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ABSTRACT Dimensionality reduction and the automatic learning of key features from electroencephalo-
graphic (EEG) signals have always been challenging tasks. Variational autoencoders (VAEs) have been
used for EEG data generation and augmentation, denoising, and automatic feature extraction. However,
investigations of the optimal shape of their latent space have been neglected. This research tried to understand
the minimal size of the latent space of convolutional VAEs, trained with spectral topographic EEG headmaps
of different frequency bands, that leads to the maximum reconstruction capacity of the input and maximum
utility for classification tasks. Head maps are generated employing a sliding window technique with a 125ms
shift. Person-specific convolutional VAEs are trained to learn latent spaces of varying dimensions while a
dense neural network is trained to investigate their utility on a classification task. The empirical results
suggest that when VAEs are deployed on spectral topographic maps with shape 32 × 32, deployed for
32 electrodes from 2 seconds cerebral activity, they were capable of reducing the input up to almost 99%,
with a latent space of 28 means and standard deviations. This did not compromise the salient information,
as confirmed by a structural similarity index, and mean squared error between the input and reconstructed
maps. Additionally, along the 28 means maximized the utility of latent spaces in the classification task,
with an average 0.93% accuracy. This study contributes to the body of knowledge by offering a pipeline for
effective dimensionality reduction of EEG data by employing convolutional variational autoencoders.

INDEX TERMS Electroencephalography, convolutional variational autoencoder, latent space, deep learning,
frequency bands, spectral topographic maps, and neural networks.

I. INTRODUCTION
Electroencephalography (EEG) is a technique of recording
brain electrical potentials using electrodes placed on the
scalp [1]. It is well known that EEG signals contain essential
information in the frequency, temporal and spatial domains.
For example, some studies have converted EEG signals into
topographic power head maps to preserve spatial informa-
tion [2]. Others have produced spectral topographic head
maps of different EEG bands to both preserve information in
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the spatial domain and take advantage of the information in
the frequency domain [3]. However, topographic maps con-
tain highly interpolated data in between electrode locations
and are often redundant. For this reason, convolutional neural
networks are often used to reduce their dimensionality and
learn relevant features automatically [4]. Also, most of these
networks are part of larger architectures for classification
purposes [5]. However, they often neglect the size of these
architectures, as their main goal is tomaximize accuracy. This
lead often to significant computational time, and redundant
training operations. Therefore, we argue that most of these
networks can be significantly reduced, trained faster, and lead
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to models still with high classification accuracy. An Autoen-
coder (AE) is a deep learning neural network architecture
used to learn efficient codings in an unsupervised fashion,
without the use of labeled data. These codings, often referred
to as latent spaces, are usually of a lower dimension than
the original input and they are used to reconstruct it with
high fidelity [6]. A Variational Autoencoder (VAE) is a spe-
cific type of autoencoder that builds a probabilistic model of
the input sample and then reconstructs it using that model.
In a VAE, a probabilistic distribution is built to estimate the
distribution of the input data. Therefore, it is not a single
computation but rather an estimation of the sample data. As a
result, VAE can be employed to generate synthetic data [7].
The encoding method of a VAE is identical to that of regular
autoencoders. However, the distinction is that VAE trans-
forms the input data into probability distribution parameters,
such as a Gaussian’s mean and variance. This method creates
a continuous, structured latent space that is helpful for the
reconstruction of the data as shown in the figure 1.

FIGURE 1. The structure of a Variational Autoencoder (VAE) that maps the
input data into the parameters of a probability distribution, such as the
mean and the variance of a Gaussian distribution.

VAEs have shown a wide application with electroen-
cephalographic (EEG) signals [8], [9], [10]. It has been
also employed in various studies for applications in finance,
speech/audio source separation, and bio-signals [11]. In these
studies, the goal was to learn optimal encoding (latent spaces)
that could be used for data generation and augmentation,
data denoising, and automatic feature extraction. However,
research into VAE devoted to extracting and analysing latent
spaces of different dimensions is limited. In one of the studies,
researchers investigated a number of latent space dimensions
of VAE for generating more relevant EEG features from raw
EEG data, improving speech recognition [12]. The VAE-
based modelling method outperformed Principal Component
Analysis (PCA) in terms of dimensionality reduction. How-
ever, its reconstruction performance did not always improve
as the number of latent space dimensions was increased [13].
From our literature review, it seems that limited work exists
on understanding themaximumdimensionality reduction that
can be performed and that can still lead to the preserva-
tion of the relevant features and meaning in the EEG data
without losing important information. Consequently, it is
important to create models that can perform dimensionality
reduction in an effective way, without compromising the
relationships and semantics within the data. The autoencoder

uses convolutional operations over input topographic maps to
learn salient high-level features that are lower in dimension
and therefore more portable since they require a significant
amount of digital memory to be stored. Additionally, this
lower dimension contains the relevant and salient represen-
tations of EEG data that can be used for various purposes.
For example, these include the generation of synthetic EEG
topographic head maps for data augmentation, or their use for
solving various classification tasks. In this study, the goal is
to tackle this research problem and, to determine the minimal
size of the latent space of a convolutional VAE, trained with
spectral topographic EEG maps of different bands, that leads
to maximum reconstruction capacity of the input data, and
also maximum utility in classification tasks.

Therefore, the research question being addressed is: What
is the minimum latent space dimension that can be learnt with
a convolutional variational autoencoder trainedwith spectral
topographic maps of different EEG bands, that lead to max-
imum input reconstruction capacity and maximum utility for
classification tasks?

The remainder of the work is structured as follows.
Section II investigates related work on VAE used with EEG
signals, whereas Section III describes an empirical study
and its methodology to answer the above research question.
Section IV presents the experimental results and findings.
Finally, Section V concludes the manuscript by describing
the contribution to the body of knowledge and highlighting
future work directions.

II. RELATED WORK
The objective of traditional Autoencoders (AE) is to learn
salient latent representations from unlabeled data and ignore
irrelevant features. As a result, the reconstructed data will be
identical to the input data. The reconstruction procedure is
divided into two steps. During the encoding stage, a neural
network uses a set of encoding parameters θ = {W , b} to
translate the input x to a hidden representation y = fθ (x) =
s(Wx + b). Secondly, by using decoding parameters θ ′ ={
W ′, b′

}
, the hidden representation y is mapped to the recon-

structed vector z = gθ ′ (y) = s
(
W ′y+ b′

)
[14]. Variational

Autoencoders (VAEs) were recently proposed as an effective
extension of AEs, for modeling a data’s probability distribu-
tion and learning a latent space, usually of a lower dimension,
always in the absence of explicit supervision [15]. In detail,
this latent space is not composed of a fixed vector, but of a
mixture of distributions. A VAE allows us to encode an input
x to a latent vector z = Encoder(x) ∼ q(z | x) using an
encoder network, and then use another network to decode this
latent vector z back to a shape that is as close as possible to
the original input data x̄ = Decoder (z) ∼ p(x | z). In other
words, the goal is to maximize the marginal log-likelihood of
each observation in x, and the VAE reconstruction loss Lrec
is the negative anticipated log-likelihood of the observations
in x [15] as in the following:

Lrec = −Eq(z|x)[log p(x | z)] (1)

107576 VOLUME 10, 2022



T. Ahmed, L. Longo: Examining the Size of the Latent Space of Convolutional Variational Autoencoders

The presence of hidden components that are integrated to
produce visible data is critical to the majority of commonly
used methods for inferring latent variables [16]. VAE-based
latent space analysis and decoding of EEG signals are impor-
tant since it can precisely define and determine the latent
relevant features [13]. The following sub-section examines
previous research on VAE used with EEG signals.

A. VARIATIONAL AUTOENCODERS FOR DATA
AUGMENTATION
Classification learning algorithms require adequate samples
to successfully build accurate models. However, as in the case
of EEG signals, unfortunately, it is not always possible to
collect a large amounts of data. To overcome this problem,
a VAE can be used as a data generator capable of producing
synthetic data that resembles the input samples. For example,
researchers demonstrated how a VAE-based approach could
be used as a generative model to increase the size of EEG
datasets [8]. VAE has been used as an effective computa-
tional technique for generating EEG data while a limited
amount of participants were exposed to painful stimuli [17].
VAE was also trained as a generative model for improving
EEG-based emotion recognition. In detail, the experimental
results on two emotion datasets (SEED and DEAP) indi-
cate that with the newly generated synthetic data, classifica-
tion performance was improved respectively by 10.2% and
5.4% [18]. The Conditional Variational Autoencoder (CVAE)
is a VAE extension in which both latent variables and data
are conditioned on some random variables. The enriched
training datasets created by the CVAE-GAN approach, which
combines a CVAE with a GAN for learning latent represen-
tations from EEG brain signals, it can greatly enhance the
performance of Motor Imagery (MI) EEG recognition [19].
CVAE is also used to generate time-series multichannel sig-
nals with spectro-temporal EEG patterns that are expected to
be observed under different MI circumstances [20].

B. VARIATIONAL AUTOENCODERS FOR FEATURE
REPRESENTATION
In general, the dimensions of the latent space of autoen-
coders are usually lower than the dimensions of the original
data, just as they are for VAE. Furthermore, if the latent
space has multiple dimensions, the VAE expression abil-
ity and its feature representation capacity will vary. VAE
often employs Kullback-Leibler (KL) divergence, which is
a measure of how the probability distribution of the latent
space differs from that generated by sampling data from
it [21]. A special version of the VAE was proposed in [22],
focused on learning a generalised model of emotion by con-
currently optimizing the goal or learning normally distributed
and subject-independent feature representations, via the use
of spectral topography data. The ultimate objective was
to maximize dataset inter-compatibility, improve robustness
to localized electrode noise, and provide a more generally

applicable method within neuroscience. Similarly, transfer
learning was introduced in brain-computer interface (BCI)
research to learn subject-invariant representations by simul-
taneously training a convolutional VAE and an adversarial
network with EEG data collected during Motor Imagery
(MI) [23]. Another study has employed VAE for extract-
ing relevant latent representations that are noise-free [24].
Authors have compared their novel method against the Fas-
tICA method for noise reduction, and have shown that it can
reduce the computational complexity in further EEG process-
ing, besides removing data multicollinearity, which turns out
to be beneficial in the subsequent use of such representations,
for example in building classification models. Event-Related
Potential (ERP) based Driver-Vehicle Interfaces (DVIs) have
been created to provide a communication channel for indi-
viduals with disabilities to operate a car. However, it was a
time-consuming and complex training approach to construct
the decoding model that can transform EEG signals into com-
mands. To address this issue, the VAE learning technique was
used as a robust feature representation of EEG signals along
with a Prior Information-based Transductive Support Vector
Machine (PI-TSVM) classifier to translate these features into
commands [25].

Another type of VAE is the Introspective Variational
Autoencoder (IVAE), which is used for creating high-
resolution photographic images. It is capable of self-
evaluating the quality of its generated samples and improving
itself as a result. It can be used to extract multi-scale fea-
tures from EEG spectrograms by replacing the main structure
in the encoder and decoder layers with an optimal local
sparse structure in a convolutional vision network [26]. This
approach was used in the context of disease identification.
For example, researchers employed a dataset with several
disease categories and compared VAE and IVAE with varied
latent space dimensions. Authors discovered that the latent
representations learned by training an IVAE outperformed
VAE in terms of image reconstruction capacity [27]. Always
in the context of disease identification, another application
focused on extracting and evaluating latent representations
with varying latent dimensions from samples such as EEG
signals and medical images [10]. Furthermore, studies illus-
trate how to reduce dimensionality and learn relevant repre-
sentations using VAE on EEG signals to anticipate cognitive
control in older adults [28]. Researchers collected EEG data
from many participants while they watched various images
appearing on a screen. A deep learning approach was used by
employing a Long Short-TermMemory (LSTM) stackedwith
a VAE devoted to learning a more compact and noise-free
representation of EEG data. A model was trained and tested
by using EEG data from six subjects while they observed
different images from 40 imageNet classes. The performance
of the latent space of such a model was evaluated and
results indicate that EEG signals contain patterns related to
visual content, which can be effectively used to generate
images that are semantically coherent with the evoked visual
stimuli [29].
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C. VARIATIONAL AUTOENCODERS FOR CLASSIFICATION
VAE plays a vital role in automatic emotion recognition and
anomaly detection by modeling human observable behav-
iors such as brain signals, speech, facial expressions, and
linguistic content. There has been significant research on
multichannel EEG for emotional arousal and speech recog-
nition with unsupervised feature learning using VAE and
other generative models [12], [30]. In one work, researchers
used raw EEG signals to train a model with a convolutional
variational autoencoder in a supervised fashion to predict
epileptic seizures in interictal and preictal brain states. To dif-
ferentiate between the preictal and interictal signals, the latent
representation vector Z is fully linked to a single neuron
with a sigmoid activation function. For two reasons, the
suggested system chose to build the latent vector z with only
two dimensions. The first is because the primary goal of the
proposed system is to obtain the highest possible classifica-
tion accuracy even if retraining of the encoder network is
required. The second reason is to make it easy to present the
system’s classification findings through a two-dimensional
latent space visualisation [31], [32]. Person authentication
based on EEG has become an important tool in modern
biometrics. As a result, VAE is utilized to learn the latent
representation of EEG signals from users for authentication
purposes [33]. One of the recent work focuses on how VAE
is used to determine the states of latent variables from multi-
channel EEG signals that effectively contributes to emotional
processing in order to build an emotion recognition model
on two public datasets (DEAP and SEED). This model is
built to examine the performance of the learned latent space
from VAE, AE, and ICA. According to the results of the
model, the VAE’s latent space outperformed that of AE and
ICA, providing more meaningful and effective information
for emotional state inference [34].

Despite the wide application and research towards the
extraction of relevant information from multi-channel EEG
signals and data generalization across participants, the iden-
tification of the minimal size latent space dimension utilizing
EEG data for reconstruction purposes and secondary utility
for classification tasks remains inadequate.

III. RESEARCH DESIGN AND METHODOLOGY
In this study, we anticipate that there exists a specific minimal
size of the latent space, learn with a VAE, that is effective
both for maximal reconstruction capacity and for maximum
accuracy when employed in classification tasks. The detailed
design of this research is illustrated in figure 2, and the
following sections describe its phases and components.

A. DATASET
1) DEAP
The DEAP dataset has been selected because it contains
multi-channel EEG recordings with a good amount of par-
ticipants and tasks. In fact, EEG data were recorded from
32 people who watched 40 one-minute excerpts of music

videos [35]. Each participant was asked to rate a video after
watching a 60-second music clip. Each video was graded on
a 1–9 scale for dominance, like/dislike, valence, familiarity,
and arousal. The standard 10-20 systems was employed with
the following 30 electrode positions: ’Fp1’, ’AF3’, ’F7’, ’F3’,
’FC1’, ’FC5’, ’T7’, ’C3’, ’CP1’, ’CP5’, ’P7’, ’P3’, ’Pz’,
’PO3’, ’O1’, ’Oz’, ’O2’, ’PO4’, ’P4’, ’P8’, ’CP6’, ’CP2’,
’C4’, ’T8’, ’FC6’, ’FC2’, ’F4’, ’F8’, ’AF4’, ’Fp2’, ’Fz’, ’Cz’.
Pre-processing included signal re-sampling at 128 Hz, and
a band-pass frequency filter to operate in the 1–45hz fre-
quencies. EOG artifacts were eliminated using a blind source
separation technique, as described in [35].

B. EEG DATA PRE-PROCESSING AND TOPOGRAPHIC
HEAD MAPS GENERATION
Multichannel EEG data was split into discrete time-slices
using a sliding window technique with a 125 ms shift. The
first three seconds of the pre-trial baseline are deleted because
people are not presented with any video and we are not
interested in evaluating their neural responses at this rest state.
We employ the fast-Fourier transformation (FFT) on each
time-slices to extract the information in the power spectrum.
Each power spectrum is divided into the five EEG bands
with Delta (0.5-4Hz), Theta (4-8Hz), Alpha (8-12Hz), Beta
(12-30Hz), and Gamma (30-45Hz) [36]. Subsequently, the
next step is to generate multichannel spatially-preserving
topographic EEG head maps from each time-slice for each
participant and each video (2. The length of each time-slice
was set to different values, respectively 0.5, 1, 1.5, and
2 seconds. The rationale was to experimentally identify the
most promising one for optimal latent space formation. Sub-
sequently, the centroid of the frequency amplitude for each
band is computed, for a time slice, and all centroids are
positioned in a 3D space to produce a scattered head map,
one for each band. Additionally, polar projection is applied to
each scattered map to produce 2D head maps. Each 2D map
is interpolated into five 2D maps, one for each EEG band,
subsequently aggregated into a tensor for further processing.
Figure 3 depicts these five spatially-preserving topographic
maps projected into a 2D map for each EEG band, forming a
32× 32× 5 tensor.

C. A CONVOLUTIONAL VARIATIONAL AUTOENCODER
After forming the topographic maps, a Convolutional Vari-
ational Autoencoder (CNN-VAE) is constructed, aimed at
turning input data into probability distribution parameters,
including the mean and standard deviation of a Gaussian
distribution. This method provides a continuous, structured
latent space that can be subsequently analysed and used for
classification purposes. The CNN-VAE design is made up of
the following components:

• The encoder is a neural network that takes a tensor of
32 × 32 × 5 dimension (as in figure 3) and defines the
approximate posterior distribution Q(Z | x), where x is
the input tensor and Z is the latent space. Simply by
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FIGURE 2. A pipeline for EEG data pre-processing and representational learning with convolutional variational autoencoder (CNN-VAE). A)The DEAP
dataset was used to build a CNN-VAE from EEG signals. B) EEG signals are segmented into windows. For each signal in a window, FFT is applied to obtain
information in the power spectrum for each band (delta, theta, alpha, beta, gamma), and the centroid of the frequency amplitudes is computed for each
of them, which produces a scattered head map, one for each EEG band. This scattered spatial-preserving map is then interpolated to produce a full
topographic map C) a CNN-VAE model is learned for latent space decoding D) a neural network is used to assess the learned latent space from CNN-VAE
E) reconstruction capacity is used as an evaluation metric to assess the VAE, and classification performance to assess its utility to a classification task.

FIGURE 3. Generated spatially-preserving topographic maps projected
into a 2D map for each EEG band, forming a 32 × 32 × 5 tensor.

expressing the distribution as a diagonal Gaussian, the
network will generate the mean and standard deviation
parameters of a factorized Gaussian. The architecture
(figure 2, C) consists of four 2D convolutional layers,
each of these followed by a max pooling layer to reduce
the dimensions of the feature maps. ReLU is used as the
activation function in each convolutional layer.

• The decoder of the CNN-VAE is a generative network
that takes a latent space Z as input and outputs the
parameters for the conditional distribution P(x | Z ) of
the observation (as shown in the right part of figure 2, C).
Similarly, like the encoder network, the decoder consists
of four 2D convolutional layers, each of these layers

followed by an up-sampling layer in order to reconstruct
the data up to the shape of the original input. ReLU is
used as an activation function in each convolutional layer
to regularize the neural network.

• the reparameterization trick is used to generate a sample
for the decoder by sampling from the latent distribution
defined by the encoder’s parameters. As the backpropa-
gation algorithm can not flow through a random sample
node in CNN-VAE, sampling operations create a bottle-
neck. To address this, the reparameterization technique
is used to approximate the latent space Z using the
decoder parameters along with an additional one, the ε
parameter [37]:

Z = µ+ σ � ε (2)

where µ and σ denote the mean and standard devia-
tion of a Gaussian distribution, whereas the ε can be
thought of as random noise that is used to keep the
stochasticity of Z . The latent space is now generated
by a function of µ, σ , and ε, allowing the model to
backpropagate gradients in the encoder via µ and σ ,
while maintaining stochasticity via ε.

• the CNN-VAEs is optimized via a loss function in
order to verify that the latent space is both con-
tinuous and complete. This loss function was set
as the binary cross-entropy loss paired with the
Kullback–Leibler divergence loss, which is a measure
of how two probability distributions differ from one
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another [37], [38].

DKL(P‖Q) =
∑
x∈X

P(x) log
(
P(x)
Q(x)

)
(3)

This CNN-VAE architecture is trained using data from
random 28 videos from a single participant, random 6 for
validation, and the remaining 6 videos for testing respectively.
To prevent overfitting, an early stopping strategy is employed,
with a patience value of 5 epochs which means training is
halted if the validation loss does not improve for five consec-
utive epochs.

D. NEURAL NETWORK
The neural network for classification purposes consists of
four dense layers with 512, 256, 128, and 64 units respec-
tively, as shown in Part D of figure 2. A dropout layer is
added before each of these dense layers and Relu is used
as the activation function because it has been demonstrated
empirically that it converges much more quickly and reliably
than training a network with, for instance, the sigmoid acti-
vation function. The learned latent space from each person-
specific CNN-VAE is stored and used as input to supervisely
train this neural network where the target feature is the video
ID, properly one-hot encoded. In detail, the same segmenta-
tion technique used with the CNN-VAE, including the same
window length and shift, is used. Every latent space activated
by each input tensor (32 × 32x5) of each trained person-
specific CNN-VAE, for all the 40 videos for a participant
were appended to a list. However, only the means of the n-
dimensional latent space of each trained CNN-VAE model is
considered as representative of the gaussian distribution and
saved in this list. In line with the research hypothesis defined
in section III, n is manipulated and the following dimensions
are tested: 4, 8, 12, . . . , 92, 96, 100. The list was then shuf-
fled and 70% of the data were used for training, 15% for
validation, and 15% for testing. An early stopping strategy is
also employed here to prevent overfitting of each model, and
training is terminated after the validation accuracy does not
improve for 5 consecutive epochs. These two architectures
were implemented with the use of the Scikit-learn, Numpy,
Pandas, Keras, and Tensorflow library packages.

E. MODELS EVALUATION
The evaluation of the learnt models, by training the autoen-
coder architecture (CNN-VAE) described in section III-C,
is planned over two stages. The first stage includes the eval-
uation of the reconstruction capacity of the learned models
against previously unseen testing data using the Structural
Similarity Index (SSIM) and the Mean Squared Error (MSE)
computed for the reconstructed topographic maps. In detail:

• SSIM - is a perceptual metric that measures how much
image quality is lost as a result of processing, including
data compression. It is an index of structural similar-
ity (in the real range [0, 1] between two topographic
maps (images). Values close to 1 indicate that the two

topographic maps are very structurally similar, whereas
values close to 0 indicate that the two images are excep-
tionally dissimilar and structurally different.

• MSE - it is defined as the mean (average) of the square
of the difference between the actual and reconstructed
values: the lower value indicates a better fit. In this case,
the MSE involves the comparison, pixel by pixel, of the
original and reconstructed topographic maps.

The second stage includes the evaluation of the utility of
the learnt latent space of a trained CNN-VAE model for the
classification of the different video categories, as part of the
DEAP dataset, as described in section III-A. The impact of
this latent space is evaluated by taking into account the accu-
racy, precision, recall, and F1-score of a neural network [39]:
• Accuracy - the formula for each target class is:

ACCURACY =
TPi + TNi

TPi + FNi + FPi + TNi
(4)

where TP, TN , FN , and FP stand for True Positive, True
Negative, False Negative, and False Positive for it

h
target

class.
• Precision - it is determined as the sum of true positives
across all classes divided by the sum of true positives
and false positives across all classes.

PRE =
TP for all classes

TP for all classes + FP for all classes
(5)

• Recall - it is determined as the sum of true positives
across all classes divided by the sum of true positives
and false negatives across all classes.

REC =
TP for all classes

TP for all classes + FN for all classes
(6)

• F1-Score - it is the harmonic mean of two additional
measures, namely precision and recall.

F1 = 2 ·
PRE · REC
PRE + REC

(7)

IV. RESULTS & DISCUSSION
In this section, we discuss the results obtained by training
the CNN-VAE models described in section III-C. In detail,
findings are organised by the reconstruction capacity of these
models, and the utility of their latent spaces to solve the video
classification task.

A. RECONSTRUCTION CAPACITY OF CNN-VAE MODELS
Table 1 presents the SSIM and MSE scores of all the
CNN-VAE models trained with different lengths of the
time-slice and different latent space dimensions associated to
only one participant. It is possible to note that the manipu-
lation of these two parameters indeed has an effect on the
performance of each CNN-VAE model. Here, for obvious
space reasons, only the results associated to participant 1 are
depicted. However, findings are consistent with these results
across all the participants. Figure 5 reports the box-plots
of the SSIM and MSE of all the CNN-VAE models for all
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TABLE 1. An example of the SSIM and MSE scores of a one-person-specific convolutional variational autoencoder (CNN-VAE) of testing data for each
time-slice length and latent space dimensions.

FIGURE 4. Graphical representation of the variation of the Structural Similarity Index (SSIM) and the Mean Squared Error (MSE) scores of one
person-specific convolutional variational autoencoder (CNN-VAE) of the testing data as a consequence of the variation of the dimension of its latent
space and the length of the EEG time-slice used for constructing the input EEG topographic head-maps.

participants, grouped by latent space dimension (x-axis) and
time-slice length in seconds, for each of these dimensions.

Figure 4 depicts the variation of the Structural Similarity
Index (SSIM) scores and the MSE scores to the manipulation
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FIGURE 5. Box-plots of the SSIM and MSE scores of all the person-specific Convolutional Autoencoder (CNN-VAE) models, of the testing data, grouped by
latent space dimension and time-slice length in seconds [A) 0.5 second B) 1 second C) 1.5 second D) 2 seconds].

FIGURE 6. An example of the Average Structural Similarity Index (SSIM) and average Mean Squared Error (MSE) scores for one person-specific variational
autoencoder of the testing topographic maps as a function of latent space dimension grouped by time-slice length.

of the length of the EEG time-slice, and the latent space
dimension, for participant 1. Here, the CNN-VAE models
trained with the EEG topographic head-maps generated with
a higher time-slice length window outperformed the lower
time-slice length in terms of the reconstruction capacity,
as measured by the SSIM and MSE metrics. As the length

of the window increases, the SSIM value approaches 1 and
the MSE value approaches zero (figure 6). Subsequently, the
average MSE and SSIM are plotted against each of the latent
space dimensions shown in Figure 7. It can be seen that the
latent space dimension has an effect on the performance of
the variational autoencoders. As the latent space dimension
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increases, SSIM approaches +1 and MSE approaches
zero.

B. UTILITY OF THE LATENT SPACES FOR CLASSIFICATION
In this section, the utility of the latent space of each of the
CNN-VAE models trained with EEG topographic head-maps
for the classification of video categories, via the specific neu-
ral network (of section III-D) is presented. The performance
of this network in the classification of video categories, given
all four time-slice lengths (0.5, 1, 1.5, and 2 seconds) with
different latent space dimensions (4 to 100 with a linear incre-
ment of 4) is tested by considering the accuracy, precision,
recall, and F1-score metrics. Table 2 shows the accuracies
of each trained neural network for the classification of video
categories across all time-slices and latent space dimensions
associated to only one participant. The result shows that
accuracy with a 2 time-slice window length outperformed
lower time-slice length windows. Similarly, increasing the
latent space dimensions has an effect on the performance
of the neural network shown in figure 9. Results are similar

TABLE 2. Neural network testing accuracy for classification of video
categories with each time-slice length and all the latent space
dimensions for a single participant.

FIGURE 7. An example of the SSIM (top) and MSE (bottom) of testing
data for each latent space dimension for a single participant.

FIGURE 8. An example of average neural network testing accuracy for the
classification of video labels as a function of each time-slice length for all
latent space dimensions for a single participant.

and consistent across all the participants but are not reported
for obvious space limits. It can also be seen in figure 11
reports the box-plots of the accuracy of all the neural network
models for all participants, grouped by latent space dimension
(x-axis) and time-slice length in seconds, for each of these
dimensions.

Subsequently, the average accuracy are plotted against
each time-slices length and each of the latent space dimen-
sions as shown in figure 10 and figure 8. It can be clearly
seen that a neural network trained with EEG topographic
head-maps from higher time-slice lengths outperformed that
trained with lower time-slice lengths. Similarly, the latent
space dimension has an effect on the performance of the
neural networks. These results apply to every model trained
for each participant and are consistent.
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FIGURE 9. Graphical representation of the testing classification accuracy
of video categories as a function of time-slice length and latent space
dimension for a single participant.

FIGURE 10. An example of neural network testing accuracy for the
classification of video classes as a function of latent space dimension for
a single participant.

The findings demonstrated that when a CNN-VAE is
trained with topographic maps of shape (5, 32, 32) containing
5120 overall values, formed from 32 electrode values, for
a 2 second window of cerebral activity, it is possible to
reduce their dimensions by up to 99%, without losing salient
information. In other words, from a tensor of 5120 values,
each person-specific VAE could learn a latent space up to
28 means and 28 standard deviations without losing mean-
ing, as assessed via a structural similarity index, and mean
squared error between original and reconstructed tensors.
These findings help test the initial hypothesis confirming that
there exists a specific minimal size of the latent space of the
designed VAE, that is effective both for maximal reconstruc-
tion capacity and for maximum accuracy when employed in
a classification task.

Similar studies, although limited work with EEG signals
and with 3-dimensional MR brains, have been conducted to
determine theminimal latent space dimensions that maximise

FIGURE 11. Box-plots of testing accuracy scores of the neural network
models for all the participants grouped by latent space dimension and
time-slice length in seconds [A) 0.5 second, B) 1 second, C) 1.5 second,
D) 2 seconds].

input reconstruction capacity and utility for classification
tasks [10], [27]. The proposed pipeline for EEG data pro-
cessing and high-level feature extraction via convolutional
variational autoencoder, as designed in figure 2, has a num-
ber of advantages. First, transforming EEG signals from the
time domain to the frequency domain can enable scholars to
extract various types of brain waves (EEG bands) and thus
relate them to various mental states. The variation of the
mental state over time can serve as rich information about
different aspects of human behavior that cannot be easily
extracted from the time domain. Secondly, although this study
has employed a dataset with 32 channels, the pipeline can
be easily used with other amounts of electrodes. For exam-
ple, [40], [41], and [42] have shown how topographic head
maps of 32 × 32 pixels can be generated respectively with
19, 43, and 64 channels. Since also our pipeline generates
topographic maps of 32 × 32 with 32 channels, then this
means it can also generate the same size of maps from a larger
number of electrodes. Thirdly, the autoencoder uses convolu-
tional operations over input topographic maps, to learn salient
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high-level features that are lower in dimension, and therefore
these are more portable since they require a significantly less
amount of digital memory to be stored. Additionally, this
lower dimension contains the relevant and salient represen-
tations of EEG data that can be used for various purposes.
These include the generation of synthetic EEG topographic
head maps for data augmentation as well as employable in
various classification tasks.

V. CONCLUSION
Researchers have designed and implemented different exten-
sions of Variational Autoencoders with EEG signals for data
augmentation, feature representation, and classification via
latent space. However, research on the optimal dimension
of the latent space of a VAE trained with EEG data is cur-
rently limited. The purpose of this study was to address this
research challenge. An experiment has been conducted using
an existing EEG dataset (DEAP) to establish the appropriate
size of the latent space of person-specific VAEs that lead to
the highest reconstruction capacity but also maximum utility
in classification tasks. The dataset contains EEG data from
32 participants watching 60-second videos meant to trig-
ger different human emotions, while 32 channels have been
recorded using the 10-20 electrodes position standard. A slid-
ing window technique has been used to isolate time win-
dows from the EEG streams and create topology-preserving
topographic head maps from them. In detail, a convolutional
variational autoencoder architecture (CNN-VAE) has been
designed and trained to learn high-level relevant representa-
tions from these head maps. Results show that manipulating
both the size of these time windows and the latent space
dimension, has an effect on the performance of resulting
person-specific CNN-VAE models. The latent space gener-
ated from EEG head maps with a higher time slice length
window outperformed the lower time slice in terms of the
reconstruction capacity of the CNN-VAE. A second dense
neural network has been devised to investigate the impact
of such latent space on the classification of video categories
for each participant. Similarly, as the latent space dimension
increases, the learned latent space has an effect on the per-
formance of this neural network. Future studies will include
the interpretation of the latent space of the convolutional
variational autoencoders, using principles from explainable
artificial intelligence, in order to gauge further information
and explain what has been learnt automatically [43]. For
example, one way would be to visualise each layer of the
decoder part of the variational autoencoder [44] to further
understandwhich areas of the original topographic headmaps
have a greater impact on their reconstruction.
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