic the
original architecture of neuron-glial interaction.

• Investigating the influence of astroglia network on con-
trolling the neuronal hyperexcitability during epilep-
tic seizures by stabilizing the asynchrony behavioural
between the coupled neurons.

• The proposed design is implemented on both hardware
and software and has been compared with the original
and other similar designs of hardware tripartite synapse
models.

The rest of the paper is organized as follows. Section II dis-
covers the related works. A complete tripartite synapse model
which is composed of two neurons, an astrocyte, and the
synapse model has been discussed in section III. Section IV
discusses the proposed structure. Hardware implementation
based on the modified model is presented in Section V.
Section VI presents a neuroglial network model. The imple-
mentation results are shown in Section VII. This article is
concluded in Conclusion section.

II. RELATED WORKS
Many neuropathological disorders such as epileptic seizures
[9], Parkinson’s disease [10], and sleep-related disturbances
[11] are required to be carefully studied in order to discover
possible pathways for diagnostic and treatment approaches.
In recent years, bidirectional interaction between astrocytic
network and neuronal activity have been determined in the
area of computational neuroscience. This interaction can be
understood in a feedback-based manner to accommodate the
intermittent neuronal synchrony.

Different models are proposed for modelling the bidi-
rectional communication for neuron-astrocyte interactions
to demonstrate the impact of astrocytes on the dynamics
of spiking activity in neural network [12], [13], [14], [15].
In these articles, a mathematical model for neuron-astrocyte
interaction system is proposed which can describe the tri-
partite synapse including pre-postsynaptic neurons, Ca2+
oscillations in astrocyte and synapse model. Calcium eleva-
tion in astrocyte can mediate the gliotransmitter release such
as gamma aminobutyric acid (GABA), adenosine triphos-
phate (ATP), glutamate which results neuronal excitabil-
ity through a feedback mode and can activate postsynaptic
neurons at other synaptic terminals. On the other hand, glial
cells can communicate with each other via Gap Junctions
by transmission of IP3 molecules and Ca2+ waves propa-
gations. Di Garbo and colleagues in [12] proposed a mini-
mal biological neural network for describing the glial-neuron
interaction which considered the impact of ATP on modulat-
ing neuronal activities. A dressed neuronmodel by describing
the neuron-astrocyte interaction is proposed by Jung and
Nadkarni [13]. A mathematical model is proposed for the
elements of tripartite synapse in [14] and [15] which can

reproduce the dynamical patterns of the biological neuron-
astrocyte network.

Several hardware implementations for various biologi-
cal calcium-based neuron-astrocyte models are proposed on
FPGA platforms in [16], [17], [18], [19], and [20]. There are
some approaches that can be employed to develop digital neu-
romorphic circuits. One of these approaches is base-2 method
in which nonlinear terms of biologically inspired models
can be replaced with base-2 functions and physically imple-
mented using logical shift and add operations on hardware
[20], [21]. The next approach is CORDIC (coordinate rotation
digital computer) structure which is involved in computing
complicated nonlinear functions through simple shift and add
operations [16], [22]. This technique can cause the simplicity
of the hardware implementation for the biologically plau-
sible models; however, the main drawback associated with
CORDIC paradigm is the latency issue. Piece-wise linear
approximation method can be used to eliminate the nonlin-
earity of the biologically plausible models by utilizing several
linear segments [17], [23]. In order to elevate the accuracy of
the design, the number of linear segments are needed to be
increased which can result in escalating the hardware cost.
The last method is called stochastic computing (SC) approach
which is an efficient hardware-based scheme. This method
uses simple digital circuits to perform the arithmetic opera-
tions and is proposed initially in 1960s [24]. This architecture
can be represented in both bipolar and unipolar formats [25],
[33]. The main concept of this probabilistic-based computing
approach is to process data by utilizing the digitized proba-
bilistic unary stream. In recent years, SC method has gained
greater insight in hardware realization of neural networks
and neuromorphic computing studies due to its error-tolerant
inherent and the optimized performance in terms of power
and occupied area [26]. In [27], authors have proposed a hard-
ware based tripartite synapse including Leaky Integrate-and-
Fire (LIF) neuron, synapse, and astrocyte using Stochastic
Computing (SC) and the Extended Stochastic Logics (ESLs).
ESLs has been introduced as new method for SC for the
hardware design of neural network applications [28]. In their
work [27], astrocyte model is approximated using piece wise
linear approximation method. Recently, a digital design for
an optimized SC-based Izhikevich spiking neuron model is
presented in [29].

The main predominancy of the proposed model over the
recently published SC-based neuroglial model in [27] is that
a detailed architecture for astroglial model and the hardware
device utilization is discussed within this research study.

III. MATERIAL AND METHOD
A. NEURON MODEL
In this paper, leaky integrate-and-fire (LIF) neuron model
with adaptation current which is one of the simplest spik-
ing neuron models has been used to describe the spiking
behaviour of the presynaptic and postsynaptic neurons. LIF
spiking neuron fires when the membrane voltage becomes
greater than threshold level. This model can be described
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by the following differential equations, respectively [30]
and [43]: {

C dVPre
dt = −gL (VPre − EL)− IPre

dwPre
dt = −

1
τ
(wPre)

(1){
C dVPost

dt = −gL (VPost − EL)− IPost
dwPost
dt = −

1
τ
(wPost)

(2)

where C,VPre,VPost ,wPre,wPost , gL ,EL , and τ present the
membrane capacitance, membrane potentials and variable of
adaptation currents for presynaptic and post synaptic neurons,
the conductance of leaky channels, the leak reversal potential,
and time constant for adaptation current, respectively. The
following listed equations are used to describe the behavior
of the presynaptic IPre and postsynaptic currents IPost :

IPre = Iapplied + Ia
IPost = Ie + IGlu + IATP + Ia
IGlu = γGm
IATP = ηGa
Ie = ge (V − Ee)
Ia = w (V − Ek)

(3)

where presynaptic LIF neuron model is stimulated only by an
external stimulus current and adaptation current represented
as Iapplied and Ia, respectively.

Postsynaptic current for LIF neuron shown by IPost which
includes astrocytic glutamate release, hydrolysis of ATP,
excitatory synaptic, and adaptation currents that have been
illustrated by IGlu, IATP, and Ie, respectively. In synaptic and
adaptation currents, ge represents the value of excitatory con-
ductance, Ee and Ek are the excitatory reversal potential the
reversal potential of potassium. γ and η are the coupling coef-
ficients for the variable Gm and the variable Ga, respectively.

B. ASTROCYTE MODEL
The neurotransmitter release (ATP, GABA, Glutamate) forms
the synaptic cleft can trigger the secondary mediator IP3
production in the glial cells which leads the elevation levels of
Ca2+ concentration. This elevation of Ca2+ oscillation can
result in activation of postsynaptic neurons. The interaction
model between the coupled neurons and astrocyte can be
governed by the following nonlinear differential equations
which describes the Ca2+ dynamics between extracellular
space and cytoplasm [14], [15]:

τc
dc
dt = −c− c4f (c, ce)+ r + β.Sm + αw

εcτc
dce
dt = f (c, ce)

τSm
dSm
dt = [1+ tanh (sSm (z− hSm ))](1− Sm)−

Sm
dSm

τGm
dGm
dt = [1+ tanh (sGm (c− hGm ))](1− Gm)−

Gm
dGm

τGa
dGa
dt = [1+ tanh (sGa (c− hGa ))](1− Ga)−

Ga
dGa

(4)

FIGURE 1. The general architecture for the functional pathways of the
neuron-glial ensemble (tripartite synapse model) with considering the
fast (shown by α), and slow (shown by β) activation pathways of the glial
cells. Astrocyte response is controlled using η and γ which are called
controlling parameters. Fast route can cause depolarization of glial cells
and slow pathway is involved in IP3 production [14].

where c and ce are the astrocytic calcium concentration in
cytoplasm and calcium concentration in endoplasmic retic-
ulum, respectively. f (c, ce) is used to describe the dynamic
behavior of Ca2+ between cytoplasm and the endoplasmic
reticulum, and gliotransmitters,Gm andGa present astrocytic
glutamate release and ATP production, respectively. The sec-
ondary messenger production is shown by variable Sm and
controlled by element of β which can be activated by synaptic
terminal. r , c4, and εc represent the transmembrane current,
constant for variable c, and the time separation constant. The
component of αw defines the potassium activation pathway.
The threshold values in the listed equations are named as hSm ,
hGm , and hGa used for activation and inactivation states of
variable z and c, respectively. τc, τSm , τGm , and τGa are used to
show the controlling time scale for the existing variables. The
controlling parameter of deactivation rates for each variable
are shown by dSm , dGm , and dGa . The controlling parameter
of steepness of activation for each variable are shown by
sSm , sGm , and sGa . Variable z belongs to the synapse model.
The complete structure for the tripartite synapse model which
contains the main elements involved in the slow activation
pathway is depicted in Fig. 1. The K activation pathway term
has not been considered for the total calcium flux architec-
ture. Parameter values that are employed for the simulation
process are listed as Table. 1.

C. SYNAPSE MODEL
In this network, the functions zi(t) and ze(t) are used to define
the time evolution of the inhibitory and excitatory currents
between presynaptic and postsynaptic neurons, respectively
which have been governed by the following equations [12]:

dzi
dt = Ti (1− zi)−

zi
τi

dze
dt = Te (1− ze)−

ze
τe

Ti = 2
[
1+ tanh VPre

4

]
Te = 2

[
1+ tanh VPost

4

] (5)
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TABLE 1. The parameter values and controlling coefficients of the
tripartite synapse models [14].

where τe = 2 ms and τi = 10 ms which are the time delay for
the inhibitory and excitatory neurons.

D. STOCHASTIC COMPUTING
Stochastic computing paradigm is a digital realiza-
tion approach which is presented in the 1960s [24].
This architecture purposes an extremely low-power and
error-tolerant implementation which utilizes digital logics to
perform arithmetic operations such as addition, division, and
multiplication and relies on using binary bit-streams [24],
[32]. In this approach, a sequence of random bit-streams is
used to encode the real values which are interpreted as the
probability of being either 1 or 0. For instance, the multiplica-
tion operation in stochastic computing representation can be
performed using AND gate for unipolar format in the range of
[0,1] and XNOR logic gate for bipolar format in the range of
[−1,1] which has been illustrated in Fig. 2. This approach has
been employed in many applications to lower the computa-
tional complexity such as image and signal processing related
problems, decoding of low-density parity-check (LDPC), and
neural networks and bio-inspired approaches [33], [34], [35].
A stochastic computing system is composed of 3 main phases
[25]: 1. Randomizer or stochastic number generator is used
to convert binary bitstream to stochastic bitstream, 2. The
main stochastic circuit design, and 3. De-randomizer is used
to convert stochastic bitstream to binary bitstream which can
be designed by using a counter. A general schematic diagram
for this methodology is depicted in Fig. 3 [36].

IV. MODIFIED MODELS
In this section, the tripartite synapse model is modified based
on the stochastic computing method to lower the hardware
implementation cost and improve the computational effi-
ciency. To achieve to this aim, the stochastic integrator is
defined to solve the neural ordinary differential equations
which can be designed using a stochastic number generator
(SNG), and an n-bit up/down counter [24]. The stochastic
integrator requires an n-bit up/down counter which works
according to the initial values stored in the counter, and a
stochastic number generator which includes a random num-
ber generator and a comparator, is required to encode the
accumulated values in the counter [37]. To lower the hard-
ware area and power consumption, the shared randomnumber
generators can be employed. The two-bit streams of a and b
for the inputs of A and B can be considered for the up/down
counter, respectively. The structure of the up/down counter

FIGURE 2. Basic stochastic computing elements representation,
(a) Unipolar format of stochastic multiplier P(xy = 1) = P(x = 1)P(y =

1) = xy , (b) Bipolar format of stochastic multiplier (2P(x = 1)-1)( 2P(y =

1)-1) = xy .

FIGURE 3. (a) a general structure for stochastic computing-based designs
through (1) to (3), (b) stochastic number generator by illustrating the
linear feedback shift register [36].

can be defined as:

Ii+1 =


Ii+1 if a = 1 and b = 0
Ii if a = b
Ii−1 if a = 0 and b = 1

(6)

where Ii+1 and Ii represent the values that is saved in the
counter at two clock cycles of i + 1 and i, respectively. a and
b represent the value for both bit-streams of A and B, respec-
tively. Therefore, ordinary differential equations (ODEs) can
be approximated using the stochastic integrator based on the
Euler method with step size of 1/2n [38]:

dy (t)
dt
= f (t, y (t)) (7)

dy(t)
dt
= lim

1→0

y (ti +1t)− y (ti)
1t

≈
y (ti + h)− y (ti)

h
(8)

ŷi+1 = yi + hf (ti, yi) (9)

where h is the step size,1t is the time interval and by consid-
ering ti+1 = ti + h based on the Euler’s approach; therefor,
ŷi+1 is the numerical simulation for function of y(t) at ti+1,
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i.e., y(ti+1) which is shown in equation (9) [39]. Moreover,
the probability of a and b at time t are presented by pa(t) and
pb(t); thus, the numerical simulation of ODE can be estimated
as:

ŷi+1 = yi +
1
2n

[
pa

(
i
2n

)
− pb

(
i
2n

)]
dy (t)
dt
= f (t, y (t)) = pa (t)− pb (t) (10)

The stochastic integrator has been used for solving differ-
ential equation of Ca2+ dynamics and its corresponding
variables in astrocyte and the membrane potential dynamics
of LIF neuron model and the initial values of ODEs are set
as the initial values of counter. Therefore, the postsynaptic
neuron model with considering its different phases can be
rewritten based on stochastic modes as follow:

Vpost (t) =


Vpost (t − 1)+ Ipost
Vpost (t)− EL
if Vpost (t) > Vthr then spiking
if Vpost (t) = Vthr then rst

(11)

wpost (t) =

{
wpost (t − 1)
if wpost (t) = wpost (t)+ δ then rst

(12)

where Vthr is the threshold value for the membrane voltage
and δ is the incremental adaptation with each spike. When the
postsynaptic current arrives, the synaptic integration phase
starts, and the spike trains will be generated if the membrane
voltage is greater than the threshold value. In the absence of
the external currents, the neuron model experiences the leak
integration phase. Thus, a stochastic mode of either 0 or 1 can
be determined for each phase.

The existing variables in astrocyte model are required for
the modification based on stochastic mode. Here, ce which
shows the Ca2+ concentration in ER, has a fast dynamic.
Therefore, the equations belong to the original model can be
modified by the following equations when f (c, ce) = 0 [14],
[15]. The nullcline of synapse model can be considered to
approximate the z variable. The same concept can be applied
for the glutamate release (Gm variable), the release of ATP
(Ga variable), and the IP3 production (Sm variable) accord-
ing to their corresponding threshold values. Consequently,
the implementation cost of this simplified structure will be
lowered in comparison to the original model. The results of
this modification for both astrocyte and synapse models are
described as follows:

τc
dc
dt
= −c+ (r + βSm + αwpost ) (13)

dz
dt
= 0⇒ z =

1+ tanh VPost
1+ τ + tanh VPost

=

{
0, VPost < 0
1, VPost ≥ 0

(14)

Sm =

{
0, z < hSm
1, z ≥ hSm

(15)

Gm =

{
0, c < hGm
1, c ≥ hGm

(16)

Ga =

{
0, c < hGa
1, c ≥ hGa

(17)

These functions can be implemented using stochastic binary
projection as follows [40]:

xb =

{
1,with probability p = σ (x)
0,with probability 1− p

(18)

where, xb is the binarized variable and p is the probability
illustration of the synaptic transmissions, membrane volt-
age, and the corresponding variables of the astroglial model.
In this expression, σ (x) has been presented by the following
expression:

σ (x) = max
(
0,min

(
1,
x + 1
2

))
(19)

V. HARDWARE DESIGN
In this section, a hardware implementation is presented for
the proposed neuron and astrocyte models which includes the
stochastic integrators, Stochastic Number Generators (SNG),
and XNOR gates. In this design, the spiking neuron models
and the glutamate-induced IP3 production in the glial cells
with the astrocytic and synaptic currents are considered as the
probabilistic-based models and illustrate the same behavior
of the stochastic integrators. The hardware architecture for
the proposed neuroglial interaction model with considering
the synaptic connection is illustrated as Fig. 4 (A through
C). For instance, the spiking neuron model fires when the
membrane voltage reaches to its threshold value, similarly the
stochastic integrators work based on the stored initial vales in
the counter.

For the SNG unit, an n bit-LFSR (Linear Feedback Shift
Register) is used to generate an uncorrelated and pseudo
random sequence from 0 to 2n−1. In this paper, an LFSR is
shared between two SNGs with two comparators to reduce
the occupied hardware overhead and create a low-correlated
SNG circuit [41]. The shared-LFSR structure may result
low accuracy of the design; therefore, a bit-rotation scheme
can assist to reduce the cross-correlation between SNGs.
In order to have a higher correlation in the output of the
generated stochastic numbers, a l-bit randomly shifter used
at the end of the LFSR to feed each SNGs. This structure
has been employed for 6-bit and 8-bit LFSRs and illustrated
in Fig. 5 [41]. According to this design, a tradeoff between
the computational complexity, latency and time has been
considered.

A basic block diagram which is used to explain the whole
biochemical processes between the elements by considering
the influence of coupling coefficients which exist within the
neuroglial network has been depicted as Fig. 6.

VI. NEUROGLIAL NETWORK
In this section, the influence of astrocyte on the function-
ality of neuroglial network, has been investigated to realize
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FIGURE 4. The proposed system architecture for membrane potential of presynaptic and postsynaptic LIF neuron, synaptic transmission
between neurons, and cytosolic calcium in astrocyte models. (A) astrocyte model, (B) presynaptic neuron. (C) postsynaptic neuron.

FIGURE 5. A shared LFSR between two SNGs.

its bidirectional communication with neurons for regulat-
ing the neuronal activities and desynchronization of the
synchronized neurons for stabilizing the neuronal network
behavior. Any disruptions within the functionality of glial
cells can lead to a neurodegenerative disorder including
the neuronal hyperexcitability and unpredictable epileptic
seizures. Astrocytes are involved in the synaptic forma-
tion and are coupled to each other via gap junctions (GJs)
which can provide a pathway for ions hemostasis and
gliotransmitter release such as ATP and Glutamate. The
schematic diagram for the neuroglial network and the inter-
action between its members which includes coupled neurons,
synapses, and astrocytes is illustrated as Fig. 7(A). This
architecture illustrates the essential influence of glial cells
in desynchronization of the hyper-synchronized neurons.

A simple network according to the slow and fast activation
pathway for various spiking patterns of a tripartite synapse
is presented in Fig. 7 (B), that includes four astrocytes that
are connected to their neighboring cells via gap junctions to
form the astrocytic network. This network is called astroglia
syncytium and a pair of coupled neurons is interacting with an
astrocyte.

Thus, gap junction flow for IP3 (JIP3) and calcium
(JCa2+) between two neighboring cells through GJs, are
governed by the following equations respectively [31], [42]:

JIP3i = GIP3 ([IP3]i − [IP3]k) (20)

JCa2+i = Gc([c]i − [c]k ) (21)

where the IP3 gradient between two neighboring astrocytes
is presented by ([IP3]i − [IP3]k ), the flow of calcium in the
network of cells can be shown by ([c]i−[c]k ).GIP3 andGc are
the maximal flux diffusion (coupling strength) between two
astrocytes through gap junctions for IP3 and Ca2+, respec-
tively. According to these equations, i presents glial cell in
the astroglial network and is situated to its adjacent cells that
is specified by k . The astrocytic current which is shown by
Iastro can be added to each neuron in tripartite synapse model
also is defined as follow [1], [2]:

Iastro = λi [c] , i = 1, 2 (22)

where λi is the coupling parameter for depolarizing currents
from astrocyte to pyramidal neuron and interneuron. Calcium
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FIGURE 6. A basic diagram for the biochemical pathway and
corresponding coupling coefficients in neuroglial network.

signalling can have an influence on the synaptic transmission
from presynaptic to postsynaptic neuron through coefficient
of λ1 and λ2.
IP3 is known as the second messenger. IP3 and calcium

waves which can propagate throughGJs from one astrocyte to
the adjacent astrocyte are involved in the release of ATP and
Glutamate within extracellular space. The gap junction cou-
pling deficiency between glial cells in the network can lead to
neuronal hyperexcitability which induces abnormal and peri-
odic seizures. The coupling strength depends on the number
of the gap junction coupling in astroglia network [43].

To evaluate the physiological and pathological situation of
the glial cells, a measuring concept for the synchronization
of neurons has been used by the following Kuramoto order
parameter R [44], [45]:

R (t) ei2(t) =
1

Nosc

N∑
j=1

eiϕj(t) (23)

where 2(t) sets the mean phase, R(t) is used to measure the
synchronization index, Nosc measures the number of cells in
the simulation, and ϕj(t) is the phase of neuron j at time t that
has been defined as [1]:

ϕj (t) = 2π
t − tn

tn+1 − tn
(24)

where t ∈ [tn, tn+1] and firing pattern can be included
between this timing interval, tn sets the onset time of the kth
burst of jth neuron and is considered as 0 ≤ R(t) ≤ 1 for
all the time. When R = 0, oscillations are desynchronized,
and for R = 1 phase synchronization will occur. A similar
method for desynchronization of two coupled oscillators in

[2] has also been employed for the simulation process of the
modified and original models which is demonstrated in Fig. 8
(A through E). In this paper, gap junction coupling strength
between astrocytes and applied current are also considered as
the controlling parameters during the neuronal desynchrony
and synchrony analysis. By increasing applied current, cou-
pled neurons start interacting and becoming synchronized
due to an elevation of the excitatory coupling coefficient on
postsynaptic neuron. The other controlling parameters which
are used for the simulation process, are listed as follows:
GJ coupling coefficient (G = 0 and 1.4) and the rest of the
parameters λ1 = 0.06, λ2 = 0.11, and ge = 0.02. According
to the results shown in Fig. 8, by changing the strength of GJ
coupling, the mode of coupled neurons will fluctuate from
in-phase to anti-phase synchronization mode and the impact
of astrocytic syncytium can be examined on synchronized
neurons. With strengthened coupling coefficient, anti-phase
spiking rates can be observed.

The elevation of calcium ions in astrocyte and diffusion
of Ca2+ waves and IP3 molecules via gap junctions in glial
syncytium can assist in regulating the synaptic transmission
between neurons over long distances. Therefore, the strength
of astrocytic coupling can improve the spread of calcium
signalling among astrocytic syncytium and respond to the
neuronal activities. According to tripartite synapse model,
gliotransmitter release such as ATP and Glutamate using cou-
pling coefficients (shown by γ , η) can control the excessive
excitatory current on postsynaptic neurons. In order to inves-
tigate the role of astrocytic syncytium in coordinating the
synaptic plasticity, different values of coupling coefficients
for tripartite synapse model (γ , η) and also maximal flux
diffusion have been considered for analyzing the behavior
of postsynaptic activity. The absence of astrocyte between
presynaptic and postsynaptic neurons can be depicted in
Fig. 9. An applied constant current will generate the action
potential in presynaptic neurons which results a rise in exci-
tatory synaptic conductance and activation of postsynaptic
current on interneurons. In this case, the spiking rates of
postsynaptic neurons uncontrollably will enhance, where the
postsynaptic current cannot be regulated properly, and this
can cause the pathophysiological conditions for the brain. The
gap junction coupling strength between glial cells, astrocytic
current due to glutamate release which causes depolarization
of postsynaptic neuron and, the excitatory current on postsy-
naptic neuron can be modulated properly and this can prevent
from unwanted neuronal hypersynchrony. The influence of
the astrocytes between coupled neurons has been illustrated
as Fig. 10. According to the results which have been shown
in this figure, by increasing γ and η (Glutamate and ATP
effects) and decreasing the GJ coefficient the rate of spiking
activities among neurons also can alter and switch to epileptic
conditions [46]. Therefore, the presence of astroglia network
can prevent from excess extracellular potassium concentra-
tion and glutamate accumulation. This abnormal amount of
potassium and glutamate can be eliminated by strong gap
junctions coupling between astrocytes [47]. In this work,
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FIGURE 7. An architecture for neuro-glial behavior in hippocampus region of the brain. (A) A network of connected neurons through synaptic
coupling, interacting with astrocytes. (B) coupled glial cells via gap junctions forming astroglia syncytium.

astrocytes are connected in a squared shape. Gap junction in
astrocytic syncytium can redistribute the potassium (K+) ion
and regulate neuronal activity. Uptake of glutamate and K+
can prevent from neurotoxicity. The balance of extracellular
Potassium-glial concentration equation can be written as the
following equation:

W
d[K ]
dt
=

1
F

N∑
i=1

Ii,K + G ([K ]O − [K ]) (25)

whereW is the measure of average distance between the glial
cells,F is the Faraday’s constant, Ii,K shows the electrical cur-
rent of potassium, and finally G([K ]O − [K ]) is the diffusion
of the potassium.G can be used as the controlling parameters
for describing the neuronal synchrony between the coupled
neuron [48]. The concentration of potassium in bath is shown
by [K ]O.

The model of astrocyte can be extended as below for the
glial network with considering coupled gap junctions:

τ
dc
dt
= −c+ r + β · Sm +

n∑
i=1

αiwi +
m∑
j=1

GC [c]j− [c]

(26)

where i is the number of neurons and j is the number of
astrocytic cells which are existing in the neuroglial network.

Different behavior of neuronal spiking activities using fre-
quency spectrum (as Fast Fourier Transform and their cor-
responding histograms) are observed in [50]. On the other
hand, FFT approach is used on the spiking activity of the
coupled neurons according to increasing or decreasing cou-
pling coefficients within the astroglia network. The results
of this analysis for the original and the modified model have
been demonstrated in Fig. 11. By selecting the appropriate
coupling coefficients, the impact of astroglia network (as a
regulator) in desynchronizing the hypersynchronous neurons
has been evaluated. Synaptic coupling strength between neu-
rons can activate potassium (K+) current after neuronal
depolarization; therefore, this fast activation pathway can be
controlled by parameter α (potassium activation pathway).
In [49], the slow activation pathway in tripartite synapse and
its impact on long term potentiation (LTP) of the postsy-
naptic spiking activity has been investigated to realize the
closed loop behavior of neuroglial interaction model. In this
paper, the impact of short-term potentiation (STP) mecha-
nism is also considered on postsynaptic neurons which can
be evaluated for adaptation (potassium) currents. By con-
trolling parameter of α, extracellular K+ ions and STP can
be regulated. The fast activation pathway causes glial cells
depolarization due to rise of extracellular K+, and slow
activation pathway activates astrocytes by IP3 production
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FIGURE 8. Effect of varying gap junction coupling strength between glial
cells and the influence of astrocyte between two neurons during
synchrony and desynchrony conditions for the original and proposed
models. (A) membrane voltage for two coupled neurons by considering
the role of the original astrocyte model (B) spike trains (membrane
voltage) for two coupled neurons by considering the role of the modified
astrocyte model. (C) Synchronization index for the original astrocyte
model (black) and for the proposed astrocyte model (red). (D) (the output
of original (black) and the modified (red) astrocyte model). (E) the effect
of gap junction coupling between glial cells.

through synaptic strength. Fig. 12 illustrates that the firing
rates unexpectedly can increase due to the rise of extracellular
K+ ions when the gap junction rate between astrocytes is less
than 0.4. Therefore, by controlling coupling parameters of the
neuroglial interaction model, the frequency of firing rates can
be managed.

In order to investigate the accuracy between the pro-
posedmodel and the original biological neuroglial interaction
models, Root Mean Square Error (RMSE) is computed and

FIGURE 9. Membrane potential for the presynaptic and postsynaptic
neurons without considering the influence of astrocytic network and its
corresponding coupling coefficients. By increasing the excitation current
on postsynaptic neuron, the frequency of the spiking activity has been
enhanced. This can lead to the hyperexcitability of the neurons.
(A) Spiking activity of presynaptic and postsynaptic neuron for the
original model. (B) spiking activity of presynaptic and postsynaptic
neurons for the modified model.

FIGURE 10. Influence of astroglial network on the spiking activity of
postsynaptic neuron for the original and the modified models. In this
case, by considering the neuron-astrocytic coupling coefficients, γ , η, and
gap junction coupling between glial cells, the spiking activity of the
postsynaptic neurons can be regulated and controlled. (A) Spiking activity
(membrane potential) for the original model. (B) Spiking activity
(membrane potential) for the modified model.

defined as follow:

RMSE
(
Vorg,Vmodified

)
=

√∑n
i=1

(
Vorg − Vmodified

)2
n

(27)
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FIGURE 11. The effects of astrocyte in desynchronization of neurons firing. Raster plot representing the spiking activity neurons astrocytes (each
neuron is randomly connected to other neurons through synapses and astrocytes), histograms for each state, and Fast Fourier Transform (FFT) for
corresponding histograms. (A) spiking activity of neurons without considering the influence of astroglial syncytium for the original model. (B) spiking
activity of neurons with considering the influence of astroglial syncytium in desynchronizing neurons for the original model. (C) spiking activity of
neurons without considering the influence of astroglial syncytium for the modified model. (D) spiking activity of neurons with considering the
influence of astroglial syncytium in desynchronizing neurons for the modified model.

TABLE 2. RMSE calculations for the neural spiking patterns using
different time steps.

FIGURE 12. Demonstration of firing rates based on various coupling
coefficients. Increment of parameters γ and η, can result in increasing
spiking rates and by adjusting these two parameters spiking rates can be
controlled. Strong gap junction coupling between astrocytes can regulate
spiking rates; however, reduced gap junction strength cannot maintain
spike rates.

where Vorg and Vmodified represent the original values for the
corresponding function and the modified values based on the

FIGURE 13. The output two coupled neurons by considering the impact of
astrocytic syncytium.

SC-based values, respectively. The data length for the error
measurement is shown by n. The Normalized Root Mean
Square Error (NRMSE) can be obtained by the following
equation:

NRMSE =
RMSE

Vmax − Vmin
(28)

where Vmax and Vmin are the maximum and minimum values
of membrane voltage.

The RMSE and NRMSE values according to the different
excitation currents under various time steps are calculated and
reported as Table. 2.

VII. IMPLEMENTATION RESULTS
This part presents the results of the hardware design for
a neuroglial interaction model. As a proof of concept, the
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FIGURE 14. Digital oscilloscope captures of the modified model implemented on FPGA. (A) membrane voltage for LIF neuron model (tonic
spiking). (B) membrane voltage for LIF neuron model (adaptation) (C) Secondary mediator (Sm), IP3 production. (D) Calcium spiking activity of the
slow activation pathway with considering β = 0.004.

TABLE 3. Low level device utilization and the used percentage of the elements of the modified astrocyte and neuron models for the fast activation
pathway.

TABLE 4. Hardware resources comparison between the proposed model in this work and the previously published works.

proposed circuit and the original models have been imple-
mented on a XILINX Virtex-7 platform using ISE tools in
order to evaluate the hardware performance. The output of
the coupled neurons by considering the effect of glial cell on
neuronal regulation is depicted in Fig. 13. Fig. 14. demon-
strates the digital oscilloscope photographs of the proposed
model for the membranate potential, calcium signalling, and
IP3 production in astrocyte model which is implemented on
the FPGA board. Low level device utilization details of the
implemented original and the proposed models for the slow
pathway activation mode have been summarized in Table. 3.
The hardware analysis of the proposed astrocyte model in
desynchronizing the hypersynchronous coupled neurons and
regulating the synaptic transmission between presynaptic and
postsynaptic neurons has the same performance of the origi-
nal model. The power consumption analysis of the modified
model is achieved by 138 mW in comparison to the original
model which is realized by 316 mW.

The comparison results of the hardware realization in terms
of the number of resources and maximum speed have been
performed between the modified models and the previous
proposed tripartite synapse models in [17], [27], [43], [50],
[51], and [52]. These results are reported in Table. 4. In our
proposed design, DSP block which is an expensive resource
has not been employed within the implementation in compar-
ison to the design which is proposed in [43]; therefore, the

TABLE 5. Hardware resources comparison between the proposed
astrocyte model in this work and the recently published works for
astrocyte models.

proposed architecture can provide less hardware complexity
rather to the original models and the previously published
research works. In [27], a hardware implementation using
stochastic approach on the tripartite synapse is performed
for 16-bit and 12-bit LFSRs; however, the detail of hardware
resources for the astrocyte model has not been included in
their work. The hardware resources of the neuron model have
not been provided in [17] and the number of resources which
is reported for the astrocyte model are greater than the hard-
ware resources that are presented in this work. Additionally,
9 multipliers are used for the modified astrocyte in [17].
A digital implementation for a neuron-astrocyte model is
proposed in [51]; however, the device resources are not sum-
marized for the neuron model and the number of resources
for the astrocyte model is greater than the proposed astrocyte
model in this research article. Furthermore, the frequency
of the design in [51] is reported 139MHz. A neuromorphic

VOLUME 10, 2022 107053



M. Seyedbarhagh et al.: Digital Realization of Neuroglial Interaction Model and Its Network Structure

digital design for neuroglial interaction model by employing
the linear approximation method is realized in [52]. Based
on their research work, 5 multipliers are reported in the
high-level utilization table.

A hardware cost comparison has been performed between
the proposed astrocyte model in this work and two recently
published articles according to different calcium-based astro-
cytic models in [53] and [54]. A digital design for an astrocyte
model is implemented on FPGA platform which uses four
DSP blocks and four block RAMs [53]. In [54], a set of
piecewise linear approximation is presented for an astrocytic-
based calcium signallingwith themaximum speed of 81MHz.
The result of this comparison is summarized in Table 5.

VIII. CONCLUSION
In this paper, a hardware implementation according to
stochastic computing method for the neuron-glial interac-
tion (tripartite synaptic model) based on the spiking neuron
model and the Postnov astrocyte model [14], [15] has been
presented. The impact of glial syncytium and its bidirec-
tional communication between neurons and astrocytes for
desynchronizing the abnormal and paroxysmal synchronized
neurons within epileptic seizures in the neural network by
considering appropriate coupling parameters is also inves-
tigated. The comparison results for the hardware and soft-
ware implementation between the original biological models
and the proposed models illustrate that the proposed models
have lower hardware costs. The hardware implementation
results of the proposed model are compared with previously
published studies. The main aim of this study is to investi-
gate the influence of astroglial network on different level of
neural hyperexcitability during epileptic seizures. This work
illustrates that the proposed design can be a good candi-
date for large scale bio-inspired neuroglial network hardware
implementations on FPGA platforms.
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