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ABSTRACT This paper describes a source tracking technique in a reverberant environment using a new
combination of an adaptive species-based particle swarm optimization (ASPSO) algorithm and a multiple
signal classification (MUSIC) algorithm. To mitigate the effects of reverberation, an insightful dereverbera-
tion method based on an online autoregressive (AR) array and a minimum variance distortionless response
(MVDR) beamformer is developed to dereverberate themicrophone signal prior to direction of arrival (DOA)
estimation using MUSIC. On the basis of several evolutionary schemes, ASPSO enables rapid tracking by
finding local maxima in the MUSIC pseudospectrum. In the ASPSO algorithm, particles are divided into
different species, where each species is associated with a sound source. As the sound source moves, the
DOA information is dynamically updated using ASPSO, in which the inertia weight decreases progressively
to prevent premature convergence. Two update rules for adapting the filter coefficients are employed for
drastically moving sources. Simulations and experiments are conducted using a circular microphone array
to validate the proposed ASPSO with AR (ASPSO-AR) algorithm. The results demonstrate that ASPSO-AR
requires one-third of the processing time of the grid search (GS) method. In addition, the root-mean-square
error (RMSE) of the ASPSO-AR algorithm is 10◦ less than that of the GS method.

INDEX TERMS Autoregression, direction of arrival, grid search, multiple signal classification, particle
swarm optimization.

I. INTRODUCTION
Sound source localization using microphone arrays finds
modern applications in voice assistants [1], smart homes [2],
mobile phones [3], hands-free systems [4], and meeting tran-
scription systems [5]. Direction of arrival (DOA) estimation
of sources is central to many acoustic signal processing prob-
lems, such as source separation [6] and speech enhancement
[7]. In practical application scenarios, a moving sound source
such as a human speaker can pose difficulties for localization,
particularly in noisy and reverberant fields. Source tracking
refers to the localization ofmoving sources. A source tracking
technique that is robust to acoustically adverse conditions
would be most desirable in real-life applications, which moti-
vates a dynamic multisource tracking technique with derever-
beration capability in this study.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

Source localization methods can be categorized as direct
and indirect methods [8]. Direct methods such as delay
and sum (DAS) [9], minimum power distortionless response
(MPDR) [10], and multiple signal classification (MUSIC)
[11] can be used to estimate the DOA directly from the
microphone signals, whereas indirect methods can be used
to estimate direction-bearing features such as the time differ-
ence of arrival (TDOA) [12] between microphone pairs in the
first stage, and estimate the DOAs of sources in the second
stage [13]. Recently, orthogonal matching pursuit (OMP)-
based approaches have been proposed to estimate the M
DOAs with high resolution [14], [15], whereM is the number
of microphone sensors. In [15], a novel scheme was proposed
to tackle phase ambiguity and distinguish adjacent signals
using a nonuniform array based on the OMP algorithm and
DAS analysis. The direct method, the MUSIC algorithm,
is employed in this paper because of its superior localization
resolution. Similar to all direct localization methods, MUSIC
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requires a grid search to find local maxima in its pseudospec-
trum, which can be very time-consuming for a uniform search
in space.

In addition to computational complexity, the tracking accu-
racy can be severely compromised by reverberation. The
MUSIC algorithm is susceptible to reverberation, which is
partially correlated with the source signal [16]. Hence, con-
ventional localization methods based on free-field source
models are deemed inappropriate for reverberant fields. Tech-
niques have been suggested [17], [18], [19], [20], [21], [22]
to alleviate the detrimental effects of reverberation in the
context of array beamforming. A covariance matrix based
on a diffuse isotropic field model can be assumed for the
application of multichannel Wiener filters [23], [24], [25],
[26]. Alternatively, themultiple-input/output inverse-filtering
theorem (MINT) algorithm [27] can be utilized for dere-
verberation. However, as a limitation of this technique, the
room impulse responses between the sources and sensors
must be available a priori and accurately identified, which is
generally difficult in practice. To counter this, the weighted-
prediction-error (WPE) [28], [29], [30], [31] algorithm based
on an autoregressive model to estimate late reverberation was
proposed. The power spectral density of the anechoic signal
is estimated in the WPE such that the late reverberation can
be reduced without prior knowledge of the source’s direction
and room impulse responses. In this paper, a dynamic source
tracker inspired by an autoregression (AR) array and mini-
mum variance distortionless response (MVDR) beamforming
is formulated for online dereverberation. Thus, the derever-
berated microphone signals serve to calculate the MUSIC
pseudospectrum for the tracking task.

In source localization, a peak-finding procedure is required
to locate the direction of the sound sources from the MUSIC
pseudospectrum. Instead of a uniform grid search, which
is prohibitively expensive to compute on-the-fly for most
applications, a dynamic search procedure based on an evolu-
tionary algorithm (EA) [32] is adopted in this work. Genetic
algorithms (GA) [33], evolution strategies (ES) [34], particle
swarm optimization (PSO) [35], differential evolution (DE),
cuckoo search (CS) [36], [37], and harmony search (HS) [37]
are EA-based algorithms that are well suited for nonconvex
problems with multiple local optima [38]. EA emulates the
process of natural selection, where fitter individuals have a
higher chance of reproducing their offspring and surviving in
the next generation. For DOA estimation of multiple sources,
‘‘niching’’ techniques such as crowding [39], speciation [40],
and sequential niche [41] can be employed to address mul-
tiobjective optimization problems. Speciation helps acceler-
ate convergence when allocating each particle to a specific
species. The number of particles in each species must be
restricted to maintain species diversity. Extraneous particles
with poor performance for each species are reinitialized at a
random location in the search space [42].

Many techniques can be employed to assist the evolution
process. Evolutionary state estimation (ESE) [43] divides an
evolutionary state into four stages: convergence, exploitation,

exploration, and jumping-out. Particles adaptively adjust their
evolution trajectories according to the swarm distribution.
However, if a sound source abruptly moves away from its
stationary state, it is difficult for the particle swarms to
escape from the convergence state. To address this problem,
the quantum swarm model (QSM) [44] divides all particles
into two groups termed ‘‘neutral particles’’ and ‘‘quantum
particles’’ can be considered. Neutral particles follow the
update rule of the conventional PSO, whereas quantum par-
ticles are positioned as a ‘‘cloud’’ centered at the ‘‘species
seed’’ [40], which is meant for monitoring the peak change.
Although the QSM can track the sudden and largemovements
of the sources, updating quantum particles is computation-
ally expensive. To remedy this, an elitist learning strategy
(ELS) [43] can be used. ELS randomly mutates one dimen-
sion of the position of the ‘‘global-best’’ particle to detect
peak changes. Once the fitness value of the mutated particle
exceeds the original value, the solution is replaced with the
mutated particle. The inertia weights [45], [46], [47], [48] and
acceleration coefficients [49], [50], [51], [52] of PSO can be
applied to improve the performance of PSO algorithms in this
paper. The update rule of particle velocity is modified in each
iteration to find new directions for sound sources, where a
species-based concept is adopted to divide the particles into
multiple species and guide the particles toward the centers
of their species. In addition to the attraction force from the
species centers, the movement of the particles is also affected
by the progressively decreasing inertia weight. The acceler-
ation coefficients are dynamically adapted for sources with
significant movements. In this paper, an adaptive species-
based particle swarm optimization (ASPSO) algorithm with
AR is employed for the dynamic tracking of multiple moving
sources under reverberation.

A six-microphone circular array is used for simulations
and experiments to assess the tracking performance of the
ASPSO-AR algorithm in a reverberant environment. The
root-mean-square error (RMSE) is adopted to compare the
performance of the proposed system with that of the other
baseline methods. The processing times required by the PSO-
based algorithms and the grid search are also compared.
Numerical simulations are conducted to evaluate the AR
algorithm in the context of source localization.

The remainder of this paper is organized as fol-
lows. Section II presents the MUSIC-based localization
method and autoregression method for dereverberation.
In Section III, PSO-based algorithms are introduced.
Section IV presents simulations and experiments to validate
the proposed techniques, and Section V concludes the paper.

II. SOURCE LOCALIZATION IN REVERBERANT FIELDS
A. ARRAY SIGNAL MODEL AND THE MUSIC ALGORITHM
The MUSIC algorithm is designed on the basis of the orthog-
onality of the ‘‘signal subspace’’ and the ‘‘noise subspace’’
derived from the data covariance matrix. ConsideringD inde-
pendent source signals impinging on an M – element array,
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an array signal model can be established in the short-time
Fourier transform (STFT) domain, as follows:

y(l, n) = A(n)s(l, n)+ r(l, n)+ u(l, n), (1)

where s(l, n) ∈ CD denotes the STFT of the source signal
vector at time frame l and frequency bin n. The reverber-
ation vector r(l, n) ∈ CM is assumed to be partly cor-
related with the source signals. The additive noise vector
u(l, n) ∈ CM is assumed to be uncorrelated with the
source signals. The steering matrix is denoted as A(n) =[
a(n, θ1) a(n, θ2) · · · a(n, θD)

]
∈ CM×D. In the free-

field plane-wave model, the steering vector, a(n, θd ), d =
1, 2, · · ·D, can be expressed as

a(n, θd ) =
[
exp (−jkd · p1) · · · exp (−jkd · pM )

]T
,

(2)

where pm, m = 1, · · · ,M is the position vector of the mth
microphone, kd = [2πnfs/(NFFT c)] κd is the wave vector,
fs denotes the sampling frequency in hertz, NFFT is the fast
Fourier transform (FFT) size, and c is the speed of sound. Unit
vector κd signifies the DOA of the d th source. In the MUSIC
algorithm, the following pseudospectrum is calculated:

SMUSIC (n, θ) =
1

aH (n, θ)Pu(n)a(n, θ)
, (3)

where Pu(n) = U(n)UH (n) is the projection matrix of the
noise subspace [54]. A peak appears in SMUSIC (n, θ) if the
steering vector points toward the right source direction.

The MUSIC algorithm in (3) is based on the free-field
model, and its localization accuracy generally deteriorates in
the presence of reverberation. This problem requires derever-
beration preprocessing, as detailed below.

B. AUTOREGRESSION ARRAY INSPIRED ONLINE
DEREVERBERATION
To counter the degradation of localization performance due
to late reverberation, an online dereverberation preprocessor
is formulated on the basis of the AR model and MVDR
beamformer. The late reverberation signal X̂late(l, n) in the
T-F domain can be estimated using linear prediction.

X̂late(l, n) = −w̃H ỹl−1,n, (4)

where ‘‘H ’’ denotes the conjugate-transpose operator. w̃ =[
w1 w2 · · · wKT

]T
∈ CKT×1 is a complex weight vec-

tor. KT = MK represents the total frame number of the
late reverberation, K is the frame number of the late rever-
beration in each channel, and 1 denotes the number of
frames that cover the early reflections. The vector, ỹl−1,n =[
ȳT1 ȳT2 · · · ȳ

T
M

]T
∈ CMK×1, accounts for late reflections

ȳm =
[
Ym(l −1, n) · · · Ym(l −1− K + 1, n)

]T . In this
linear predictionmodel,wk is the kth complex-valuedweight-
ing coefficient to be determined using an MVDR criterion.
Using (4), the mth channel linear prediction error (the dere-
verberated signal) can be expressed as

em(l, n) = Ym(l, n)− X̂late(l, n) = wH
mym, (5)

TABLE 1. The AR-based online dereverberation algorithm.

where wm =
[
w0 w1 · · · wKT

]T
∈ C(KT+1)×1 is

used to estimate the early and direct signals. ym =[
Ym(l, n) ȳT1 ȳT2 · · · ȳ

T
M

]T
. w0 = wH

mui = 1 with [ ui]j =
δij, i = 1, j = 1, 2, . . . , (KT + 1) is a one-hot vector.
The weighting coefficients can be obtained by minimizing
E
[
e2m(l, n)

]
, which can be posed as the MVDR beamformer

design problem:

argmin
wm

wH
mRm(l, n) wm st. wH

mui = 1, (6)

where Rm(l, n) = E
[
ymy

H
m
]
= RH

m (l, n) ∈ C(MK+1)×(MK+1)

denotes the covariance matrix. The solution to the above-
constrained optimization problem is [56]

wm = λR−1m (l, n)ui =
R−1m (l, n)ui

uHi R
−1
m (l, n)ui

=
vi

uHi vi
, (7)

where R−1m (l, n) =
[
v1 v2 · · · v(MK+1)

]
. Using this in (5)

yields the dereverberated signal, em(l, n) = wH
mym. The

complete procedure of the preceding multichannel AR-based
online dereverberation approach is summarized in Table 1.

In Table 1, α and β are forgetting factors for the adap-
tive recursive least squares (RLS) filter [31]. NT is the total
number of frequency bins. LT is the total number of time
frames. The recursive relation of the inverse matrix R−1m (l, n)
is derived using the Sherman-Morrison formula [53], which
is also known as the Woodbury matrix identity or matrix
inverse lemma, as detailed in Appendix A. The dereverber-
ated signals serve as input data for the subsequent MUSIC
localization unit.

III. PARTICLE SWARM OPTIMIZATION-BASED
MULTI-SOURCE TRACKING
A. PARTICLE SWARM OPTIMIZATION
MUSIC localization is computationally expensive to compute
in real time for moving-source tracking if a uniform grid
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search is performed in the space. To address this problem,
we exploit particle swarm optimization (PSO) [39] to accel-
erate the tracking process. The general update rule of PSO
can be written as

xδ(l, t) = xδ(l, t − 1)+ vδ(l, t − 1), (8)

where xδ(l, t) contains the information of the angle θ in (3). δ
is the particle index. t is the iteration index. The term vδ(l, t) is
referred to as ‘‘velocity’’ in PSO terminology and is updated
according to

vδ(l, t) = wvδ(l, t − 1)+ b1c1 [pδ(l, t)− xδ(l, t)]

+ b2c2 [g(l, t)− xδ(l, t)], (9)

where pδ(l, t) represents the ‘‘personal-best’’ and g(l, t)
denotes the ‘‘global-best’’ for all particles in the search space.
In addition, w denotes the inertia weight, c1 and c2 denote the
acceleration coefficients, and b1, b2 ∈ [0, 1] denote random
numbers drawn from the uniform distribution. The particle
swarm continues to move at each iteration until the following
stopping criterion is satisfied:

|f (g(l, t))− f (g(l, t − 1))| /f (g(l, t)) < ε0, (10)

where ε0 presets a threshold. The following frequency-
averaged MUSIC spectrum is adopted as the fitness function:

f (θ ) =
nstop∑

n=nstart

SMUSIC (n, θ)/Nfreq, (11)

where Nfreq = nstop − nstart + 1 is the frequency range from
the frequency bin nstart to nstop.pδ(l, t) and g(l, t) in (9) can be
determined from the maximal fitness function in (11). Using
the PSO peak-finding update rule, the direction of a single
source can be determined from the converged particles. The
PSO algorithm is summarized in Table 2.

In Table 2, Niter denotes the total number of iterations,
and Nall denotes the total number of particles. To track mul-
tiple sources, the PSO algorithm must be modified using
the species seed technique [40]. The modified approach is
referred to as PSO-S in this paper, as detailed below.

B. PARTICLE SWARM OPTIMIZATION WITH SPECIES SEED
Instead of using the global-best position, PSO-S utilizes
species seed particles in its neighborhood. The species seed
approach facilitates PSO for tracking multiple sound sources.
In addition, the species seed technique can accelerate pro-
cessing when searching for sound sources. A random number
is generated as the inertia weight to prevent particles from
being trapped in the local-suboptimal position. The velocity
update equation of the δth particle in the PSO-S algorithm is
modified as follows:

vδ(l, t) = b3wvδ(l, t − 1)+ b1c1 [pδ(l, t)− xδ(l, t)]

+ b2c2 [sδ(l, t)− xδ(l, t)], (12)

where b3 is a random number uniformly distributed between
0 and 1. sδ(l, t) denotes the species seed inside a circle with

TABLE 2. The PSO algorithm.

radius σs and is centered at the δth particle in the search
space. The complete procedure for determining seed species
is summarized in Table 3.

In Table 3, s refers to the subset of Sseed . The species
seed technique exploits the fitness value of the local-best
particles. The PSO-S algorithm first searches for the local-
best particles and then uses them as the species seed to find
the source locations. The procedure for finding the local-best
particles is known as ‘‘crowding’’ in PSO literature [55]. The
directions of the sources can be estimated using the centroids
of the clusters. The ‘‘crowding’’ procedure is summarized in
Table 4.

By counting the number of each particle being selected as
the species seed in a cluster, the particle positions with the top
D highest counts are regarded as the best-estimated source
directions in the current iteration. The stopping criterion of
the PSO-S algorithm is

D∑
δ=1

|f (sδ(l, t))−f (sδ(l, t−1))| /f (sδ(l, t))<Dε0. (13)

C. MODIFIED PARTICLE SWARM OPTIMIZATION
Themodified particle swarm optimization (MPSO) [57] algo-
rithm utilizes a set of adaptive parameters as its inertia weight
and acceleration coefficients in (12). That is,

w(t)=w(t−1)η, c1(t)=c1(t−1)η, c2(t)=c2(t−1)η−1,

(14)

where

η =
Nall

Nall + Ncluster
∈ [0, 1] , (15)
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TABLE 3. The species assignment algorithm [40].

where Ncluster denotes the number of particles in each cluster.
The MPSO algorithm helps particles efficiently search the
neighborhood for a suboptimal solution. The stopping crite-
rion of the MPSO algorithm is given by (13).

D. ADAPTIVE SPECIES-BASED PARTICLE SWARM
OPTIMIZATION
The adaptive species-based particle swarm optimiza-
tion (ASPSO) algorithm utilizes a progressive inertia
weight [wp(t)] and two adaptive acceleration coefficients
[c1,a(t), c2,a(t)] [43] in (12).

wp(t) = at−1, (16)

where a is a numerical value between zero and one. c1,a(t) and
c2,a(t) are updated on the basis of exploration, exploitation,
convergence, and jumping-out states [43].

c1,a(t), c2,a(t)

=



c1,a(t − 1)+ µ, c2,a(t − 1)− µ
for exploration state

c1,a(t − 1)+ 0.5µ, c2,a(t − 1)− 0.5µ
for exploitation state

c1,a(t − 1)+ 0.5µ, c2,a(t − 1)+ 0.5µ
for convergence state

c1,a(t − 1)− µ, c2,a(t − 1)+ µ
for jumping-out state,

(17)

where u ∈ [0.05, 0.1] is a random value with a uniform
distribution. The four evolutionary states can be determined
by an evolutionary factor (fe), which is an ESE technique.

FIGURE 1. The relation between the evolutionary factor and four
evolutionary states (convergence, exploitation, exploration, and
jumping-out) [43].

TABLE 4. The pseudo-code of the crowding algorithm.

Figure 1 indicates that the evolutionary factor (fe) can
determine the current evolutionary state by which the accel-
eration coefficients can be obtained. The evolutionary factor
(fe) is calculated as follows:

fe =
ds − dmin

dmax − dmin
∈ [0, 1] , (18)

where di = 1
Ns−1

Ns∑
j=1,j6=i

∣∣xi(l, t)− xj(l, t)∣∣ is the average

distance between the ithparticle and the otherNs−1 particles.
Ns represents the number of particles in each species. ds
denotes the average distance when the ithparticle is a species
seed. dmax denotes the maximum average distance, and dmin
represents the minimum average distance. In addition, the
ELS [43] technique is applied to the convergence state to
search for potential local maxima.

s′δ(l, t) = sδ(l, t)+ σELSe, (19)

where e ∼ N (0, 1) is a Gaussian random variable and σELS
controls the search range of the ELS. The stopping criterion of
the ASPSO algorithm is given in (13). The ASPSO algorithm
is summarized in Table 5.

Standard PSO can locate only a single source, whereas
PSO-S can locate multiple sources. A set of modified inertia
weights [w(t)] and two acceleration coefficients [c1(t), c2(t)]
are employed in the MPSO algorithm, which makes it
well-suited for tracking fast-moving sources. ASPSO relies
on progressively decreasing weights, [wp(t)], to guide par-
ticles toward the directions of sound sources and two
adaptive coefficients [c1,a(t), c2,a(t)] to better track the tra-
jectory of moving sources with large movements. All three
PSO-based algorithms exploit the species tracking proce-
dure for multiple-source tracking. Despite its complexity, the
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TABLE 5. The ASPSO algorithm.

proposed ASPSO algorithm exhibits robustness in dynamic
source tracking, as shown by the simulation and experimental
results.

IV. SIMULATIONS AND EXPERIMENTS
A. PARAMETER SETTINGS
Male speech signals [58] and female speech signals [59] are
used as source signals in the simulation. The reverberant
signals for different angles are produced by convolving the
clean signal with the room impulse response generated using
the image source method [60], [61]. The parameter settings
for (10), (11), (16), (19), (20) and Table 1 are listed in Table 6.
dsource refers to the distance between the sound sources and
the array center. θGS denotes the angular resolution of the
grid search (GS) method. ελ represents the threshold for
estimating the number of sound sources, as described in detail
below:

B. SOURCE COUNTING ESTIMATE
In this paper, the number of sound sources for each time frame
is estimated using eigenvalue decomposition as follows:

p̂(l) =
{
i− 1| i ∈ 2, 3, . . .M , λ̄i(l) < ελλ̄1(l)

}
, (20)

where p̂(l) is the estimated number of sound sources for each

time frame. λ̄m(l) = 1
Nfreq

nstop∑
n=nstart

|λm(l, n)| is the average

TABLE 6. The parameter settings.

eigenvalue in descending order for each time frame, where
m = 1, 2, . . .M . The parameter ελ is used to estimate the
number of sources. Using (20), p̂(l) can be determined by
i − 1when λ̄i(l) < ελλ̄1(l). This paper uses a UCA to
estimate the number of sources. Hence, themaximumnumber
of sources detected isM − 1, and if the coarray MUSIC [62],
[63] is used, this work can detect more thanM sources.

C. SIMULATIONS
A rectangular room of dimensions, L4.6 m × W5.0 m ×
H2.6 m, is assumed for the simulation. The signal-to-noise
ratio (SNR) is set to 40 dB. For simplicity, this study only con-
siders azimuthal angles (the signal sources and microphone
sensors are in the same plane). Three simulation cases are
employed to validate the proposed dynamic source-tracking
algorithm with an AR dereverberation preprocessor. Case A
aims to evaluate the proposed localization algorithm for two
sources with various sets of reverberation times (T60). Case
B evaluates the different angular spacings that the proposed
localization algorithm can distinguish. Case C is intended to
assess the tracking ability of the proposed PSO-based source
tracking algorithms in a reverberant field.

1) CASE A
The simulation settings for Case A are shown in Fig. 2.

Figure 2 depicts the simulation setting of Case A for a
6-microphone uniform circular array (UCA) (diameter,da =
7 cm). The two sources are 1 m from the center of the UCA.
Nine combinations of the two source positions are selected for
Case A. The angular spacing 1θ is 40◦, with reverberation
times of T60 = 0.25 s, 0.40 s, and 0.60 s. The root-mean-
square error for Case A is calculated as

εrms,A =

√√√√√ 1
DQ

D∑
d=1

Q∑
q=1

[
θ̂
q
d − θ

q
d

]2
, (21)

where the number of evaluated cases is Q = 27.
Three different reverberation times are selected. For each

reverberation time, nine combinations of the source positions
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FIGURE 2. The simulation settings for two sources in Case A. The
diameter of the circular array is 7 cm. The distance between the sound
sources and the center of the UCA is 1 m. The simulated room is L4.6 m ×
W5.0 m × H2.6 m. T60 = 0.25 s, 0.40 s, and 0.60 s. SNR = 40 dB.

are examined. The localization results of Case A obtained
using the grid search (GS) with and without AR dereverbera-
tion are shown in Fig. 3. Figure 3 shows that room reverber-
ation has a detrimental effect on the two-source localization.
Without AR preprocessing, the RMSE obtained using the
GS method is 14.54◦, whereas the RMSE drops sharply to
4.74◦ with GS-AR preprocessing. Figure 3 shows that AR
dereverberation can reduce the localization error of multiple
sources under various reverberation conditions. Next, the GS
and ASPSO-AR methods for different angular spacings are
presented in Case B.

2) CASE B
In Case B, 1θ for two sources is set to 30◦, 20◦, and 10◦

to evaluate the performance of the speech source localiza-
tion under T60 = 0.25 s and SNR = 40 dB. The GS and
ASPSO-AR methods are used. In this case, σlocal and σs are
set to 7◦. Nall is set to 70. The results are depicted in Fig. 4.
The GS and ASPSO-AR methods can localize speech sound
sources when 1θ = 30◦. However, the performance of the
GS method decays when 1θ = 20◦ due to reverberation.
The ASPSO-ARmethod can detect two speech sources when
1θ = 10◦. Hence, the proposed ASPSO-AR algorithm can
resist reverberation and distinguish adjacent speech sound
sources compared to the GS method. Table 7 displays the
source localization results. Next, the tracking performance by
using the PSO-based algorithms will be presented in Case C.

3) CASE C
The simulation settings for Case C are shown in Fig. 5.

TABLE 7. The source localization results of case B.

FIGURE 3. The localization results of RMSE with the GS-AR and GS
methods in Case A under SNR = 40 dB and various T60.

FIGURE 4. The source localization results for 1θ = 30◦, 20◦, and 10◦ using
the GS and ASPSO-AR methods under T60 = 0.25 s and SNR = 40 dB.

In Case C, the ground-truth source angle is scheduled
in five stages. In 0-5 s, the first and second sources are
stationary at 40◦ and 130◦, respectively. At Time = 5 s, the
first source starts to rotate counterclockwise with a constant
angular speed (0.1 rad/s) from 40◦ to 130◦ and stops at
Time = 20 s. Similarly, at Time = 5 s, the second sound
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FIGURE 5. The azimuth trajectory of two moving sources in the
simulation for Case C.

source starts to rotate counterclockwise at a constant angular
speed (0.1 rad/s) from 130◦ to 220◦ and stops at Time =
20 s. Between Time= 20-25 s, both sources remain at rest. A
6-microphone UCA with a diameter da = 7 cm, positioned
at the center of a room with T60 = 0.25 s and SNR = 40 dB,
is assumed in this simulation case. To quantify the tracking
performance of the proposed PSO algorithms, the root-mean-
square error (RMSE) for Case C is computed as follows:

εrms,C =

√√√√ 1
DL

D∑
d=1

LT∑
l=1

[
θ̂d (l)− θd (l)

]2
, (22)

where θ̂d (l) and θd (l) denote the estimated and ground-truth
azimuthal angles, respectively. The source-tracking results
for Case C are shown in Figs. 6(a)-(c).

In this simulation, four tracking algorithms with AR dere-
verberation (GS-AR, PSO-S-AR, MPSO-AR, and ASPSO-
AR) and two algorithms without AR dereverberation
(ASPSO and GS) are compared. The trajectories of the GS-
based and PSO-based algorithms are shown in Fig. 6(a). Only
the tracking results of theASPSO andASPSO-AR algorithms
are presented because PSO-S-AR, MPSO-AR, ASPSO, and
ASPSO-AR perform similarly. Note that the RMSE in Fig.
6(b) for GS-AR is reduced by 15◦ in comparison with that
of the GS method, which suggests that AR dereverberation is
effective in improving the tracking performance. The perfor-
mances of these six methods can be ranked as ASPSO-AR
(εrms,C = 2.81◦), MPSO-AR (εrms,C = 3.07◦), PSO-S-
AR (εrms,C = 4.05◦), ASPSO (εrms,C = 5.78◦), GS-AR
(εrms,C = 9.04◦), and GS (εrms,C = 24.22◦). The results
show that PSO-based algorithms with AR perform better
than the GS-AR algorithm. The MPSO-AR and ASPSO-AR
methods outperform the PSO-S-AR method because of the
dynamic parameters (inertia weight and acceleration coeffi-
cients). In addition, the ASPSO-AR method benefits from
the ESE procedure in adjusting the acceleration coefficients,

FIGURE 6. The source tracking results of Case C. (a) Source direction
estimated, (b) RMSE, and (c) processing time. T60 = 0.25 s and SNR =
40 dB.

as well as the ELS technique. This explains the slightly
better performance of the ASPSO-AR method than that of
the MPSO-AR method. Speech pauses may cause errors in
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source localization for each time frame. The ASPSO algo-
rithm is robust to speech pauses because the species seed
information can be utilized in the next time frame. The results
of the GS and ASPSO methods are confirmed. The ASPSO-
AR method performs better than the ASPSO method owing
to the AR dereverberation. The processing time required
for the MUSIC localization algorithm with and without AR
dereverberation, based on 6247 time frames, is compared
in Fig. 6(c). A laptop computer, Swift SFX14-41G, with a
Core AMD Ryzen 7 5800U, was used for comparison. The
package R2018b MATLAB 9.5 R©was used. It can be seen
from the results that the PSO-based algorithms spend only
one-third of the processing time of the GS-based algorithms,
which lends themselves very well to real-time implementa-
tion. The processing times required by the six algorithms
can be ranked as PSO-S-AR (0.126 s), MPSO-AR (0.127 s),
ASPSO-AR (0.139 s), ASPSO (0.148 s), GS-AR (0.388 s),
and GS (0.391 s). Owing to its simplicity, the PSO-S method
performs a faster search than MPSO and ASPSO. Therefore,
ASPSO requires more processing time than MPSO owing to
the greater complexity of the former algorithm.

D. EXPERIMENTS
To further validate the proposed tracking algorithms,
an experiment was conducted using the same settings as in
Case C in the simulation. The MUSIC pseudospectrum is
frequency-averaged in the 2500-3000 Hz band to obtain the
localization result. However, instead of rotating the sources,
an equivalent rotating-array scenario was created by placing
the UCA on a turntable, as shown in Fig. 7.

Two fixed loudspeaker sources are placed at θ =

40◦, 130◦, and both are 1 m away from the origin. A UCA
with a diameter of 7 cm is mounted on the turntable and
rotated in opposite directions to simulate moving source
scenarios. For example, a 90-degree rotation clockwise of
the microphone array on the turntable equals a 90-degree
counterclockwise of the sound sources. The motion of the
turntable follows the same five-stage angular displacement
schedule for Case C in the simulation (Fig. 5). The experi-
mental results are shown in Fig. 8. From Fig. 8, we see the
degradation of the tracking performance if AR dereverbera-
tion is not used to preprocess the microphone signals. The
RMSE of tracking is reduced by approximately 11◦ with the
aid of AR dereverberation. The performances of the tracking
approaches can be ranked as ASPSO-AR (εrms = 9.55◦),
MPSO-AR (εrms = 9.69◦), PSO-S-AR (εrms = 9.80◦),
ASPSO (εrms = 9.90◦), GS-AR (εrms = 13.04◦), and
GS (εrms = 24.86◦). The PSO-based algorithms, combined
with AR dereverberation, perform better in terms of RMSE
than the GS-AR algorithm. The MPSO-AR method exploits
the adaptive inertia weight and acceleration coefficients to
update the velocity of the particles, which leads to a better
performance of the MPSO-AR method than the PSO-S-AR
method. The ASPSO-AR method outperforms PSO-S-AR
and MPSO-AR, owing to the ESE and ELS. The ASPSO
method performs better than the GS-based algorithms due

FIGURE 7. The experimental arrangement for the two-source tracking
scenario in a L4.6 m × W5.0 m × H2.6 m listening room. T60 = 0.25 s and
SNR = 38.03 dB.

FIGURE 8. The experimental results of the source tracking trajectory using
GS-based and PSO-based algorithms. T60 = 0.25 s and SNR = 38.03 dB.

to the species seed tracking procedure. The processing times
required by the tracking algorithms can be ranked as PSO-
S-AR (0.085 s), MPSO-AR (0.091 s), ASPSO (0.102 s),
ASPSO-AR (0.103 s), GS-AR (0.150 s), and GS (0.153 s).

V. CONCLUSION
PSO-based algorithms combined with the AR method for
online dereverberation have been proposed to track dynam-
ically moving sources under reverberant conditions. Several
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mechanisms are incorporated into the PSO search process
to improve tracking ability. Three PSO-based approaches
equipped with AR dereverberation are compared to two
benchmarking methods (GS and GS-AR). The simulation
results show that the PSO-based algorithms can reduce the
processing time to approximately one-third that of the GS
algorithm. In addition, the AR method aimed at dereverbera-
tion proves effective in increasing the tracking performance.
In comparison with the PSO-S and MPSO algorithms, the
ASPSO algorithm exhibits superior tracking performance
because of the ESE and ELS procedures. The MPSO method
performs slightly better at tracking sources than the PSO-S
method. While the ASPSO algorithm shows excellent track-
ing performance, it requires more processing time than
the PSO-S and MPSO methods. The experimental results
demonstrate the superior tracking performance of PSO-based
algorithms with AR dereverberation in the presence of rever-
beration.

APPENDIX
The inverse matrix R−1m (l, n) in Table 1 can be derived from
the Sherman-Morrison formula [53].(

A+ uvH
)−1
= A−1 −

A−1uvHA−1

1+ vHA−1 u
, (A1)

where A is assumed to be an invertible square matrix. u and
v are the column vectors. If we set A to be αRm(l− 1, n) and
set u and v to be ym√

λ̂(l,n)
, (A1) can be expressed as

(
αRm(l − 1, n)+

ym
√
λ(l, n)

yHm
√
λ(l, n)

)−1
= (αRm(l − 1, n))−1

−
(αRm(l − 1, n))−1 ymy

H
m/λ(l, n) (αRm(l − 1, n))−1

1+ yHm (αRm(l − 1, n))−1 ym/λ(l, n)

=
1
α

(
R−1m (l−1, n)−

R−1m (l−1, n)ymy
H
mR
−1
m (l−1, n)

αλ(l, n)+yHmR
−1
m (l−1, n)ym

)

=
R−1m (l − 1, n)− k(l, n)yHmR

−1
m (l − 1, n)

α
, (A2)

where k(l, n) is a (MK + 1)× 1 vector defined in Table 1.
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