IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 29 September 2022, accepted 4 October 2022, date of publication 6 October 2022,
date of current version 12 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3212726

==l RESEARCH ARTICLE

A Fair, Verifiable and Privacy-Protecting Data
Outsourcing Transaction Scheme Based
on Smart Contracts

LINA LI?, TINGTING ZHANG 2, GUODONG SUN "3, DEZHENG JIN2, AND NIANFENG LI

! College of Computer Science and Technology, Changchun University, Changchun 130022, China
2College of Cyber Security, Changchun University, Changchun 130022, China
3Department of Internet-of-Things, Beijing Forestry University, Beijing 100083, China

Corresponding author: Nianfeng Li (linf@ccu.edu.cn)
This work was supported in part by the Natural Science Foundation of Jilin Province, China, under Grant YDZJ202101ZYTS191; in part

by the Jilin Scientific and Technological Development Program under Grant 20210201083GX; and in part by the Industry Research
Innovation Fund of the University, China, under Grant 2020HYB03002.

ABSTRACT The continuous production of large-scale data makes data outsourcing computation a trend.
In order to ensure that data outsourcing transaction is trusted and fair, it needs the supervision and judgment
of a third party. However, the third-party intermediary increases the transaction cost, and there is also
subjective unreliability. Smart contracts allow trusted transactions without a third party, which are automatic,
traceable and irreversible. Therefore, in this paper, we propose a framework for data outsourcing computation
transaction based on the smart contract, in which the transaction is verifiable, fair and privacy protected.
In this framework, by improved the replication-based verifiable computation technology, the data in the
dataset is evenly distributed to each server, and at least one data in the sub datasets of the adjacent servers is
the same, only the results from the duplicate data are verified, so as to implement the verifiable transaction
with the low transaction cost. Meanwhile, a punishment mechanism is adopted to solve the fairness of the
transaction in the smart contract. In addition, the oblivious transfer protocol is used to implement the privacy
protection of transaction data. We deploy the data outsourcing computation transaction framework in the
simulation environment of the Ethereum blockchain, and the experimental results show that our proposed
scheme is effective and has low overhead. Specifically, the data returned by the server is verifiable, and the
data privacy of the client is protected. When the client and servers are dishonest, they will be punished so
that the transaction is fair. Moreover, the cost of using the smart contract in transactions is almost negligible.

INDEX TERMS Blockchain, smart contract, data outsourcing computation, replication-based verifiability,
oblivious transfer protocol, privacy protection.

I. INTRODUCTION

With the arrival of the big data era, data is growing explo-
sively, and the demand for data analysis and data mining
is becoming more and more common. For large-scale data,
the data outsourcing computation becomes very important.
At present, outsourcing non-core IT business and its business
processes to professional service providers has become the
first choice for enterprise users to improve their business
professionalism [1], [2]. In the data outsourcing computation

The associate editor coordinating the review of this manuscript and

approving it for publication was Rahim Rahmani

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

transaction, there are mutual distrust problems between the
transaction parties, including the return of wrong results by
the service provider and the non-payment of enterprise cus-
tomers to the service provider, which affect the universality
of the data outsourcing computation [3]. In order to solve the
above problem, people restrict the behavior of both parties to
the transaction by concluding a contract agreement. Usually,
a third party is introduced to supervise the execution of
the contract. However, this mode increases the transaction
cost, and the process is complex and time-consuming when
resolving disputes. In addition, in the settlement of disputes,
there is the subjectivity of the third party, which leads to the

106873

https://orcid.org/0000-0001-5077-5451
https://orcid.org/0000-0002-4370-6615
https://orcid.org/0000-0003-3739-2792
https://orcid.org/0000-0003-2450-5217
https://orcid.org/0000-0001-5924-5457

IEEE Access

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

unfairness and injustice of the judgment results. Meanwhile,
there is a problem of data privacy disclosure in the transac-
tion [4]. Therefore, in the data outsourcing computation, it has
become a top priority to make both parties compute honestly
and return the correct results while ensuring the privacy of all
data in the transaction.

Blockchain technology is developing rapidly nowadays,
which is a distributed shared ledger technology, and has the
characteristics of decentralization, tamper-proof, and trace-
ability [5], [6]. These characteristics provide thoughts for
solving problems in data outsourcing computation transac-
tions. In the case of false results, the client must verify the
correctness of the computation output of the server. Clients
can verify in two ways: (1) the proof-based verifiable com-
putation and (2) the replication-based verifiable computa-
tion [7]. In the first way, the server sends the correct output,
and the client verifies the results and accepts the output if it
is correct. In the second way, the client outsources the same
task to multiple clouds and compares the results to obtain
the correct output. For the client, the goal is to get the right
results while minimizing the cost. The existing proof-based
verifiable computation technologies are all based on cryp-
tography and then result in a high overhead. For example,
Zhang et al. [8] adopted proof-based verifiability, in which
the collision resistance of hash functions and the validity of
elliptic curve digital signature algorithm (ECDSA) are used
for verification. Cloud computing is based on a pay-per-
use model, where servers charge for the resources they use.
The proof-based verifiable computational tasks mean that the
client must pay for the overhead imposed by the encryp-
tion algorithm or protocol. The replication-based verifiable
computation avoids complex cryptographic protocols and
only needs to verify whether the data results are consistent.
However, the replication-based verifiable method increases
the repeatability. For example, the researchers [9] proposed
the verifiable computation based on multi-worker replication,
which means the cost is increased by at least three times.
Although Dong et al. [3] proposed a game-theoretic proof
to distribute data to two workers for verifiable computation,
there are also some repeated costs. So we want to get the right
guarantee at a low cost in this paper.

The smart contract is based on blockchain technology
and can automatically execute some pre-defined rules and
terms [10]. Currently, researchers are trying to use smart
contracts to solve various types of problems, and apply them
in various fields, such as insurance [11], healthcare [12],
electronic voting [13], cloud computing [14] and Internet
of Things [15]. For third-party supervision in contracts, the
smart contract is a programmable computer program. The
characteristic of the smart contract is that, once it is deployed
to the blockchain, it can only be accessed and cannot be
changed [16]. Smart contracts can be executed automatically
without a third party. The most important aspect of data is data
privacy [17]. Researchers have proposed a data transaction
model based on oblivious transfer protocol. The oblivious
transfer technology can protect the privacy of buyers and

106874

sellers during the transaction process [18]. In this paper,
we solve the trust and privacy issues in data outsourcing
computation based on smart contracts.

To solve the above problems, this paper proposes a data
outsourcing computation transaction scheme with verifiable,
fair and privacy protection. In this scheme, a data outsourc-
ing computation transaction framework is established based
on blockchain. This framework consists of computational
verification, reward and punishment mechanism, and pri-
vacy protection. The smart contract is the core of outsourc-
ing computation transaction, which meets the transaction
requirements together with oblivious transfer protocol and
replication-based verifiable technology. In the computing
verification stage, the transaction data is first distributed to
multiple servers, and one of the allocated data of two adjacent
servers is the same, so as to reduce the cost while the data
results are verifiable. Then, the data of each transaction is
recorded in the blockchain and used as evidence for dispute
resolution. Moreover, in order to implement the fairness of
data computation transactions, a punishment mechanism is
established. The smart contract will punish the fraudster by
confiscating the deposit to protect the interests of the other
party, so that the data outsourcing computing transaction is
fair. In the privacy protection mechanism, the transaction
data is stored in multiple servers. Each server only knows
part of the data it receives, but knows nothing about the
rest of the data. The main contributions of this paper are as
follows.

(1) Aiming at the problems of distrust, unfairness and
privacy leakage in the process of data transaction, we propose
a data outsourcing computation transaction scheme based
on the smart contract. Both sides of the transaction can
complete transactions efficiently, fairly and autonomously
without involving any third-party entity supervision.

(2) In order to protect the privacy of the data, we divide
the transaction data into multiple sub datasets and allocate
them to different servers. The data set is encrypted based on
the oblivious transfer protocol, and each server only knows
part of the data computed by itself, but does not know the
entire transaction data, so as to ensure the confidentiality and
privacy of the data.

(3) For the result verification of transaction data, the
replication-based verifiable technology is improved. By allo-
cating one identical data (unknown to other servers) to two
adjacent servers, the honesty of the server can be verified
when these data computation results are returned, thus the
cost waste caused by duplication can be reduced.

(4) A penalty mechanism is used in the smart contract
for the fairness of outsourcing computation. The client and
servers must store their deposit before the transaction starts.
When one party is dishonest, the deposit will be deducted to
protect the interests of the other party.

This paper is organized as follows. Section Il reviews exist-
ing work on outsourcing computation techniques, section
III introduces definitions and models, section IV describes
our transaction scheme, section V describes experiments and

VOLUME 10, 2022

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

IEEE Access

related results, and the work of this paper is summarized and
the future work is prospected in Section VI.

Il. RELATED WORKS

In this section, we discuss the research related to the
blockchain and the smart contract in the field of data com-
puting transactions, and we also elucidate the related work of
replication-based verifiable technology and oblivious transfer
technology.

A. BLOCKCHAIN AND SMART CONTRACTS

Blockchain is widely used in the field of data transactions
and the exchange of physical objects [19], [20]. With the
prevalence of blockchain in data sharing, some problems have
emerged, such as fairness of transactions and data copyright
protection [21], [22]. Xiang et al. [23] proposed a flexible
Ethereum-based scheme to automatically guarantee the fair-
ness of data sharing and proactively protect data copyright
by using smart contracts. Reniers et al. [24] recorded and
tracked the process of file registration and access request
by smart contracts. When one party raised a dispute, the
dishonest party can be identified through the smart contract.
Liu et al. [25] and Xiong and Xiong [26] both conducted data
transactions based on the smart contract. Liu used punishment
to hold violators accountable through the votes of external
auditors, while Wei introduced deep learning, and uses simi-
larity learning to deal with disputes about data availability in
data transactions. In order to incentivize data sharing, Xuan
et al. [27] proposed the smart contract data sharing incentive
model based on evolutionary game theory. The smart contract
mechanism can dynamically and collaboratively improve the
incentive parameters and continuously encourage users to
participate in the data sharing program. Wang et al. [28] pro-
posed an auditable fair payment and physical asset delivery
protocol based on the smart contract, which enables reliable
and fair payments among merchants, consumers and logistics
companies.

In addition to the application in data transactions,
Blockchain is also widely used in data outsourcing com-
putation to reduce the transaction cost. Wang et al. [29]
designed a blockchain-based public cloud storage audit
fair payment smart contract, which proposed a concept of
non-interactive provable data ownership, thereby the data
is effectively transacted. In outsourcing computation, there
is also the trust problem between outsourcers and work-
ers. Chen et al. [30] introduced a third-party trust prob-
lem in the outsourcing computation model, and proposed a
new fair-condition payment scheme to solve the trust prob-
lem. Carbunar and Tripunitara [31] proposed a unified trust
framework, relying on offline bank generation and redemp-
tion payment mechanisms, the correct participation will be
economically rewarded, while outsourcing computation is
efficiently validated and effectively rewarded. Kupcu [32]
combined cryptography with elements of game theory and
mechanism design, and proposed to increase rewards to the
honest cloud based on blockchain to help detect cheating

VOLUME 10, 2022

clouds. The fairness of transactions is also crucial in the
process of computing transactions. Lin et al. [33] proposed
an optimized blockchain-based fair payment (OBFP) system
model for outsourcing computations, and addressed fairness
and privacy issues with blockchain-based zero-knowledge
proof technology. Similarly, Zhang et al. [34] also introduced
a blockchain-based fair payment framework for cloud com-
puting outsourcing service BPay.

B. OBLIVIOUS TRANSFER PROTOCOL

Oblivious transfer protocol is a privacy-protected commu-
nication protocol between two parties. The receiver’s pri-
vacy is not known by the sender, Oblivious transfer proto-
col allows the communicating parties to transmit messages
in an optically ambiguous manner. The traditional protocol
is 1-of-2 oblivious transfer protocol of Diffie-Hellman key
exchange, Jain and Hari [35], Lou and Huang [36] and Mu
et al. [37] have proposed a new effective k-out-of-n oblivious
transfer protocol based on this, where the receiver can only
receive k messages out of n messages by the senders, and the
senders did not know which messages were received. Chu
and Tzeng [38] and Lai et al. [39] improved this by using
an effective two-round k-out-of-n oblivious transfer scheme,
in which the receiver sent O(k) messages to the sender, and
the sender sent O(n) messages to the receiver. Esmaeilzade
et al. [40] adopted the concept of asymmetric homomorphic
encryption and proposed a general structure to build a simple
and efficient oblivious transfer protocol.

Oblivious transfer protocol can be used in privacy pro-
tection. Using the concept of blockchain technology, Yang
et al. [41] adopted a privacy protection data transmission
scheme and proposed a novel OTmn protocol to support
secure ciphertext conversion, malicious user identification,
and two-way privacy for both communicating parties. For
data sharing, Shen et al. [42] proposed a privacy-preserving
and untraceable scheme by using proxy re-encryption and
oblivious random access memory. Privacy protection also
applies to digital rights and verification situations. Jiang and
Bo [4] proposed a privacy-preserving digital rights manage-
ment protocol based on oblivious transfer theory, in which
the license server can determine the number of licenses, but
not guarantee the user’s choice accurately. Kak [43] verified
the correctness of the program without revealing the random
numbers used by both parties through the oblivious transfer
protocol. Whereas Damodaran and Rial [44] protected the
privacy of access to the database while enforcing access
control policies by using oblivious transfer.

C. REPLICATION-BASED VERIFIABLE COMPUTATION
TECHNOLOGY

The traditional verifiable computations are proof-based and
replication-based verifiable computation, respectively, which
were described in depth by Dorsala et al. [9]. Kumaresan and
Bentov [45] and Simunic [46] used a verifiable computation
to implement currency transactions. Since the proof-based
verifiable computation uses an encryption algorithm, the

106875

IEEE Access

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

cost is large [47]. Therefore, replication-based verifiable
computation is generally used. Replication-based verifiable
computation technology mainly sends the task to multiple
people. Both Canetti et al. [48] and Avizheh et al. [49]
delegated the computation to multiple servers, and used the
designed protocol to compare the results for verifiability to
guarantee to obtain the correct answer. If any inconsistency
was detected, a cheating cloud would be found after a round
of delegation of the two clouds. For replication verifica-
tion, both Belenkiy et al. [50] and Dong et al. [3] estab-
lished a game theoretic framework, in which a reward and
penalty mechanism based on random review strategies and
hired multiple contractors was designed to perform the work
for verification to keep rational clouds from colluding and
cheating.

The above solutions for fairness, privacy, and verifiable
implementation of data outsourcing computation are all
either too costly or not fully realized. In this paper,
our work is to achieve fairness, privacy, and verifiabil-
ity of data computations by using smart contracts and
oblivious transfer protocol and replication-based verifiable
technology.

Ill. DEFINITIONS, MODELS AND GOALS

In this section, we will briefly describe the technology, the
transaction and adversary models used, as well as the design
goals.

A. REPLICATION-BASED VERIFIABLE COMPUTATION
Replication-based verifiable computation means assigning
the same outsourcing computation to multiple servers instead
of a single server, and verifies the correctness of the compu-
tation by comparing the returned computation results. In this
paper, the computing data is divided into n sub datasets on
average, and the adjacent sub datasets contain at least one
same computing data. Different sub datasets are outsourced to
multiple servers, and only the computation results of servers
with the same data are compared and verified, and the servers
that submit the correct results can get paid.

Definition 1. The replication-based verifiable computation
involves one client and multiple servers as follows.

e F(x): The client transmits the sub dataset x and the
computation function F(x) to the corresponding server.

e Compute(F, x) — y;. Each server receives F and x, and
computes F(x) and outputs y; = F(x), 1 <i <n.

e Verify(Sy;, Syi+1) — {0, 1}. Compare the computation
results of the same data in two adjacent servers, output 1 if
and only if they are equal, otherwise, output 0.

Definition 2. For fair verifiable computation between two
parties, the server and the client must provide the following
guarantees:

e Fast Verification: The output of the work performed to
verify correctness is less than the computational effort.

e Get reward: the server receives a reward from the client if
and only if the server submits the correct computation output
to the client.

106876

B. TRANSACTION MODEL

In this paper, we propose a data outsourcing computation
transaction model, as shown in Figure 1. In this model,
four parts are mainly involved: users, blockchain, IPFS and
the smart contract. Users include one client and n servers.
The client owns the transaction data and wants to get the
computation results of the data. The server side is responsible
for computing the data and finally getting paid. Blockchain
is the infrastructure for the data transaction, which is used
to deploy the smart contract of data outsourcing computation
transactions and support users to join and invoke the smart
contract. The distributed file storage system IPFS is adopted
to store the outsourcing transaction data. The client uploads
the data to be computed and the computation function to
IPFS, and obtains the hash address corresponding to the data.
The address is encrypted and transmitted to the server through
the smart contract. The server decrypts the data address, and
then downloads the data from IPFS. The Smart contract is
the core of the whole transaction model. At the beginning
of the transaction, the client and server store a deposit in
the smart contract. When there is a transaction problem,
the punishment mechanism will be triggered to support the
fairness of the transaction. In the process of transaction,
the smart contract protects the privacy of data through the
oblivious transfer protocol, and the correctness of the data
is judged by the improved replication-based verifiable com-
putation. At the end of the transaction, the smart contract
ensures that the client gets the computation results and the
server gets the rewards, and the whole transaction process is
traceable.

C. ADVERSARY MODEL

In the data outsourcing computation transaction, there are
some potential threats on both sides of the transaction.
We classify these threats into the following three categories
and adopt different strategies to solve them in the adversary
model.

1. The client refuses to pay after receiving the data results.
This will cause the server to not get the corresponding reward
after completing the computation. For this behavior, the client
will be required to store a deposit not less than the reward in
the blockchain before the transaction starts. When the server
refuses to pay, his deposit will be confiscated as the reward.

2. The server returns the wrong results or does not
return the results. For this behavior, the server will be
asked to store the deposit before launching the transac-
tion. When the server returns the results, the improved
replication-based verification computation method is used
to determine whether it is correct. If the server returns the
wrong results or does not return the results, the deposit will be
confiscated.

3. The client and server tamper with the data during the
transaction. Any party modifying the data without authoriza-
tion will lead to transaction disputes. For this phenomenon,
IPES is used to store the transaction data. Once the data is

VOLUME 10, 2022

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

IEEE Access

IPFS file
system

Download data i

Server 1

Block0 |

| Blockl

Call contract

Deploy

Serfer 2

Call contract

Smart contract

Server n

‘ Enter ‘ Transm}igypublic ‘ Deposit ‘ Transmit results
|
Oblivious Replication—based

Privacy

Data verification

modified, the corresponding data storage address will change.
Since the transaction records are stored in the blockchain, one

‘ Function ‘ |

| |

Puni shment
mechanism

protection

FIGURE 1. The transaction model of the data outsourcing computation.

TABLE 1. The main notations used in the proposed scheme.

Notations Description
can find out which party has changed the data by viewing and Data The transaction data
comparing the data addresses. x The sub dataset data
F(x) The computation function for data
Y The server’s data computation results
D. DESIGN GOALS P The remuneration amount for data
. . . C The compensation amount for data
In this paper, the design goals of the data outsourcing com- n The number of servers
putation transaction scheme are as follows. PK_C,PK_S The client and server’s public keys
1. Fairness. After the transaction is completed normally, SK_C,PK_S The client and server’s private keys
. . . D_C,D_S The client and server’s deposits
the client will get the data results, and the servers will get the S R The computation value of the same data
corresponding reward. If there is any problem in the middle, M_R The comparison result of the computation values
C_R The verification result of the server’s honesty

the smart contract will deduct their deposit.

2. Autonomy. Transactions are executed automatically
through the smart contract without the help and arbitration
of any third-party entity supervision.

3. Privacy protection. In the transaction process, each
server only knew the data of their own subtask set, but did
not know others and the complete data.

4. Time constraints. All transaction transactions must be
completed within the specified time.

5. Verifiability. After the transaction results are returned
from the servers, the results will be verified, and the transac-
tion can end only after all servers are honest.

IV. DATA OUTSOURCING COMPUTATION

TRANSACTION SCHEME

In this paper, we propose a scheme of data outsourcing com-
putation transaction based on the smart contract, which can
ensure the verifiability, fairness and privacy protection of the
transaction. In this scheme, the improved replication-based
verifiable computation, the punishment mechanism, and the
oblivious transfer protocol are combined with the smart
contract, and executed automatically in the smart contract.
In order to reduce redundant workload, each server only
computes independent sub datasets, and adjacent servers only
add an identical data, and verify the correctness of the com-
putation results through the improved replication-based ver-
ifiable computation technology. Meanwhile, the punishment

VOLUME 10, 2022

mechanism is used to achieve the fairness of the transaction,
and the oblivious transfer protocol for protecting the data
privacy. Next, we will describe the implementation details
and process of the whole scheme. The main notations used
in the proposed scheme are listed in Table 1.

A. DATA TRANSFER PROCESS
In the data outsourcing computation transaction, the client
first divides the data into n sub datasets, and the adjacent
servers at least one same data in the sub dataset. Then, the
transaction data will be transmitted through IPFS. The data
transmission process is shown in Figure 2, and the processing
steps are as follows.

1. Client transfers the data to be computed and the data
computation function into the IPFS system.

2. Client obtains the hash address corresponding to the data
from IPFS.

3. Client encrypts data through oblivious transfer protocol
and uploads the data to the blockchain.

4. Server gets the encrypted address from the blockchain
and decrypts the data to obtain the Hash address.

5. Server requests the data corresponding to the hash
address from IPFS.

6. Server downloads the data uploaded by the client from
IPFS.

106877

IEEE Access

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

-, .y
Client 2%, W Server
& §E
4y, o
Uy A
‘ Block0 ‘ ‘ Blockl ‘ ‘ ------ ‘ ‘ Block N ‘

FIGURE 2. The data transfer process between the client and the server
through IPFS and blockchain.

B. DATA OUTSOURCING COMPUTATION PROCESS
Based on the smart contract, the main process of data out-
sourcing computation transaction is shown in Figure 3.

1. The client sets the computation award and the amount of
data to be computed by the server, and then makes the deposit
setting for the client and servers.

2. The client stores the deposit into the smart contract
according to the set deposit amount. If the deposit amount is
not greater than the remuneration, the smart contract cannot
be executed. After storing the deposit, the information set in
the transaction is published in the blockchain.

3. The server intending to conduct data outsourcing trans-
actions joins the blockchain and calls the smart contract, and
sends the deposit to the smart contract.

4. The client generates n pairs of public and private keys,
and sends the public key to the server through the smart
contract.

5. The server selects a random number, encrypts the ran-
dom number with the received public key, and sends the
encrypted data to the smart contract.

6. The client decrypts with the private key, encrypts
the data address with the random number, and then
transmits it.

7. After receiving the encryption result, the server decrypts
it with its own random number, obtains the data address,
downloads the data and performs computation, and returns
the computing results.

8. The client verifies the computation results through the
smart contract. If the result is correct, the transaction is
completed, and the client pays a fee to the server and the
smart contract returns the deposit. Otherwise, the transaction
is abnormal, and the contract will deduct the corresponding
deposit and starts a new transaction.

The whole data outsourcing computation transaction pro-
cess is mainly described in Algorithm 1, which includes
the transaction data generation, data transmission, data
computing, computation result verification, remuneration
reward, deposit deduction. When the transaction fails,
the smart contract should not only deduct the deposit
from the server, but also restart a new round of trans-
action, that is, repeat Algorithm 1 until the transaction
succeeds.

106878

Algorithm 1 Data Outsourcing Computation Transaction
Algorithm (DOCT)

Input: Data, D_C, D_S
Output: The transaction results (Success or failure)

1: The client joins the blockchain, generates the transaction
subtask sets x from Data and their corresponding F(x),
and stores x and F(x) in IPFS.

2: The client sets the transaction data values, and the deposit
threshold 6 for the client and servers, and guarantees that
0 is greater than D_C and D_S.

3: The client sends the deposit to the smart contract.

4: The server joins the blockchain, and sends the deposit to
the smart contract.

5: The client generates n pairs of public and private keys,
PK_S and SK_S, and sends the public keys to each server.

6: The server selects the public key to encrypt the random
number, then sends the encrypted result to the smart
contract.

7: The client uses private key to decrypt the encrypted data,
and uses the random number to encrypt the Hash address,
then sends it to the smart contract.

8: The server uses the random number to decrypt and get
the Hash address to download the data from IPFS, and
returns the computation results ¥ and S_R to the client.

9: The client calls the result validation algorithm (Algo-
rithm 3) with S_R as parameters, and assigns the return
value to C_R.

10: if C_R == True then

11: The client pays the server award and returns deposit.

12: return The transaction is successful.

13: else

14: The client deducts the deposit and will start a new
transaction.

15: return The transaction failed.

C. TIME CONSTRAINTS ON TRANSACTIONS

In order to achieve a normal and efficient fair transaction,
both parties reached a consensus and set a series of time
limits in the smart contract. Some transaction operations must
be completed within the specified time limit, otherwise the
transaction will be terminated. The specific time constraints
are as follows.

To: During the transaction process, it is necessary that the
client sets the deposit amount of the client and servers, the
computation reward and the computing amount of the server,
stores the transaction sub datasets and the computation func-
tions to IPFS, and stores their deposit in the smart contract
before time Tjy. Otherwise, the transaction will be terminated
and the deposit will be returned to the client. At the same
time, relevant transaction information is published in the
blockchain so that interested servers can join the transaction.

Ti: After the server joins the blockchain and invokes the
smart contract, it must store the deposit before 71 and the
deposit is not lower than the specified threshold. If any

VOLUME 10, 2022

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

IEEE Access

Client sets deposit
computation rewards

Client sends deposit » Server sends deposit ‘

¥

Client transmits data 1———————————————————J

|
| \—.

i

! Server receives data

ien

Server computes the

Wrong

verifies the
esul
Right

results and returns the
data results

Client receives the data
result and submits the
reward

v
The transaction fails
and the client starts a
new transaction

The transaction is
successfully completed

End

FIGURE 3. The main process of data outsourcing computation transaction.

server does not store the deposit or the deposit is insuffi-
cient, the transaction will be terminated, the corresponding
deposit will be refunded, and the new server will join the
transaction.

T»: Once the deposit of all servers is stored in the
smart contract, the client must generate n pairs of pub-
lic and private keys within 7>, and submit all public keys
to the smart contract. Otherwise, the transaction will be
terminated.

T3: After receiving the public key from the smart contract,
the server must select a random number within 73, then
encrypt it with the public key and submit it to the smart
contract. Otherwise, the transaction will be terminated.

T4: When the client receives the encrypted data, it must
decrypt it with the private key within 74, then encrypt the data
address with the obtained random number, and transmit it to
the smart contract.

Ts: After the server obtains the data encryption result and
decrypts it, it obtains the data through IPFS and performs
computation. The computing results must be transmitted back
to the client within T5. If the results are transmitted after 7',
the server is considered dishonest and its output is set to null.
The returned results are verified by the client. If the compu-
tation results are correct, the server is honest. Otherwise, it is
regarded as dishonest.

Tes: When the results of all servers are verified, the client
must deliver the reward to the smart contract within 7g, and
each honest server will receive the reward. If the client fails
to pay or the reward delivered is insufficient, the deposit
is deducted as the reward and the deposit of the server is
refunded. Meanwhile, the dishonest server is deducted the
deposit, and the computing task is outsourced to a new
server.

VOLUME 10, 2022

T7: We set the buffer time to 7%, so that all servers have
enough time to receive rewards, and return the deposit to the
client and servers. After T7, the entire transaction must be
successfully completed, and the client and servers exit from
the transaction, or the transaction fails, and the client starts
the next transaction.

D. SMART CONTRACT ANALYSIS

The data outsourcing computation transaction is imple-
mented through the smart contract. The interaction between
the server and the client in the smart contract is shown in Fig-
ure 4, which mainly completes data encryption transmission,
data computation result return, server reward acquisition,
deposit return and other operations. In this paper, the penalty
mechanism, the data verification algorithm and the oblivious
transfer protocol are adopted in the smart contract to achieve
fairness, verifiability and privacy protection of transactions.

1) PENALTY MECHANISM

In order to ensure the fairness of the data outsourcing com-
putation, the smart contract introduces a penalty mechanism.
Before the transaction starts, the client will store the deposit
not less than the remuneration into the smart contract, and
the server will store the deposit not less than the payable
amount into the smart contract. When the client fails to
pay or the reward is insufficient, the penalty mechanism
will be triggered to deduct its deposit as the reward to the
server and return the deposit to the server. When the server
does not return data or the data verification is inconsistent,
it is determined that the server is dishonest, and the penalty
mechanism is triggered to deduct the deposit of the server and
return the client’s deposit. In algorithm 2, we implement the
client and server penalty mechanism.

106879

IEEE Access

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

} Set the client's deposit D_C

Server

Smart
contract

|
A‘Set the server's deposit D_S

| Set the reward
¢

Send the client's depositD_C

Send the client's deposit PK_C

Send the server's depositD_S

Send the encrypted data Hash value

Send the reward

Send server’s data computation results Y

s
.

Return the client's deposit D_C

|
|
1
|
|
|
|
>
*
|
|
|
|
I
|
|
|
I
I
|
|
|
|
|
|
I
|
|

— e e |- ——@——d—— |4

Return the server's deposit D_S

1
1
|
|
I
|
|
|
|
|
1
|
|
|
|
|
|
|
J |
Send the encrypted result |
1
|
|
|
|
J
|
|
|
|
|
|
|
|
1
i
|
|

FIGURE 4. The interaction between the server and the client based on the smart

contract.

Algorithm 2 Client and Server Penalty Algorithm (CSP)

Input: User, D_C, D_S

Output: D_C,D_S

1: if User == Client then

2: D _C = D_C-P /] Deduct the remuneration from the
client’s deposit as the reward of the server.

3: D_S = 0// Return the deposit of the server.

4: else

5: D_S = D_S-C // Deduct the deposit from the server
as compensation to the client.

6: D_C = 0// Return the deposit to the client.

7: return D_C,D_S

2) RESULT VERIFICATION
In this section, we propose a computation result verification
algorithm based on the improved replication-based verifiable
technology, which is used to judge the correctness of the
returned results of the server, so as to determine whether the
server is honest. In the improved replication-based verifiable
technology, in order to reduce the cost of repeated compu-
tation, we first divide the outsourcing computation data into
n sub datasets, n > 2, and at least one data in the adjacent
sub datasets is the same. Then, each sub dataset is assigned
to one server. For the result data returned by each server i, it is
only necessary to compare its computation results with that of
the same data in adjacent servers i—1 and i+1, determine the
server is honest or not by comparing the results. Each server
has only two states: honest or dishonest. We assume that if
the computation results of two servers are the same, they are
both honest. Otherwise, one party is dishonest or both are
dishonest. Therefore, the comparison result matrix between
adjacent servers is shown in Table 2.

Based on the above matrix, we design a computation result
verification algorithm. The specific verification process is

106880

TABLE 2. The comparison result matrix of adjacent servers.

S_R;=S_R;_1
server ¢-1 is honest

S Ri #S_Ri_1
server ¢-1 is dishonest

S_R;=S_R;+1 server 4 is honest server ¢ is honest
server ¢+1 is honest server 7+1 is honest
server ¢-1 is honest server ¢-1 is dishonest

S_R; #S_R;4+1 server i is honest server ¢ is dishonest

server i+1 is dishonest server ¢+1 is dishonest

described in Algorithm 3. First, we compute and record the
comparison results of any two adjacent servers. If the results
are the same, 1 is returned, otherwise, 0 is returned (lines 1-
10). Then, according to the above comparison results, judge
the honesty of all servers in a sequential cycle from the second
server to the first server (lines 11-25). The judgment rules
are as follows: (1) if the current value is 1 and the previous
value is 1, the servers in the current and previous locations
are honest; (2) If the current value is 1 and the previous
value is 0, the server in the current location is honest and
the server in the previous location is dishonest; (3) If the
current value is 0 and the previous value is 1, the server at the
current location is honest and the server at the next location is
dishonest; (4) If the current value is 0 and the previous value
is 0, the servers in the current, previous and next locations are
all dishonest. At the end of this round, the computation tasks
of the dishonest servers are assigned to the new servers for
recomputation, and a new round of transactions is started.

Complexity analysis. In algorithm 3, the result data sim-
ilarity judgment compares the two adjacent results in turn,
and the last result is compared with the first result. Then, the
comparison results are stored in the array. This process takes
O(n) time in total. Next, it takes O(n) time to traverse all the
comparison results and judge the honesty of each server. The
above two parts are executed independently. Therefore, the
total time cost of the data validation algorithm is O(n). Since
n is the number of servers, it is limited. Therefore, the cost of
data verification algorithm is very small.

VOLUME 10, 2022

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

IEEE Access

Algorithm 3 Computation Results Validation Algorithm
(CRV)

Imput: S_Ri(1 <i<n)

Output: C_R;

1: fori=1,...,ndo

2: j=imodn+1

3 if i == n then

4 k=0

5: else

6 k=i

7 if (S_R; == S_R;) then

8 M_R, =1

9 else

10: M_R, =0

11: fori=1,...,ndo

12: if i == 1 then

13: k=n

14: else

15: k=i—1

16: if(M_R,==1and M_R; | == 1) then

17: CR=1,CR=1,CRiy1=1

18: else

19: if (M_R; == 1and M_R;_; == 0) then
20: CR=0,C R =1,CRiy1=1
21: else
22: if M_R;==0and M_R;_| == 1) then
23: CR=1,CR=1,C_Ri+1=0
24: else
25: C_Rk = 0, C_Ri = 0, C_Ri+1 =0

26: return C_R

3) PRIVACY PROTECTION
In the data outsourcing computation transaction, we intro-
duce the oblivious transfer protocol into the smart contract
to protect the data privacy. Based on the oblivious transfer
protocol, the server only knows the data it is responsible for
computing, but cannot know the remaining data processed by
other servers and the data repeated with adjacent servers, so as
to achieve the privacy of the data. The traditional oblivious
transfer protocol is mainly 1-2 protocol. That is, suppose A
has two pieces of information, and B wants to select one. After
the transmission through the oblivious protocol, B gets the
piece of information he wants, but does not know the other
piece of information, and A does not know which piece of
information B selects. In this paper, the oblivious transfer
protocol is improved, and the transaction confidentiality is
realized by using 1-n oblivious transfer protocol. Compared
with the classical 1-2 oblivious transfer protocol, 1-n oblivi-
ous transfer protocol is more secure, and the computational
complexity is not high, which can improve the security of
privacy protection.

The transaction flow of the 1-n oblivious transfer protocol
is as follows. First, the client generates n pairs of public
keys and private keys, and sends the public keys to the

VOLUME 10, 2022

TABLE 3. Account addresses of all users.

User Account address

Client(Alice) 0x5B38Da6a701c¢568545dCfcBO3FcB875f56beddC4
Server(Bob) 0xAb8483F64d9C6d 1 EcF9b849Ae677dD3315835¢ch2
Server(Cindy) 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db
Server(David) 0x78731D3Ca6b7E34aC0OF824c42a7cC18A495cabaB

FIGURE 5. The client and server deposit settings.

corresponding servers. After the server obtains the public key,
it generates a random number, encrypts the random number
with the public key, and then sends the encryption result to the
client. After obtaining the encrypted data, the client decrypts
the private key to obtain the random number. Then, the client
encrypts the Hash value of the data address with a random
number and sends the encryption result to the server. Finally,
the server decrypts the ciphertext with random numbers to
obtain the corresponding Hash value.

V. EXPERIMENTS EVALUATION

A. EXPERIMENTAL SETUP AND TESTING

In this paper, we have implemented a smart contract for data
outsourcing computation transactions and verified the trans-
action scheme on the website “http://remix.ethereum.org/”.
Remix adopts the solidity language to build smart contracts,
providing a test environment that supports the compilation,
verification and deployment of any simulated Ethereum smart
contracts. Solidity has built-in data types, which are used to
build all the functions of smart contracts. Based on Remix
and solidity, we implemented the punishment mechanism
by building the deposit and return deposit functions, the
oblivious transfer by sending the public key function and the
encrypted data function, and the replication-based verifiabil-
ity by the data verification function.

We use one client (Alice) and three servers (Bob, Cindy,
and David) as test cases and set the Ethereum addresses of the
client and servers, as shown in Table 3. All functional tests
are executed by entities with specific Ethereum addresses.
First, before launching the transaction, the client’s deposit
must be set to be no less than the reward return (In this paper,
we assume 90wei), and the server deposit must be set to be
no less than the due return, as shown in Figure 5.

Alice must set the price and the number of blocks.
As shown in Figure 6, the interested servers can join in,
including Bob, Cindy, and David.

Then, the server and client must store the corresponding
deposit according to the set deposit amount, otherwise the
transaction will stop and remind users to store the correct

106881

IEEE Access

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

@ [vn) from: 0x5BS...eddC4 to: Datatrade.Set Price(uint256) Oxdl...39138 value: 0 wei data: Oxbff...0005a logs: 0 hash: Oxase...Sbfeb

status true Transaction ained and sxscution succeed
transaction hash Oxaae2eT: 5 1 teb O
fron 0x5B38Da6 701 c568546dC£ B0 CBBTS 56beddC4 ([0

to Datatrads, Set_Price (uint256) 0xdol450CES2DE86£254917a481eB 442094339138 (O
gas 60089 gas (O

transaction cost 52251 gas (O

execution cost 52251 gas @

input Oxbf...0005a O

decoded input {
“uint2s6 Price’: “90"

o

FIGURE 6. The client sets price and number of blocks.

ACCOUNT

0x5B3...eddC4 (99.999999999995388054 ether)

GAS LIMIT
3000000
VALUE
90 Wei

(a) Client sets the deposit amount of the client.
[vn] from: 0x5BS...eddC4 to: Datatrade. Send DepositA() 0xdSl...39138 value: 50 wei data: Oxc@9...b5c81 logs: 0
hash: 0xc4l...0e50b
status true Transaction mined and execution succeed

transaction hash 0xc417aef5b00bd65d1 d9ed00Bc0C] 3d692037C701944963b46£ 4625027750500 ([0

fron 0x5B38Da6a701cH08545dC cBOSF cBATS{5ebeddC4 ([

to Datatrade. Send_DepositA() 0xd9145CCE52D38612549172481eB44e9943F39138 (0
gas 44432 gas ([0

transaction cost 38636 gas (0

execution cost 38636 gas (0

input 0xc69...b5c81 [0

decoded input 4o

decoded output {
“0”: “hool: false”

logs

(b) Client sends the deposit.

FIGURE 7. The deposit process of the client.

amount. The balance of the client (Ethereum address: 0 x
5B38Da6a701c568545dCfcBO3FcB875f56beddC4) before
the test is 99.999999999995355054 ether, and the deposit
amount is set to 90 wei, which is deposited into the
contract from the client, as shown in Figure 7. Then,
the 30 wei deposit is deposited into the smart contract from
the server Bob (Ethereum address: 0xAb8483F64d9C6d1E
cF9b849Ae677dD3315835¢cb2), and Figure 8 shows the log
triggered by the server depositing the 30 wei deposit.

Next, Alice sends the public key of the oblivious trans-
fer protocol to the transaction, and the transaction begins,
as shown in Figure 9.

Then, Alice encrypts the data address with the random
number returned by the server Bob, and sends the address to
the server Bob, as shown in Figure 10.

After receiving the encrypted address, the server Bob
decrypts to obtain the data address. Then, Bob obtains data
from IPFS according to the address, performs the compu-
tation, and then returns the computation result to the smart
contract. The smart contract needs to verify the correctness

106882

.35cb2 to: Datatrade. Send DepositB() 0xddl...39138 value: 30 vei data: Oxesb...a6313 logs: 0

status true Transaction mined and execution succeed

transaction hash 0x876362514114c££237321bcal 815b41 7430c244e596115b426251abd0dbee50c [0

fron 0x4bB483F 64d9CEdIECFObB49AE0TTdD3315835ch2 (0
to Datatrade. Send DepositB() 0xd9145CCE52D38612549176481eB4429943739138 (01
gas 70408 gas (@

transaction cost 61224 gas O

execution cost 61224 gas @
input OxeBb...a6313 [0
decoded input o

decoded output {
“0”: “hool: false”

logs ne o

FIGURE 8. The deposit process of the server.

[va] from ..2ddC4 to: Datatrade. Send PublicKeyA(string) 0xd9l...39138 value: 0 vei data: 0x976...00000 logs: 0

hash: Oxfc5,
status true Transaction mined and execution succeed

transaction hash OxfcBbSd529119b; 7T56e2d2ccl s

fron 0x5B38Da6a701cH6R545ACE cBOSFcBBT5 50beddCs [0

to Datatrade. Send_PublicKeyA (string) 0xd9145CCES2D386£254917e4816B4409943F39138 ([0
gas 111932 gas @

transaction cost 97332 gas @

execution cost 97332 gas O

input 0x976.... 00000 (O

decoded input {

“string PublicKeyA’: 0x5B38Daba701c508545dCH cBOSFCBB75£56beddC4” ‘

I D

FIGURE 9. The client sends the public key of the oblivious transfer
protocol.

[vn] from: 0x5B3...eddC4 to: Datatrade.Send Data(string) Oxddl...39138 value: O vei data: 0x0b9...00000 logs: 0
hash: 0xc6...c41%

status true Transaction mined and execution succeed
transaction hash 0%c905331 2065b159b61 5c419e [0
from 0x5B38Da6a701c568545dCE cBO3F cBBT5E56beddC4 ([0
to Datatrade. Send_Data(string) 0xd9145CCE52D3861254917e481eB4429943F39138 (0
gas 36938 gas [0
transaction cost 32120 gas @
execution cost 32120 gas @
input 0x0b9. .. 00000 (@
decoded input {

“string hash”: “ TpiTEC] hLEVHVuei |

1o

FIGURE 10. The client sends the encrypted data address of the server.

of the results returned by the server Bob. The verification
process of the server Bob is shown in Figure 11.

B. EVALUATION ANALYSIS

1) PERFORMANCE ANALYSIS

Privacy. During data transmission, Alice encrypts data with
three random numbers only known to Bob, Cindy and David,
respectively. Finally, Bob, Cindy and David can only decrypt
the data they want to compute and do not know other servers’
data, thus implementing the privacy protection of the transac-
tion data.

Verifiability. The smart contract compares the return
results of the same data among Bob, Cindy and David. When
all the comparison results are the same, all servers are honest.
When Bob and Cindy have different comparison results, but
Cindy and David have the same comparison results, Bob is
regarded as dishonest, as shown in Figure 11.

Fairness. Before the transaction starts, both the client and
the server store deposits, as shown in Figure 7 and Figure 8.

VOLUME 10, 2022

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

IEEE Access

BOSFcEATS:

56, Uint256) 0xd3] 450CES2D3861254917e 481544699437 39138

(a) All servers return correct results.

revert
The transaction has been reverted to the initial state.

Reason provided by the contract: "Bob is hoest,Cindy is dishonest.™.

(b) Bob returns the correct result, and Cindy returns the wrong result.

revert
The transaction has been reverted to the initial state.

Reason provided by the contract: "Bob is heest,David is dishonest”.

(c) Bob returns the correct result, and David returns the wrong result.

revert
The transaction has been reverted to the initial state.
Reason provided by the contract: "Bob is dishonest.”.

(d) All servers return incorrect results.

FIGURE 11. The verification process of the results returned by the server.

If the transaction is executed normally, Alice finally gets
the data results, and Bob, Cindy and David get the data
reward. In case of violation, the deposit of the violating
party will be confiscated. When the client does not pay
the reward, the deposit initially stored will be paid as the
reward and the rest of the deposit refunded. We test the
case of returning the deposit when the server Bob is honest.
Before the test, the balance of Bob (Ethereum address:
0xAb8483F64d9C6d1EcF9b849Ae677dD3315835¢b2) is
99.99999999999816446 ether, then deducting the gas fee
79728 gas (1 gas = 1 wei) spent on returning the deposit
transaction, and getting the contract returns the deposit
amount of 30 wei to Bob. After the test, the balance of server
Bob is 99.99999999999736748 ether, as shown in Figure 12.
When the server returns an error result, the deposit stored
by the server will be deducted and the rest will be returned.
All operations of the distributed ledger log on the Ethereum
blockchain will be recorded.

2) TIME CONSUMPTION ANALYSIS

In the data outsourcing computation transaction, each trans-
action stage is completed within a certain time constraint,
so that the transaction is fair and timely. Since most trans-
action stages are based on smart contracts, the time spent in
each step of the transaction will affect the efficiency of the
transaction. Therefore, we will test the time consumption of
several key steps in the smart contract, including storing the
deposit, public key verification and returning of verification
results, and give eight test results to verify the effectiveness
of the time constraint. In the above steps, we only select a

VOLUME 10, 2022

ACCOUNT

OxADBS8...35¢b2 (99.999999999999816446 ether)

GAS LIMIT
3000000
VALUE

0 Wei

(a) The balance of the server before the deposit
is returned.
ACCOUNT

0xAb8...35cb2 (99.999999999999736748 ether)

GAS UIMIT
3000000
VALUE

0 Wei

(b) The balance of the server after the deposit is
returned.

@ vl from: OxkbS...35ch2 to: Datatrade.Button ResultlQ Oxd9l...39138 value: O vei data: Oxbdl...fcdbe logs: 0 hash: Ox6da...besSc

status uccead

0]

fron 0xAbB48F64d9C6d1ECFObB49Ae6T7dD3315835¢cb2 [0
to Datatrade. Button Result1() 0xd9145CCES2D386254917e481eB44e9943F 39138 ([0
gas 91688 gas O

_Tqm s ©

79728 gas O

input Oxbd?. .. fedbe (@
(c) Gas consumption of the deposit refund transaction process.
FIGURE 12. The deposit refund process of the server.

TABLE 4. The time consumption of three transaction steps.

Eight Tests (s)

Test Steps T 2 3 4 5 6 7 8
Store the deposit 1 2 1 1 1 2 1 2
Public key verification 32 3 2 3 3 2 3
Return verificationresults 2 3 2 2 3 2 3 3

typical test object, and the specific implementation test time
of each step is shown in Table 4.

3) GAS FEE ANALYSIS

Gas fee refers to the amount of computation required to
perform transaction operations on the Ethereum blockchain
network. The greater the amount of computation and energy
consumption, the higher the transaction cost. In the data
outsourcing computation transaction, all transaction oper-
ations are implemented by calling functions in the smart
contract. Therefore, we compute the running costs of the four
functions with the largest amount of computation, includ-
ing set_deposit, send_deposit, send_PK, and verify_data,
as shown in Table 4, as a measure of data outsourcing trans-
action costs. The transaction cost is calculated by converting
the gas fee consumed by the function into US dollars (unit:
US dollars). The computing formula is as follows. Cost =
Gas_fee*1072%312.02 (US dollars) (1 gas = 1 wei, 1 eth =
1072 wei, 1 eth = 312.02 US dollars). In Table 5, the gas fee
costs for establishing and executing four transaction opera-
tions on the official Ethereum network are shown. As we can
see, the cost of using the smart contract on Ethereum is very

106883

IEEE Access

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

TABLE 5. The gas cost of four functions.

Functions Gas Used Actual Cost USD

set_deposit 68350 68350 0.021
send_deposit 38636 38636 0.012
send_PK 97332 97332 0.030
verify_data 30134 30134 0.009

TABLE 6. Comparison of our solution with existing solutions.

Property 9] [30] [31] [32] Our solution
Smart contract based Yes No No No Yes
Untamperable data No No No No Yes

Verifiability Yes Yes Yes Yes Yes
Fairness Yes Yes Yes Yes Yes
Privacy Yes Yes Yes No Yes

low, and the cost is roughly related to the computation and
storage complexity of functions.

VI. DISCUSSION

In this section, we compare our data outsourcing transaction
solution with other four existing solutions from relevant
literatures in five important functional properties. If the solu-
tion has the feature, we mark it with ’Yes’, otherwise with
’No’. The comparison results are shown in Table 6. With all
comparison of the proposed solutions, all marks for properties
of our solution are ’Yes’. That is, our solution meets all
the attributes. Therefore, we can draw a conclusion that our
solution has more advantages than other solutions in data
outsourcing computation.

VII. CONCLUSION

This paper has proposed a data outsourcing computing
scheme based on smart contract, which supports fair, privacy
protection and verifiable transactions. In this scheme, the
penalty mechanism based on smart contracts is used to imple-
ment automatic and low-cost transactions, and transaction
data is recorded in the blockchain as evidence to resolve
transaction disputes. The oblivious transfer technology is
adopted to protect the data privacy of customers in trans-
actions. Further, the improved replication-based verifiable
technology is used to reduce transaction cost and computation
cost. The smart contract of the scheme is written in solidity
language, and deployed and tested in the Ethereum develop-
ment environment Remix. The test case consists of one client
and three servers to verify its effectiveness and efficiency.
The simulation results show that the scheme is feasible, that
is, when all parties are honest, the server gets paid, and the
client gets the data results. Meanwhile, the transaction has
fairness, verifiability and privacy protection. Particularly, the
time consumption and cost consumption of smart contracts
are very low and can be ignored. In future work, we will
design more stable and secure smart contracts, and improve
privacy protection to further ensure the privacy of transaction
users.

ACKNOWLEDGMENT
(Lina Li and Tingting Zhang are co-first authors.)

106884

REFERENCES

[1]

[2]

[3]

[4]

[51

[6]

[71
[8]

[9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]
[20]

(21]

[22]

(23]

W. Xiong and L. Xiong, “Data trading certification based on consortium
blockchain and smart contracts,” IEEE Access, vol. 9, pp. 3482-3496,
2021.

A. Jyoti and R. K. Chauhan, “A blockchain and smart contract-based data
provenance collection and storing in cloud environment,” Wireless Netw.,
vol. 28, no. 4, pp. 1541-1562, May 2022.

C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Oct. 2017, p. 211.

Y. Jiang and Y. Bo, “A privacy-preserving digital rights management pro-
tocol based on oblivious transfer scheme,” Int. J. Digit. Content Technol.
its Appl., vol. 5, no. 5, pp. 337-341, May 2011.

S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang, “Blockchain-
enabled smart contracts: Architecture, applications, and future trends,”
IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 11, pp. 2266-2277,
Nov. 2019.

A. Al Omar, A. K. Jamil, A. Khandakar, A. R. Uzzal, R. Bosri, N. Mansoor,
and M. S. Rahman, “A transparent and privacy-preserving healthcare
platform with novel smart contract for smart cities,” IEEE Access, vol. 9,
pp. 90738-90749, 2021.

R. Gennaro, *“Verifiable outsourced computation: A survey,” in Proc. ACM
Symp. Princ. Distrib. Comput., 2017, p. 313.

L. Zhang and R. Safavi-Nain, “Batch verifiable computation of outsourced
functions,” Des., Codes Cryptogr., vol. 77, no. 2, pp. 563-585, 2015.

M. R. Dorsala, V. N. Sastry, and S. Chapram, ““Fair payments for verifiable
cloud services using smart contracts,” Comput. Secur., vol. 90, Mar. 2020,
Art. no. 101712.

W. S. Park, H. Lee, and J.-Y. Choi, “Formal modeling of smart contract-
based trading system,” in Proc. 24th Int. Conf. Adv. Commun. Technol.
(ICACT), Feb. 2022, pp. 48-52.

M. Sharifinejad, A. Dorri, and J. Rezazadeh, “Bis—A blockchain-
based solution for the insurance industry in smart cities,” 2020,
arXiv:2001.05273.

R. Kumar, W. Wang, J. Kumar, T. Yang, A. Khan, W. Ali, and I. Ali,
““An integration of blockchain and Al for secure data sharing and detection
of CT images for the hospitals,” Computerized Med. Imag. Graph., vol. 87,
Jan. 2021, Art. no. 101812.

M. Pawlak and A. Poniszewska-Maranda, “Trends in blockchain-based
electronic voting systems,” Inf. Process. Manage., vol. 58, no. 4, Jul. 2021,
Art. no. 102595.

M. R. Dorsala, V. N. Sastry, and S. Chapram, “Blockchain-based solu-
tions for cloud computing: A survey,” J. Netw. Comput. Appl., vol. 196,
Dec. 2021, Art. no. 103246.

M. Zhaofeng, W. Lingyun, W. Xiaochang, W. Zhen, and Z. Weizhe,
“Blockchain-enabled decentralized trust management and secure usage
control of IoT big data,” IEEE Internet Things J., vol. 7, no. 5,
pp. 4000-4015, May 2019.

W. Xiong and L. Xiong, “Anti-collusion data auction mechanism based on
smart contract,” Inf. Sci., vol. 555, pp. 386—409, May 2021.

A. Kumar, K. Abhishek, P. Nerurkar, M. R. Ghalib, A. Shankar, and
X. Cheng, “Secure smart contracts for cloud-based manufacturing using
ethereum blockchain,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 4,
p. 4129, Apr. 2022.

T. Li, W. Ren, and Y. Xiang, “FAPS: A fair, autonomous and privacy-
preserving scheme for big data exchange based on oblivious transfer, ether
cheque and smart contracts,” Inf. Sci., vol. 544, pp. 469-484, Feb. 2021.
T. Li, D. Li, and M. Wang, “Blockchain-based fair and decentralized data
trading model,” Comput. J., vol. 65, no. 8, pp. 2133-2145, Aug. 2021.

D. Hu, Y. Li, L. Pan, M. Li, and S. Zheng, “A blockchain-based trading
system for big data,” Comput. Netw., vol. 191, May 2021, Art. no. 107994.
Z. Ullah, B. Raza, H. Shah, S. Khan, and A. Waheed, “Towards
blockchain-based secure storage and trusted data sharing scheme for IoT
environment,” [EEE Access, vol. 10, pp. 36978-36994, 2022.

Z. Chen, Y. Tian, and C. Peng, “An incentive-compatible rational secret
sharing scheme using blockchain and smart contract,” Sci. China Inf. Sci.,
vol. 64, no. 10, pp. 1-21, Oct. 2021.

Y. Xiang, W. Ren, T. Li, X. Zheng, T. Zhu, and K.-K.-R. Choo, “A multi-
type and decentralized data transaction scheme based on smart contracts
and digital watermarks,” J. Netw. Comput. Appl., vol. 176, Feb. 2021,
Art. no. 102953.

VOLUME 10, 2022

L. Li et al.: Fair, Verifiable and Privacy-Protecting Data Outsourcing Transaction Scheme Based on Smart Contracts

IEEE Access

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

V. Reniers, Y. Gao, R. Zhang, P. Viviani, A. Madhusudan, B. Lagaisse,
S. Nikova, D. Van Landuyt, R. Lombardi, B. Preneel, and W. Joosen,
“Authenticated and auditable data sharing via smart contract,” in Proc.
35th Annu. ACM Symp. Appl. Comput., Mar. 2020, pp. 324-331.

K. Liu, H. Desai, L. Kagal, and M. Kantarcioglu, “Enforceable data
sharing agreements using smart contracts,” 2018, arXiv:1804.10645.

W. Xiong and L. Xiong, “Smart contract based data trading mode
using blockchain and machine learning,” [EEE Access, vol. 7,
pp. 102331-102344, 2019.

S. Xuan, L. Zheng, I. Chung, W. Wang, D. Man, X. Du, W. Yang,
and M. Guizani, “An incentive mechanism for data sharing based on
blockchain with smart contracts,” Comput. Electr. Eng., vol. 83, May 2020,
Art. no. 106587.

S. Wang, X. Tang, Y. Zhang, and J. Chen, “Auditable protocols for fair
payment and physical asset delivery based on smart contracts,” [EEE
Access, vol. 7, pp. 109439-109453, 2019.

H. Wang, H. Qin, M. Zhao, X. Wei, H. Shen, and W. Susilo, “Blockchain-
based fair payment smart contract for public cloud storage auditing,” Inf.
Sci., vol. 519, pp. 348-362, May 2020.

X. Chen, J. Li, and W. Susilo, “Efficient fair conditional payments for
outsourcing computations,” IEEE Trans. Inf. Forensics Security, vol. 7,
no. 6, pp. 1687-1694, Dec. 2012.

B. Carbunar and M. V. Tripunitara, “Payments for outsourced computa-
tions,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 2, pp. 313-320,
Feb. 2012.

A. Kiipcii, “Incentivized outsourced computation resistant to malicious
contractors,” IEEE Trans. Dependable Secure Comput., vol. 14, no. 6,
pp. 633-649, Nov. 2015.

C. Lin, D. He, X. Huang, and K.-K.-R. Choo, “OBFP: Optimized
blockchain-based fair payment for outsourcing computations in cloud
computing,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 3241-3253,
2021.

Y. Zhang, R. H. Deng, X. Liu, and D. Zheng, “Outsourcing service fair
payment based on blockchain and its applications in cloud computing,”
IEEE Trans. Services Comput., vol. 14, no. 4, pp. 1152-1166, Jul. 2018.
A. Jain and C. Hari, “A new efficient protocol for k-out-of-n oblivious
transfer,” Cryptologia, vol. 34, no. 4, pp. 282-290, Sep. 2010.

D.-C. Lou and H.-F. Huang, “An efficient 7-out-of-n oblivious transfer
for information security and privacy protection,” Int. J. Commun. Syst.,
vol. 27, no. 12, pp. 3759-3767, Dec. 2014.

Y. Mu, J. Zhang, and V. Varadharajan, “m out of n oblivious transfer,” in
Proc. Australas. Conf. Inf. Secur. Privacy, 2002, pp. 395-405.

C. Chu and W. Tzeng, “Efficient k-out-of-n oblivious transfer schemes
with adaptive and non-adaptive queries,” in Proc. Int. Workshop Public
Key Cryptogr., 2005, pp. 172-183.

J. Lai, Y. Mu, F. Guo, R. Chen, and S. Ma, “Efficient k-out-of-n oblivious
transfer scheme with the ideal communication cost,” Theor. Comput. Sci.,
vol. 714, pp. 15-26, Mar. 2017.

S. Esmaeilzade, N. Pakniat, and Z. Eslami, “A generic construction to
build simple oblivious transfer protocols from homomorphic encryption
schemes,” J. Supercomput., vol. 78, no. 1, pp. 72-92, Jan. 2022.

H. Yang, J. Shen, J. Lu, T. Zhou, X. Xia, and S. Ji, “A privacy-preserving
data transmission scheme based on oblivious transfer and blockchain
technology in the smart healthcare,” Secur. Commun. Netw., vol. 2021,
pp. 1-12, Sep. 2021.

J. Shen, H. Yang, P. Vijayakumar, and N. Kumar, “A privacy-preserving
and untraceable group data sharing scheme in cloud computing,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 4, pp.2198-2210,
Jul. 2021.

S. Kak, “Oblivious
arXiv:1504.00601.
A.Damodaran and A. Rial, “Unlinkable updatable databases and oblivious
transfer with access control,” in Proc. Australas. Conf. Inf. Secur. Privacy,
2020, pp. 584-604.

R. Kumaresan and I. Bentov, “‘How to use Bitcoin to incentivize correct
computations,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2014, pp. 30-41.

S. Simunic, D. Bernaca, and K. Lenac, ‘“Verifiable computing applications
in blockchain,” IEEE Access, vol. 9, pp. 156729-156745, 2021.

J. Lee, C. Nicopoulos, G. Jeong, J. Kim, and H. Oh, “Practical verifiable
computation by using a hardware-based correct execution environment,”
IEEE Access, vol. 8, pp. 216689-216706, 2020.

transfer protocol with verification,” 2015,

VOLUME 10, 2022

(48]

[49]

[50]

R. Canetti, B. Riva, and G. N. Rothblum, ‘“Practical delegation of compu-
tation using multiple servers,” in Proc. 18th ACM Conf. Comput. Commun.
Secur. (CCS), 2011, pp. 445-454.

S. Avizheh, M. Nabi, R. Safavi-Naini, and K. M. Venkateswarlu, ‘“Veri-
fiable computation using smart contracts,” in Proc. ACM SIGSAC Conf.
Cloud Comput. Secur. Workshop (CCSW), 2019, pp. 17-28.

M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Kiipgii, and
A. Lysyanskaya, “Incentivizing outsourced computation,” in Proc. 3rd Int.
workshop Econ. Networked Syst. (NetEcon), 2008, pp. 85-90.

LINA LI received the M.S. degree from the School
of Computer Science and Technology, Harbin
Institute of Technology, Harbin, in 2006, and the
Ph.D. degree in computer system architecture from
the College of Computer Science and Technology
(CCST), Jilin University, Changchun, in 2019. She
is an Associate Professor with the College of Com-
puter Science and Technology, Changchun Uni-
versity. Her research interests include blockchain,
deep learning, and cloud computing.

TINGTING ZHANG was born in Changchun, Jilin,
China, in 1997. She is currently pursuing the mas-
ter’s degree with the College of Cyber Security,
Changchun University, Jilin. She has participated
in several provincial scientific research projects of
the College of Computer Science and Technology,
and relevant research results have applied for an
invention patent and published an EI conference
paper. Her research interests include blockchain
and smart contract.

GUODONG SUN received the Ph.D. degree in
computer science from the Harbin Institute of
Technology, Harbin, China, in 2009. He was a
Postdoctoral Researcher at Tsinghua University,
Beijing, China. He is currently an Associate Pro-
fessor with the Department of Internet-of-Things,
Beijing Forestry University, Beijing. His research
interests include machine learning, mobile com-
puting, wireless algorithms, and the Internet-of-
Things.

DEZHENG JIN was born in Anyang, China,
in 1997. He is currently pursuing the postgraduate
degree with Changchun University. He has a strong
interest in the direction of blockchain and has
conducted some research about smart contract and
consensus mechanism in this field. He participated
in a provincial scientific research project based
on blockchain technology. He has published an
EI conference paper and applied for an invention
patent. His research interests include blockchain
and deep learning.

NIANFENG LI received the Ph.D. degree in
mechatronics engineering from the Changchun
Institute of Optics, Fine Mechanics and Physics,
Chinese Academy of Sciences. He is a Professor
and the Dean of College of Computer Science
and Technology (CCST), Changchun University,
China. He is also the Vice Director of the
Biomedical Engineering Research and Develop-
ment Center, Changchun University. His current
major research interests include image process-

ing, somatosensory technology, rehabilitation training systems, and campus
safety technology.

106885

