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ABSTRACT In this paper, an empirical study shows that positive tests containing multiple defectives are
unlikely to provide effective messages in belief propagation (BP) for non-adaptive group testing. Thus,
an objective function is proposed to measure the effectiveness of messages over edges, especially in the
low-noise region. The maximization of the objective function allows us to optimize the pool size for BP.
Simulation results show that the error performance of BP in the low-noise region is significantly improved
by our pool size optimization.

INDEX TERMS Group testing, decoding, belief propagation, bipartite graph, LDPC codes.

I. INTRODUCTION
In order to detect few defectives among millions of items,
group testing was proposed by Dorfman [1] to reduce the
huge number of tests required by individual testing. In the
following decades, the theory of group testing has been
further explored [2], [3], [4] and applied in various fields
like information and communication technology [5], [6], [7],
[8], data science [9], [10], and pandemic detection [11],
[12], [13]. In general, the group testing strategies can be
divided into adaptive and non-adaptive ways. The former
sequentially designs each test based on the feedback of the
previous tests, while the latter designs all tests in advance.
This paper focuses on non-adaptive group testing (NAGT),
due to its parallelizability and lower computation cost [8].
Further, noisy group testing is considered here because of its
practical application [4], where the output of each test can be
corrupted by noise.

In the scenario of noisy NAGT, the belief propagation
(BP) algorithm empirically performs well in classifying the
items [4], [14], [15], [16]. In [14], it indicates that differ-
ent test designs may affect the error performance of BP in
NAGT. In general, the Bernoulli random test design with
fixed probability p = ln 2/K is used to extract the maximum
amount of information from each test [17], where K denotes
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the expected number of defectives. As a result, half of the
tests are positive and one bit of information is contained in
each test [17]. However, it still lacks studies that how much
information from tests is effectively used in the BP algorithm.

In this paper, we study the test design for BP to improve
the error performance in NAGT with the consideration of the
effectiveness of messages over edges. The main contributions
of this work are given as follows:
• We distinguish the tests in terms of their transmitted
messages in BP. Based on the bipartite subgraphs cor-
responding to various classes of tests, we show that the
positive tests containing multiple defectives are unlikely
to provide effective messages to their associated items,
especially in the low-noise region.

• Instead of choosing the pool size to make the posi-
tive and negative tests approximately equal [15], [17],
we only consider the tests with effective messages and
propose a novel objective function to measure their
effects over edges in the bipartite graph. Then, the opti-
mized pool size in NAGT for BP is determined by the
maximization of the objective function.

• We evaluate the error performance and computational
complexity of BP with various test designs. Simula-
tions show that the bit error rate (BER) of BP with our
optimized pool size is about one order magnitude less
than that with conventional test designs [15], [17] under
the binary symmetric channel (BSC) with low flipping
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probability. Moreover, the expected computational com-
plexity of the former is less than that of the latter.

The outline of this paper is as follows. Section II introduces
the model of group testing and the BP algorithm. Section III
proposes pool size optimization for BP. In Section IV, we test
the error performance of BP with optimized pool size. Last,
conclusions are drawn in Section V.

II. PRELIMINARIES
In this section, we first describe the basics of group testing.
Then, we review the BP algorithm that will be further ana-
lyzed in later sections.

A. MODEL OF GROUP TESTING
Consider the detection of a small number of defectives in
N items with the defective rate α of each item. In other
words, the defective items are independent and identically
distributed with the expected number K = Nα. The random
binary vector, X = (x1, . . . , xj, . . . , xN ) ∈ {0, 1}N , denotes
the status of N items, where xj = 1 represents that the j-th
item is defective and Pr(xj = 1) = α for 1 ≤ j ≤ N .
Let T be the number of tests to detect the defectives. For

1 ≤ i ≤ T and 1 ≤ j ≤ N , the i-th test is represented by V i =

(vi1, . . . , vij, . . . , viN ) ∈ {0, 1}N , where vij = 1 if the j-th item
is in the pool of that test; otherwise, vij = 0. The noiseless
output of the i-th test is denoted as zi. If no defective item
participates in that test, zi = 0; otherwise, zi = 1. Formally
we have

zi =
N∨
j=1

(vij ∧ xj), (1)

where the symbols ∨ and ∧ stand for Boolean sum and
Boolean product, respectively. In practice, the output zi may
be corrupted by noise and its noisy observation is yi. In this
paper, we consider the widely-adopted BSC noise model with
flipping probability ε < 0.5, denoted as BSC(ε). Let ni be the
BSC noise, then we have

yi = zi ⊕ ni =
( N∨
j=1

(vij ∧ xj)
)
⊕ ni, (2)

where the symbol ⊕ denotes the XOR operation. Similarly,
the noiseless outputs and their observations are denoted as
Z = (z1, . . . , zT ) and Y = (y1, . . . , yT ), respectively. After
observing Y , the estimation X̂ of X is calculated to classify
theN items. Three error performance metrics including BER,
false negative rate (FNR) and false positive rate (FPR) are
considered in the estimation of items, where

FNR =
Num(x̂j = 0|xj = 1)

Num(xj = 1)
, (3)

FPR =
Num(x̂j = 1|xj = 0)

Num(xj = 0)
. (4)

In the above equations, Num(x̂j = 0|xj = 1) is the number of
defectives falsely classified, and the others are similar.

The pool of T tests is denoted as a pooling matrixV, where
V = [V1; . . . ;V i; . . . ;VT ] ∈ {0, 1}T×N . For 1 ≤ i ≤ T and
1 ≤ j ≤ N , the rowweight ρi ∈ [1,N ] and the columnweight
γj ∈ [1,T ] of V denote the pool size of the i-th test and the
number of tests participated by the j-th item, respectively. IfV
has constant rowweight ρ and constant columnweight γ , it is
called (ρ, γ )-regular.

B. THE BP ALGORITHM
From the view of graphical representation, the matrix V
can be described by a bipartite graph [18]. In analogy with
the Tanner graphs [19] of low-density parity-check (LDPC)
codes [20], we use variable nodes (VNs) and check nodes
(CNs) to represent items and tests, respectively. As shown
in Fig. 1, only the nodes of different types can be connected
by the edges. Given this representation, it is convenient to
estimate X by the BP algorithm, which has been widely
used for decoding LDPC codes [21]. Their main difference
in the message update comes from the specific operations to
calculate the outputs of group testing and the check sums of
LDPC codes. In this part, we briefly review the BP algorithm
under the BSC [4], [15].

FIGURE 1. Graphical representation of the pooling matrix of NAGT.

The BP algorithm iteratively estimates the posterior
marginals for the items in a graph-based model. As shown in
Fig. 1, the probabilistic messages passed from the VNs and
CNs in the k-th iteration are denoted as ξ (k)j,i (xj) and δ

(k)
i,j (xj),

respectively. These messages are probability distributions on
{0, 1} [15], i.e., ξ (k)j,i (xj) ∈ [0, 1] and ξ (k)j,i (0)+ξ

(k)
j,i (1) = 1, and

similarly for δ(k)i,j (xj). Define the index sets Mj = {i : 1 ≤ i ≤
T , vi,j 6= 0} for 1 ≤ j ≤ N and Ni = {j : 1 ≤ j ≤ N , vi,j 6= 0}
for 1 ≤ i ≤ T , respectively. For k = 0 with arbitrary i and
j, initialize ξ (0)j,i (1) = α, and ξ (0)j,i (0) = 1 − α. For k ≥ 1,

δ
(k)
i,j (xj) is first calculated in the test-to-item message update
as follows. If yi = 0, then δ

(k)
i,j (0) = λε + λ(1− 2ε)

∏
j′∈Ni\j

ξ
(k−1)
j′,i (0),

δ
(k)
i,j (1) = λε;

(5)

otherwise, δ
(k)
i,j (0) = λ(1− ε)− λ(1− 2ε)

∏
j′∈Ni\j

ξ
(k−1)
j′,i (0),

δ
(k)
i,j (1) = λ(1− ε)

(6)
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where the symbol λ is a positive normalizing factor. Then,
ξ
(k)
j,i (xj) is calculated in the item-to-test message update by

ξ
(k)
j,i (b) = λα

b(1− α)1−b
∏

i′∈Mj\i

δ
(k)
i′,j (b), b ∈ {0, 1}. (7)

Finally, the estimation of xj in the k-th iteration is given by

x̂(k)j ← arg max
b∈{0,1}

[
αb(1− α)1−b

∏
i∈Mj

δ
(k)
i,j (b)

]
. (8)

In the iterative process, different update schedules can be
used. Compared to the flooding BP algorithm which per-
forms message update in parallel, the random scheduling BP
(RSBP) algorithm updatesmessages in a randomizedway and
improves the error performance [15], [16].

III. POOL SIZE OPTIMIZATION FOR BELIEF
PROPAGATION
In this section, we investigate the effects of tests in BP
by considering their transmitted messages in the associated
subgraphs. It shows that the positive tests containing mul-
tiple defectives are difficult to transmit effective messages,
especially in the low-noise region and later iterations of BP.
Therefore, we focus on other tests with effective messages
and propose an objective function to measure their effects
over edges. Pool size optimization maximizes the objective
function, and hence facilitates the transmission of effective
messages in BP decoding.

A. CLASSES OF TESTS
There are two types of tests in our model: with or without
corrupted outputs. First, we show that the tests with corrupted
outputs usually have negative effects to their associated items
in BP decoding. Specifically speaking, if xj = 1 and its
associated positive test is corrupted with yi = 0, we have

δ
(k)
i,j (0) ≥ δ

(k)
i,j (1) based on (5) and ε < 0.5. As a conclusion,

this corrupted test provides either misleading information or
no information to the j-th item, if ‘‘>’’ or ‘‘=’’ is true in
the above inequality. Similarly, if xj = 0 and its associated
negative test is corrupted with yi = 1, we have δ(k)i,j (0) ≤

δ
(k)
i,j (1) based on (6) and draw a consistent conclusion. Or if
xj = 0 and its associated positive test is corruptedwith yi = 0,
although no misleading information is transmitted from the i-
th test to the j-th item, but the defective items associated with
the i-th test are misled by its messages.

Thus, we focus on the tests with correct outputs, which can
be further divided into three classes: (i) containing multiple
defective items with yi = 1; (ii) containing only one defective
item with yi = 1; (iii) containing no defective item with
yi = 0. Corresponding subgraphs of three classes of tests are
depicted in Fig. 2. The number ‘‘0’’ or ‘‘1’’ marked on each
node is its noiseless true value. Then, the message update of
various classes of tests is analyzed as below.

Without the loss of generality, we consider after a certain
number of BP iterations in a ρ-regular graph, there still exist

FIGURE 2. Subgraphs of three classes of tests.

a few decoding errors, and then the BP algorithm goes to the
k-th iteration:
(1) Suppose the i-th test belongs to class (i) as shown

in Fig. 2-(i). First, it provides no effective messages to the

associated non-defective items, since δ(k)i,j (0) ≤ δ
(k)
i,j (1) based

on (6). Second, as long as one of its associated defective items
with index j1 is correctly decoded as x̂

(k−1)
j1

= 1 in the (k−1)-

th iteration, it is likely that ξ (k−1)j1,i
(0) → 0, especially in the

low-noise region. As a result, δ(k)i,j (0) ≈ δ
(k)
i,j (1) for each item

j ∈ Ni\j1 based on (6). In this case, the i-th test transmits
almost no effectivemessages to the rest of the defective items,
including those with decoding errors. Third, as long as one of
its associated non-defective items with index j2 is incorrectly
decoded as x̂(k−1)j2

= 1with ξ (k−1)j2,i
(0)→ 0, we have δ(k)i,j (0) ≈

δ
(k)
i,j (1) for each item j ∈ Ni\j2 based on (6). In this case,
the i-th test is not helpful to correct the decoding errors for
the j2-th item and other defective items. Fourth, if no item is
decoded as x̂(k−1)j = 1, the restriction of yi = 1 will lead to at
least one item to be decoded as 1 in latter iteration. Therefore,
this case can be transformed into the above second or third
case.

(2) Suppose the i-th test belongs to class (ii) as shown in
Fig. 2-(ii). Since δ(k)i,j (0) ≤ δ

(k)
i,j (1) for each j ∈ Ni based

on (6), the i-th test can only transmit effective message to
the associated defective item. Specifically speaking, if its
associated non-defective items with indexes {j′ : j′ ∈ Ni\j}
are correctly decoded as 0’s in the (k − 1)-th iteration,1

each ξ (k−1)j′,i (0) is far from 0, since δ(k−1)i,j′ (0) ≤ δ(k−1)i,j′ (1) and

δ
(k−1)
i,j′ (0) · ξ (k−1)j′,i (0) > δ

(k−1)
i,j′ (1) · ξ (k−1)j′,i (1) based on (7)

and (8). Thus, the i-th test transmits δ(k)i,j (0) < δ
(k)
i,j (1) to

the only defective item with index j ∈ Ni. In particular,
in the low-noise region where ξ (k−1)j′,i (0) → 1, the difference

between δ(k)i,j (1) and δ
(k)
i,j (0) tends to λ(1− 2ε).

(3) Suppose the i-th test belongs to class (iii) as shown in
Fig. 2-(iii). Since δ(k)i,j (0) ≥ δ

(k)
i,j (1) for each j ∈ Ni based

on (5), the i-th test can provide effective messages to all the ρ
associated non-defective items. In particular, in the low-noise
region where ξ (k−1)j,i (0) → 1 for each j ∈ Ni, the difference

between δ(k)i,j (0) and δ
(k)
i,j (1) tends to λ(1− 2ε).

In conclusion, the above analysis shows that the tests of
class (i) are difficult to transmit effective messages to their

1This case with the associated non-defective items correctly decoded is
quite common, since the FPR of the BP algorithm is several orders magnitude
less than its FNR as shown in the simulation in Section IV.
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associated items. In contrast, each test of class (ii) only
transmits effective message to the associated defective item,
while each test of class (iii) can transmit effective messages
to all the ρ associated items. The occurrence probabilities of
three classes of tests are denoted as P1, P2 and P3, respec-
tively, where P1 = 1− ε − P2 − P3,

P2 = (1− ε)ρα(1− α)(ρ−1), (9)

P3 = (1− ε)(1− α)ρ . (10)

B. POOL SIZE OPTIMIZATION VIA OBJECTIVE FUNCTION
In conventional test designs, the parameters of pooling matrix
are usually chosen to maximize the entropy of each test. For
instance, in the Bernoulli design [17], each item is included
in each test independently at random with the probability
p = ln 2/K . As a result, the occurrence probability of positive
tests, denoted as Ppos, tends to 0.5 in the asymptotic region
of N → ∞. Then, the binary entropy function is used to
measure the entropy of each test as follows [17]:

H (Ppos) = −Ppos log2 Ppos − (1− Ppos) log2(1− Ppos).

(11)

Similarly, a randomly chosen (ρ, γ )-regular test design [15]
sets ρ = ln 2/α and γ = Tρ/N , so that nearly half of the tests
are positive and about one bit of information is contained in
each test.

According to the analysis in the previous subsection,
we design a ρ-regular pooling matrix V for BP by only
considering the positive tests of class (ii) and the negative
tests of class (iii). Similar to (11), a metric denoted as Jm is
firstly defined to measure the information contained in each
test of classes (ii) and (iii) as follows:

Jm = −P′2 log2 P
′

2 − (1− P′2) log2(1− P
′

2),

where P′2 is a normalization of the probability distribution:

P′2 =
P2

P2 + P3
=

ρα

1+ (ρ − 1)α
.

Based on the previous analysis of BP, each positive test of
class (ii) can only provide effective message to one defective
item, while each negative test of class (iii) can provide effec-
tive messages to ρ non-defective items. Thus, we regard the
maximum amount of information provided by these tests in
the test-to-item message update as

Jsum = TP2 · Jm + TP3 · ρJm.

After that, we define the objective function Jo as follows:

Jo =
Jsum
Tρ
= (1− ε)(1− α)(ρ−1)Jm, (12)

which is related to the average of the maximum amount of
information provided by the tests of class (ii) and (iii) on
each edge. Given the parameters ε and α, Jo is a function
of ρ. We believe that Jo is able to reflect the effectiveness of
the transmitted messages in the test-to-item message update,

FIGURE 3. Relation between the objective function and the pool size with
various defective rates and ε = 0.

at least in the low-noise region and later iterations of BP.
Thus, the optimized pool size is set as

ρopt = arg max
ρ∈N+

(Jo), (13)

where N+ denotes the positive integer set. Accordingly, the
column weights of V are constant or near-constant with the
expected number γ = Tρopt/N . Simulation results in next
section show that the maximization of the objective function
is benefit for BP decoding, especially in the low-noise region.

IV. SIMULATION AND COMPARISON
In this section, we compare the error performance and compu-
tational complexity of the RSBP algorithm [16] with different
test designs. Given the parameters N , T , α and ρ, the pooling
matrix V is generated by the Bernoulli design [17] with fixed
probability p = ln 2/(Nα) or the ρ-regular test design. For
the Bernoulli design, a specific randomly constructed V is
generated in each of the settings below. For the ρ-regular test
design, the progressive-edge-growth algorithm proposed for
LDPC codes [22] is used to generate V. The maximum iter-
ation number of the RSBP algorithm is set as 10 times of T ,
so that each message is likely to be updated several times.
In addition, each simulation result is averaged over at least
3000 experiments, among which at least 100 experiments
have decoding errors.
Setting 1: Given α = 0.03, N = 100 and T = 50 for

the RSBP algorithm. Based on (12) and (13), the flipping
probability ε is just a scaling factor which has no influence
on the value of ρopt. For simplicity, the relation between Jo
and ρ given ε = 0 is shown in the magenta line in Fig. 3.
As a result, the optimized pool size via the objective function
is set as ρopt = 11. Pool size ρ0 = d ln2α e = 24, where about
half of the tests are positive and the entropy of each test is
maximized [15], and the two other pool sizes 5 and 18 are
investigated for comparison purpose. The RSBP algorithm
with these various pool sizes are tested under the BSC as
shown in Fig. 4.
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FIGURE 4. Error performance of different strategies with various pool sizes under the BSC when α = 0.03, N = 100 and T = 50.

FIGURE 5. Error performance of different strategies with various pool sizes under the BSC when α = 0.01, N = 1000 and T = 200.

FIGURE 6. Error performance of different strategies with various pool sizes under the BSC when α = 0.005, N = 1000 and T = 200.

Setting 2: Given α = 0.01, N = 1000 and T = 200 for the
RSBP algorithm. When ε = 0, the relation between Jo and
ρ given ε = 0 is shown in the black line in Fig. 3. Based on
(13), we have ρopt = 35. Pool size ρ0 = d ln2α e = 70 and the
two other smaller pool sizes 10 and 20 are investigated for
comparison purpose. The RSBP algorithm with these various
pool sizes are tested under the BSC as shown in Fig. 5.
Setting 3: Given α = 0.005, N = 1000 and T = 200 for

the RSBP algorithm. When ε = 0, the relation between Jo
and ρ given ε = 0 is shown in the red line in Fig. 3. Based
on (13), we have ρopt = 70. Pool size ρ0 = d ln2α e = 139 and

the two other smaller pool sizes 15 and 30 are investigated for
comparison purpose. The RSBP algorithm with these various
pool sizes are tested under the BSC as shown in Fig. 6.
Setting 4: Given α = 0.001, N = 3000 and T = 100 for

the RSBP algorithm. When ε = 0, the relation between Jo
and ρ given ε = 0 is shown in the blue line in Fig. 3. Based
on (13), we have ρopt = 351. Pool size ρ0 = d ln2α e = 694 and
the two other smaller pool sizes 100 and 150 are investi-
gated for comparison purpose. The RSBP algorithm with
these various pool sizes are tested under the BSC as shown
in Fig. 7.

107174 VOLUME 10, 2022



S. Wang, Q. Huang: Belief Propagation With Optimized Pool Size for Non-Adaptive Group Testing: An Empirical Study

FIGURE 7. Error performance of different strategies with various pool sizes under the BSC when α = 0.001, N = 3000 and T = 100.

As shown in Fig. 4∼7, given different values of ε
and α, the RSBP algorithm with our optimized pool size
performs best in terms of BER, FNR and FPR in the
region of low ε. For instance, its BER is about one order
magnitude less than that of the RSBP algorithm with
ρ0 or the Bernoulli design when (ε, α) ∈

{
(0.001, 0.03),

(0.001, 0.01), (0.01, 0.005), (0.01, 0.001)
}
, and about one to

two orders of magnitude less than those of the RSBP algo-
rithm with smaller pool sizes.

Now we discuss the computational complexity of the mes-
sage update in the RSBP algorithm. Suppose V has constant
row weight ρ and constant column weight γ . In each iteration
(k ≥ 1) of the RSBP algorithm, one CN with index i is ran-
domly chosen to compute the messages δ(k)i,j (xj)’s for j ∈ Ni,

and then all the messages ξ (k)j,i1
(xj)’s for i1 ∈ Mj are required to

compute. In addition, themessages on the rest of the edges are

unchanged and need no update. First, we consider δ(k)i,j (xj)’s

based on (5) and (6). The calculation of each δ(k)i,j (1) is omitted

here for its simplicity. To compute δ(k)i,j (0)’s, ρ+ 1 real multi-

plications are required for (1 − 2ε)
∏
j′∈Ni

ξ
(k−1)
j′,i (0), followed

by one real multiplication and one real addition to obtain
each δ(k)i,j (0). Thus, 2ρ + 1 real multiplications and ρ real

additions are required for all the δ(k)i,j (xj)’s. Then, we consider

ξ
(k)
j,i1

(xj)’s based on (7). To compute ξ (k)j,i1
(0)’s or ξ (k)j,i1

(1)’s,

γ +1 real multiplications are required for (1−α)
∏
i′∈Mj

δ
(k)
i′,j (0)

or α
∏
i′∈Mj

δ
(k)
i′,j (1), followed by one more real multiplication

to obtain each ξ (k)j,i1
(0) or ξ (k)j,i1

(1). Thus, for all the ρ VNs

associated with the chosen CN, it requires 2ρ(2γ + 1) real
multiplications to compute ξ (k)j,i1

(xj)’s.

To summarize, 4ρ(γ+1)+1 real multiplications and ρ real
additions are required for themessage update in each iteration
of the RSBP algorithm. Based on this result we provide a
complexity comparison between various test designs. For the
Bernoulli design, the expectations of the row weights and
the column weights are ρ = ln 2/α and γ = T ln 2/(Nα),

TABLE 1. Expected computational complexity per iteration of the RSBP
algorithm with various test designs when α = 0.01, N = 1000 and
T = 200.

respectively. For the ρ-regular test design, ρ = ρ and γ =
Tρ/N . Using Setting 2 as an example, the expected compu-
tational complexity per iteration of the RSBP algorithm with
various test designs is listed in Table 1. It can be seen that
the expected computational complexity increases quadrati-
cally as ρ increases. For the RSBP algorithm with ρopt, its
computational complexity per iteration is about 3.6 times less
than the RSBP algorithm with ρ0 or the Bernoulli design.

V. CONCLUSION
This paper presents an empirical study to optimize the pool
size in NAGT for BP. Our analysis shows the effectiveness
of the messages from tests in BP and leads to the proposed
objective function for pool size optimization. Simulation
results show that the RSBP algorithmwith our optimized pool
size achieves lower error rates in the low-noise region than
those required to maximize the entropy of each test.
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