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ABSTRACT In order to solve the ‘‘minimum trap’’ of Artificial Potential Field and the limitation of
traditional path planning algorithm in dynamic obstacle environment, a path planning algorithm based
on improved artificial potential field is proposed. Firstly, a virtual potential field detection circle model
(VPFDCM) with adjustable radius is proposed to detect the ‘‘minimum trap’’ formed by the repulsion field
of obstacles in advance. And the motion model of unmanned vehicle is established. Combined with the
improved reinforcement learning algorithm based on Long Short-TermMemory(LSTM), the radius of virtual
potential field detection circle is adjusted to achieve effective avoidance of dynamic obstacles. The reliable
online collision free path planning of unmanned vehicle in semi closed dynamic obstacle environment
is realized. Finally, the reliability and robustness of the algorithm are verified by MATLAB simulation.
The simulation results show that the improved artificial potential field can effectively solve the problem
of unmanned vehicle falling into the ‘‘minimum trap’’ and improve the reliability of unmanned vehicle
movement. Compared with the traditional artificial potential field method, the improved artificial potential
field method can achieve more than 90% success rate in obstacle avoidance.

INDEX TERMS Artificial potential field method, LSTM, reliability, virtual potential field detection circle
model.

I. INTRODUCTION
The development of information technology has promoted
the industrial transformation, accelerated the arrival of the
intellectualized era, and led to the emergence of smart facto-
ries, such as unmanned automobile factories, Park unmanned
vehicle cargo handling, indoor unmanned vehicle logistics
sorting. Therefore, unmanned vehicle technology plays an
important role in smart factories [1], [2]. Although unmanned
vehicle is widely used in smart factories, with the diversity
and complexity of unmanned vehicle application scenarios,
it poses a huge challenge to the development of unmanned
vehicle technology. For example, the randomness and insta-
bility of obstacles in different scenarios will directly affect the
efficiency of unmanned vehicle, so it is important to solve
the unmanned vehicle routing problem in every dynamic
unknown environment.

The application fields of path planning are very extensive,
such as path planning of robot manipulator, aircraft path
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planning, cruise missile path planning, Traveling Salesman
Problem (TSP) and its derivative vehicle (VRP) path plan-
ning, virtual assembly path planning, path planning based on
road network, electronic map GPS navigation path search and
planning, routing problems, etc. At present, the main global
path planning algorithms [3] are Dijkstra algorithm [4],
A-star algorithm [5], ant colony algorithm [6], genetic algo-
rithm [7], and reinforcement learning [8], [9]. Global path
planning algorithm needs to master the global environment
information, and then make path planning based on the
environment information, which lacks the adaptability to
unknown environment. Local path planning [10] algorithms,
such as Dynamic Window Approach (DWA) algorithm [11],
artificial potential field [12], etc. Local path planning algo-
rithms are prone to fall into local optimum because they
cannot guarantee the optimal solution. And most of the above
methods are applicable to static environments, not dynamic
environments. Artificial potential field method has simple
algorithm, few iterations, strong real-time performance and
smooth path, but it is easy to fall into local minimum and
target unreachable problems. In view of the ‘‘minimum trap’’
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in the artificial potential field, scholars at home and abroad
have proposed solutions such as adding additional force,
improving the force field, and introducing other algorithms.

Therefore, in order to achieve unknown dynamic environ-
ment for unmanned vehicle routing, an improved artificial
potential field is proposed to achieve local online path plan-
ning, and the Q-Learning algorithm of LSTM is combined to
avoid dynamic obstacles. This paper innovatively presents a
VPFDCM, which detects the ‘‘minimum trap’’ [13] based on
the distribution and quantity information of the virtual poten-
tial field detection points on the circle contacting the repulsive
field of obstacles, and effectively avoids it. In addition, the
detection point information can be used as the information
input of LSTM. By using the characteristics of LSTM pro-
cessing time series data, the predicted state space of obstacles
can be obtained to achieve collision-free path planning for
unmanned vehicle in unknown dynamic environment.

In general, the artificial potential field has been widely
used in the path planning of ground mobile robots, channel
path planning and underwater path planning.

II. ARTIFICIAL POTENTIAL FIELD METHOD
Artificial potential field is a virtual force method proposed
by Khatib in 1986. As a classical path planning algorithm,
it is widely used in local path planning. It is a method that
simulates a potential field manually in the working scene of
a robot, which is analogous to the electromagnetic field. The
robot is affected by attraction and repulsion, and the path is
planned according to the characteristics of the potential field.
As shown in Fig. 1.

FIGURE 1. Potential field diagram of attraction and repulsion.

If a robot wants to move from one location to another,
it can add an attraction field to the target location. Similarly,
to avoid obstacles, it needs to add a repulsion field attenuating
with distance around the obstacle, giving the robot a tendency
to avoid obstacles. This establishes an artificial potential field
along which the robot travels until it reaches its target point.
As shown in Fig. 2.

Where, FTarget is the attraction of the robot by the target
point, and FObstacle is the repulsion of the robot by the obsta-
cle. The robot moves along FTotal.

FIGURE 2. Potential field analysis of robots in artificial potential field.

The attractive potential field function of the artificial
potential field method is generally set to:

Uatt =
1
2
ka
(
Xn − Xg

)2 (1)

where, ka is a gravitational gain factor. Xg =
(
xg, yg

)
is the

location of the target point, and Xn = (xn, yn) is the location
of the robot.

The size of the attractive potential field is shown in Fig.3.
In Fig.3, the coordinate point (50, 50) is the location of the
target point. It can be seen from the graph that the farther
the robot is from the target point, the larger the value of the
attractive potential field.

FIGURE 3. Attractive potential field diagram.

The attraction of the target point to the robot is a negative
gradient of the attractive potential field function:

Fatt = −∇Uatt = −ka(Xn − Xg) (2)
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The repulsive field function of an obstacle is generally:

Urep =

 1
2kr

(
1

Xn−Xg
−

1
r0

)2
Xn − Xg ≤ r0

0 Xn − Xg > r0
(3)

where, kr is a repulsion gain factor, and r0 is the maximum
influence range of the repulsive potential field generated by
the obstacle. Xg =

(
xg, yg

)
is the location of the target point,

and Xn = (xn, yn) is the location of the robot.
The size of the repulsion potential field is shown in Fig.4.

In Fig.4, the coordinate point (150, 150) is the location of
the obstacle. As you can see from the graph, the repulsive
potential field established by the obstacle has a certain range
of influence and only has potential energy in a certain area.
The closer the robot is to the obstacle, the greater the potential
energy of the robot. When a robot moves toward an obstacle,
repulsion prevents the robot from approaching the obstacle.
The robot moves toward a position with less potential energy
and moves around the obstacle, thus completing the action of
avoiding the obstacle.

FIGURE 4. Repulsive potential field diagram.

Repulsion is the negative gradient force of a repulsive
potential field whose mathematical expression is:

Frep = −∇Urep (4)

Frep =

kr
(

1
Xn−Xg

−
1
r0

)
1

(Xn−Xg)
2 Xn − Xg ≤ r0

0 Xn − Xg > r0
(5)

It can be obtained that the force exerted by the artificial
potential field on the robot is:

F(X ) = Fatt (X )+ Frep(X ) (6)

The potential field model of the robot motion direction is
shown in Fig.5.

From the potential field model in the figure above, you can
see that the mountain is the location of the obstacle, that is,
near the repulsion field, and the valley is the location of the

FIGURE 5. Potential field model of robot motion direction.

target, that is, near the attraction field. The direction ofmotion
of the robot is from high to low.

Compared with other classical obstacle avoidance algo-
rithms, artificial potential field method has many outstanding
advantages, such as: small computation, solving local obsta-
cle avoidance problems, solving sudden threats, and so on.
Therefore, this algorithm is widely used in obstacle avoidance
algorithms.

However, the artificial potential field method has obvious
drawbacks. The robot relies on the overlap of potential fields
detected from all directions to obtain the coincidence field,
and the direction and size of the coincidence field [14] are
used to judge the next trajectory. But if the coincidence field
approximates zero, the robot will not move and will stop. The
more obstacles there are in the area, the higher the probability
that the coincidence field will be zero, and the easier it will be
to stagnate. This phenomenon is called the ‘‘minimum trap’’.
In this article, solving the ‘‘minimum trap’’ is one of the main
topics discussed.

III. IMPROVED ARITIFICIAL POTENTIAL FIELD METHOD
A. ‘‘MINIMUM TRAP’’
The robot avoids obstacles and moves to the target point
under the combined force of repulsion and attraction potential
fields.

In the following two situations, the robot will fall into the
‘‘minimum trap’’.

1) EXCESSIVE REPULSION
When multiple obstacles are between the robot and the tar-
get point, multiple obstacles exert repulsion on the robot.
Because the robot repulsion at this point is too large, the
overlap of multiple repulsions exactly equals the size of
gravitation, resulting in the robot falling into the ‘‘minimum
trap’’ and stopping moving at this point. As shown in Fig.6.

FIGURE 6. Diagram of excessive repulsion.
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FIGURE 7. Potential field model of excessive repulsion.

The potential field diagram of the ‘‘minimum trap’’ due
to excessive repulsion is shown in Fig. 7. The robot stops
moving with zero total force.

2) FORCE BALANCE
When the obstacle is between the robot and the target point,
and the three are in the same straight line, the attraction and
repulsion are collinear but in the opposite direction. The robot
will approach the obstacle and the target point simultaneously
under the action of force. At some point, the resultant force
may be zero or the resultant direction may change in the
opposite direction. In this case, the robot may stop or oscillate
back and forth because it is trapped in a ‘‘minimum trap’’.
As shown in Fig.8.

FIGURE 8. Diagram of force balance.

The potential field diagram of the ‘‘minimum trap’’ due to
force balance is shown in Fig. 9. The robot stops moving or
oscillates when the total force is zero.

In cases where the path planning fails due to the above
problems, based on the traditional artificial potential field
method, a VPFDCM is presented in this paper. The circle
consists of N virtual detection points centered on unmanned
vehicle k and radius R to form a virtual detection circle T .
Barrier repulsion fields can be detected at each point, and
as the unmanned vehicle approaches the barrier, the number
of points that circle T touches the barrier repulsion field, n,
is normally distributed, as shown in Fig. 10.

FIGURE 9. Potential field model of force balance.

FIGURE 10. Virtual potential field detection circle model and contact
point distribution map.

Note: d indicates the distance between the unmanned vehi-
cle and the obstacle in meters; n denotes the number of points,
that a circle T touches the repulsive field of an obstacle,
in units.

When two discrete normal distributions occur on the detec-
tion circle T and the calculated distance d1,2 between the
obstacles is less than the safe distance dsafe, the ‘‘minimum
trap’’ can be predicted, as shown in Fig. 11. dsafe is the
distance between two obstacles that may form a minimum
trap. The conditions to be met to form the ‘‘minimum trap’’
are shown in (7). {

d1,2 < dsafe
n1, n2 ∼ N

(
µ, s2

) (7)

B. AVOID ‘‘MINIMUM TRAP’’
1) ESTABLISHING KINEMATICS MODEL
OF UNMANNED VEHICLE
The artificial potential field method is applied to the route
planning of unmanned vehicle. In order to ensure the stability
of the unmanned vehicle motion, the kinematic constraints
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FIGURE 11. ‘‘Minimum trap’’.

FIGURE 12. Bicycle kinematics model.

of the unmanned vehicle itself need to be considered. The
bike kinematics model [15] is used to simplify this process,
as shown in Fig. 12.

Simplified formula (8):

tan (δ) =
L
R

(8)

where, δ is the turn angle of the front wheel, L is the pitch, R
is the radius of the circle for the unmanned vehicle to move
under this turning angle.

Equations consisting of radius of curvature R, angular
velocity ω, and velocity ν: ν = ωR, the kinematic model
of the unmanned vehicle can be obtained as shown in for-
mula (9): 

·
x = ν cos (θ)
·
y = ν sin (θ)
·

θ = ν
tan(δ)
L

(9)

where, ν is the speed of the unmanned vehicle,
·
x is the

speed of the unmanned vehicle in the X-axis direction of

the world coordinate system,
·
y the speed of the unmanned

vehicle in the Y-axis direction of the world coordinate system,
θ is the heading angle of the unmanned vehicle in the world

coordinate system, and
·

θ is the angular speed of the
unmanned vehicle.

2) UPDATING HEADING ANGLE
The two outer contact points between the detection circle and
the repulsion fields of the two obstacles are set to a1, b1. The
two points form two angles α, β with unmanned vehicle k and
target point X , and the minimum angle is used as the updated
heading angle of unmanned vehicle k , as shown in Fig. 13.
That is, θ = min (α, β). This leads to a shorter path away
from the ‘‘minimum trap’’.

FIGURE 13. Diagram of unmanned vehicle updating course angle.

IV. IMPROVED ENHANCED LEARNING DYNAMIC
ENVIRONMENT PATH PLANNING ALGORITHM
BASED ON LSTM
A. LSTM
LSTM [16] is a long-term and short-term memory net-
work developed fromRNN (Recurrent Neural Network) [17].
Compared with RNN, LSTM has a good memory ability
and has a significant role in solving the problem of gradient
disappearance and long dependence that traditional RNN
cannot solve. Therefore, LSTM has become a widely used
neural network [18].

The classical LSTM formula is

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
(10)

C ′t = tanh (WC · [ht−1, xt ]+ bC ) (11)

it = σ (Wi · [ht−1, xt ]+ bi) (12)

Ct = ft ∗ Ct−1 + it ∗ C ′t (13)

Among them (10) is the forget gate, (11) (12) is the input gate,
(13) is the output gate. Fig. 14 below can be drawn from the
top.

Compared with traditional RNN, the biggest feature of
LSTM is the addition of Ct−1 and Ct , which is called the
cell state. Cell states are updated once during each iteration,
preserving the best results from previous iterations to form
long-term memory. In this way, the long history information
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FIGURE 14. LSTM structure diagram.

of the past can be used to predict the future situation [19].
In combination with the short-term last information, a long
and short memory network is formed, which improves the
learning ability of the robot to avoid obstacles [20], [21],
[22]. It avoids the influence of short-term memory bias on
the whole network and improves the anti-jamming ability of
the system.

B. Q-LEARNING ENHANCED LEARNING
ALGORITHM WITH LSTM
Although the improved artificial potential field method can
effectively avoid the ‘‘minimum trap’’, it has poor adaptabil-
ity in unknown dynamic environment. The reason is that the
VPFDCM cannot predict the movement state of obstacles,
and for obstacles that move faster, the model can easily
cause information loss. LSTM can better handle time series
tasks. To solve this problem, the LSTM loop neural network
combined with Q-Learning’s intensive learning algorithm
structure is proposed to optimize the VPFDCM.

First, the LSTM loop neural network is used to process
the change information of the repulsion field of the obstacle
returned by the VPFDCM, then the LSTM algorithm is used
to generate the output of the current time, the output of the
current time refers to the characteristics of the change trend of
the information before the time [23], to predict the movement
state of the obstacle, to get the prediction state space S0 of the
obstacle further. The radius R of the circle model detected
by the virtual potential field is adjusted to track the dynamic
obstacles. The steps are:

Step 1: Construct a VPFDCM with adjustable radius R.
Step 2: Obtain contact point n distribution and quantity

information as input of LSTM.
Step 3: Obtain the predicted state space S0 of the obstacle.
Step 4: Adjust the radius R by combining the spatial loca-

tion of the predicted state space S0 with the unmanned vehicle
state.

Fig. 15 above is an LSTM Q-Learning structure diagram.
The steps to improve the artificial potential field method are
shown.

The obstacle prediction state space S0 obtained is added to
the unmanned vehicle state space S in Q-Learning, and the
reward function R is reset to enable the unmanned vehicle to

FIGURE 15. LSTM Q-Learning structure diagram.

avoid dynamic obstacles with the best reward.

dO1k =

√
r2 −

d2a1a2
2
+

√
R2 −

d2a1a2
2

(14)

where, dO1k is the distance between the obstacle and the
unmanned vehicle, r is the radius of the repulsive field of the
obstacle, R is the radius of the circle model for the virtual
potential field, and da1a2 is the distance of the intersection of
two circles.

reword =

{
−1, if dO1k < ν · t + dsafe
1, if dO1k > ν · t + dsafe

(15)

where, ν · 1t represents that the car continues to travel at
speed ν along the current heading angle. This paper adds
the prediction status of Unmanned Vehicle and resets reward
function [24]. When the distance between the unmanned
vehicle and the obstacle center is greater than the unmanned
vehicle prediction distance, reward =−1 is set to give a
positive return. Conversely, it predicts a ‘‘collision’’ and gives
a negative return to change the direction of the unmanned
vehicle away from the prediction area.

V. ANALYSIS OF EXPERIMENT AND
SIMULATION RESULTS
A. ROUTE PLANNING ALGORITHM FLOW
The flowchart of the improved artificial potential field path
planning algorithm is shown in Fig. 16.

B. EXPERIMENTAL ENVIRONMENT AND MODEL
BUILDING
This article uses MATLAB to build a 400 × 400 2D map.
The number of obstacles NO = 45 is randomly set in space,
and the influence range of the repulsion field of a single
obstacle is set r = 5. A random disturbance factor is added
to each obstacle to make the obstacle move in an irregular
motionmode. Fixed andmoving ‘‘minimum traps’’ have been
added to facilitate observation of the results. A VPFDCM is
constructed. The function relationship between the number of
points detected N and the radius R is N =

⌊
1
2πR

⌋
, as shown

in Fig. 10, and the points are evenly distributed around the
circle. The simulation results are shown below, in which point
(10,10) is the starting point of the unmanned vehicle. Point
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FIGURE 16. Improve flowchart of artificial potential field path planning
algorithm.

(380,380) is the end point of the robot; A sphere represents
an obstacle and its extent of influence. Solid lines represent
the movement of the robot

C. COMPARISON OF IMPROVED ARTIFICIAL POTENTIAL
FIELD METHOD
As can be seen from the above figure, starting from its starting
point, the robot moves toward its target point, which is grav-
itated by the target point and repulsed by surrounding obsta-
cles. Fig. 17 is a traditional artificial potential field method in
which the robot oscillates back and forth when it encounters
a ‘‘minimum trap’’. Failure to reach the destination occurs.
Fig. 18 shows an improved artificial potential field method
after adding a VPFDCM. It can be seen that the robot is facing
a ‘‘minimum trap’’, which is perceived ahead of time and
avoided effectively. When it is predicted that the robot will
fall into the ‘‘minimum trap’’, the robot changes its heading
angle to escape it. The validity of this method is verified.

D. COMPARISON BASED ON LSTM Q-LEARNING
ARTIFICIAL POTENTIAL FIELD METHOD
Placing the VPFDCMwith fixed radius R in the environment
of dynamic obstacles, it is found that the robot collides with
obstacles that move irregularly or at high speed without time
to avoid them. In view of this situation, this paper uses
LSTM Q-Learning algorithm to propose a new VPFDCM

FIGURE 17. Traditional potential field method.

FIGURE 18. Improved artificial potential field method.

with adjustable radius R to track and predict the spatial state
of obstacles, so as to avoid effectively.

As shown in Fig. 19, when a random disturbance fac-
tor is added to the obstacle, the robot will not be able to
avoid and collide with the obstacle which moves faster. After
many experiments, the probability of collision is about 78%.
As shown in Fig. 20, the improved model shows that the
robot can avoid high-speed obstacles and has a more obvious
predictive behavior in the route. Compared with the previous
algorithms, the improved algorithm has better adaptability
in dynamic environment. The feasibility of this method is
verified.

108282 VOLUME 10, 2022



J. Luo et al.: Reliable Path Planning Algorithm Based on Improved Artificial Potential Field Method

FIGURE 19. Original virtual potential field detection circle model.

FIGURE 20. Improved virtual potential field detection circle model.

TABLE 1. Comparison of effect before and after model improvement.

In Table 1, after the coordinates of the detection point on
the model coincide with the coordinates of the repulsion field
of the obstacle, the second coordinate information obtained
does not conform to the motion of the robot and the obstacle.
The success rate of avoidance is based on whether the robot
makes the avoidance action and observes whether the avoid-
ance is successful or not. From the data in Table 1, we can

see that the improved model proposed by LSTM Q-Learning
algorithm has a better improvement.

The simulation results show that the traditional artificial
potential field method uses the interaction between the repul-
sion field and the gravitational field to control the robot.
When the robot encounters a minimum trap, it often appears
‘‘stuck’’ and oscillation. By adding a VPFDCM, the robot can
perceive obstacles ahead of time and avoid the minimum trap
effectively.

At the same time, in the dynamic environment, the
VPFDCM with fixed radius R cannot accurately avoid obsta-
cles with irregular movement and high-speed movement,
or even collide, and some information is missing. The LSTM
Q-Learning algorithm is used to predict the motion state of
the obstacle, and the radius R of the VPFDCM is set to be
adjustable so as to follow the obstacle to a certain extent
and avoid missing information. The results show that the
robot can successfully avoid dynamic obstacles and achieve
collision-free path planning. The validity of the algorithm is
proved.

VI. CONCLUSION
To solve the ‘‘minimum trap’’ problem of traditional artificial
potential field, a VPFDCM is proposed to avoid the ‘‘mini-
mum trap’’ in advance. For dynamic unknown environment
problem, LSTM Q-Learning algorithm is incorporated, and
a virtual potential field with adjustable radius is proposed to
detect circle model to sense the location of dynamic obstacles
and predict their movement trend.

The simulation results show that the proposed method can
effectively avoid the ‘‘minimum trap’’, as shown in Fig.18.
And in the obstacles of movement, it can avoid obstacles
and reach the end point smoothly. The effectiveness and
robustness of the algorithm are proved.

The artificial potential field method is suitable for applica-
tion in the changing environment. This method is conducive
to the bottom, online control of mobile robot motion, and
it is simple to construct. It is more and more widely used
in the smooth control of moving routes and online collision
avoidance with obstacles. Therefore, the improved method
in this paper is expected to be applied to cargo sorting
in indoor unmanned vehicle dynamic obstacle environment
and autonomous route planning of field unmanned vehicle.
If two-dimensional information can be used to achieve three-
dimensional, it also has the potential to be applied to the path
planning under the dynamic obstacles in the air of the UAV.
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