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ABSTRACT In the last couple of decades, multicarrier modulations have witnessed a considerable interest
in wireless communication networks due to their ability to fight against multipath fading and offer multiple
access with flexible resource sharing. One of the well known multicarrier modulation systems is filter-bank
multi-carrier with an offset quadrature amplitude modulation (FBMC/OQAM), which was proposed as a
powerful solution during the standardization of 5G. In this paper, we derive a closed-form expression of
the signal to interference plus noise ratio (SINR) for FBMC/OQAM systems in the discrete-time context,
for arbitrary wide sense stationary uncorrelated scattering (WSSUS) channels as well as transmitter (Tx)
and receiver (Rx) waveforms. We quantify the potential gains in SINR brought by FBMC/OQAM, which
exclusively operates on critical lattice density, with respect to FBMC/QAM, which have the flexibility
to operate on critical or non-critical lattice densities. For completeness, we compare the performance of
FBMC/OQAM in the discrete-time context, sweeping the discrete space of waveforms supports, with
that of FBMC/OQAM in the continuous-time context, using the Hermite functions, and show how they
perform similarly. Simulation results prove that FBMC/OQAM optimization algorithm, performing with
the ping-pong optimized pulse shaping (POPS) paradigm, converges rapidly to excellent SINR values, even
with small supports durations, in discrete-time context, which is equivalent to a reduced number of Hermite
functions, in the continuous-time context.

INDEX TERMS OFDM, FBMC, OQAM, QAM, interference, SINR, optimization, waveform, POPS
algorithm.

I. INTRODUCTION
The need for new applications continues to increase over time
and has motivated the researchers to think beyond 5G tech-
nology. These applications include extended reality (XR),
holographic telepresence, ultra-smart cities, high definition
(HD) imaging, remote surgery, distance education, etc [1].
They set different requirements and several criteria [2] that
need to be developed while exploring 6G systems, such as:
• Massive asynchronous transmission: For massive
machine-type communications (mMTC) services, there
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will be a high number of nodes communicating over
the beyond-5G network. As a consequence, waveforms
that have strict synchronization requirements are not
suitable for mMTC applications. The most appropriate
way to alleviate these synchronization requirements is to
use multicarrier systems with well localized waveforms,
such as filter bank multi-carrier with offset quadra-
ture amplitudemodulation (FBMC/OQAM)waveforms,
also known as orthogonal frequency division multiplex-
ing based on OQAM (OFDM/OQAM) [3].

• High spectral efficiency: The spectral efficiency of
FBMC systems is proportional to their time-frequency
lattice density. Generally, OFDM needs a cyclic
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prefix (CP) insertion, which leads to a reduction in
lattice density, hence in spectral efficiency. This can
be critical, especially for mobile broadband reliable
low latency communication (MBRLLC) because of the
resource-limited nature of 6G devices [4]. Therefore,
to preserve spectral efficiency, designed systems must
operate at critical or close-to-critical lattice densities,
without compromising performance. However, the use
of CP is essential in this case for OFDM since its wave-
forms cannot be well localized in time and frequency at
the same time, as stated by the Balian-Low theorem [5].
To overcome this problem, we can use FBMC/OQAM,
which guarantees a good performance even for moderate
to high frequency selectivities, without the need of a CP.

• Extremely low latency: Future applications, such as
three-dimensional holographic displays, telesurgery and
autonomous driving, target a latency in the order of
the sub-ms [6]. Knowing that an optimum decision on
a symbol can only be made once the corresponding
energy has been totally received, a decision delay of
no less than the transmit waveform duration is required.
Thus, to reduce latency, one should be able to decrease
the duration of waveform support. In other words, it is
helpful if we can severely truncate in time the optimized
waveforms without leading to perceptible degradation
in the SINR. But, the reduction of the support duration
of classical OFDM waveform amounts to reducing the
useful part of the OFDM symbol and keeping the same
CP duration to absorb the channel delay spread, which
leads to an increase of the CP overhead. Again, the use of
FBMC/OQAM is recommended since the correspond-
ing waveforms are known to be well localized in time
and frequency, so they can be severely truncated without
degrading the SINR.

• Low device complexity: The Rx complexity depends on
the waveforms duration. In fact, the number of multi-
plications needed for filtering at the receiver is equal
to the number of samples of the Rx waveform that is
proportional to its duration. Consequently, any reduction
in complexity at the Rx must be accompanied by a
reduction in the duration of the used waveform. Unfor-
tunately, for classical OFDM, for a critical or close-to-
critical lattice, the waveforms are not well localized in
time and frequency, which leads in practice to a sig-
nificant degradation in performance in terms of SINR
if a severe truncation is operated. On the other hand,
for FBMC/OQAM, the waveforms are so well localized
in time and frequency that one can operate with very
short durations without being detrimental to the SINR,
whichmakes it possible to have a very reduced reception
complexity.

To meet all previous requirements, the FBMC/OQAM rema-
ins an interesting candidate for applications beyond-5G,
especially within the single-input and single-output (SISO)
framework. Consequently, the waveforms optimization is
necessary and essential. In this context, several previous

works, such as [7], have been led, especially in continuous-
time waveforms with infinite supports. The implementation
of such functions requires sampling of the optimized wave-
forms and truncation of their supports. These two operations
have the unfortunate trend of breaking the intrinsic proper-
ties of optimized waveforms in terms of signal to interfer-
ence plus noise ratio (SINR) maximization and out-of-band
(OOB) emissions reduction. Indeed, sampling causes alias-
ing, and truncation distorts frequency waveforms, resulting in
increased OOB and inter-user interference. In discrete-time
context, after optimization, we obtain ready-to-use wave-
forms, which is not the case of continuous-time systems.

A. RELATED WORK TO FBMC/OQAM OPTIMIZATION
The dominant transmission technique in 4G and 5G networks
is OFDM [8] with CP insertion, thanks to its simplicity and to
its robustness against multipath fading. Systems or standards,
such as asymmetric digital subscriber line (ADSL) and IEEE
802.11a, have already implemented CP-OFDM (also known
as OFDM/QAM). However, CP-OFDM causes a loss of spec-
tral and energy efficiencies due to CP insertion, as it contains
redundant information. Moreover, the rectangular waveform
used in CP-OFDM has a poor frequency localization, making
it difficult for designed communication systems to obey strin-
gent specifications on spectrum masks and OOB emissions.

To overcome previously mentioned drawbacks, robust
waveform designs have been proposed for beyond-5G net-
works [2]. In this context, several European projects have
been elaborated to design new waveforms for 5G systems,
such as FANTASTIC5G [9], METIS [10], and 5GNOW [11].
One of the major proposed candidates was FBMC/OQAM,
although it was introduced quite a long time ago (since
1967) [3]. It is now awell established fact that FBMC/OQAM
offers the possibility to use time-frequency well-localized
waveforms. This allows much better control of OOB emis-
sions and meets stringent spectrum mask requirements.
FBMC/OQAM offers also the advantage of suppressing
narrow-band interference [12]. In the literature, we find sev-
eral FBMC/OQAM systems based on different structures and
variants. These systems can be classified into two categories:
continuous-time and discrete-time systems.

For the continuous-time context, we can cite the isotropic
orthogonal transfer algorithm (IOTA) filter [13], which is
well localized in time and frequency domains. The underly-
ing IOTA waveform was constructed by performing a dou-
ble orthogonalization on time and frequency on a Gaus-
sian function. Its good localization and its exponential
decay in time and frequency, inherited from the starting
Gaussian function, drastically alleviates interference from
neighboring symbols in time and frequency [14]. After the
discovery of the IOTA waveform, several alternative wave-
forms, for FBMC/OQAM, offering optimized OOB emis-
sions and bit error rates (BER) [15], or peak to average power
ratio (PAPR) [16], have been proposed. In [7], we opti-
mized FBMC/OQAM waveforms in terms of SINR in the
continuous-time context.
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For the discrete-time context, the PHYDYAS European
project [17] waveform, using the Mrabbasi-Martin filter [18],
was introduced to reduce OOB emissions. It is also proposed
in [19] to reduce the OOB emissions for FBMC/OQAM
and universal filtered multi-carrier (UFMC). In [20], the
PHYDYAS waveform was optimized in terms of signal to
interference ratio (SIR). Other studies in the literature opti-
mized FBMC/OQAM systems in terms of PAPR in [21],
as well as OOB and BER in [22].

B. CONTRIBUTIONS
In this paper, we focus on waveforms design and optimization
of discrete-time FBMC/OQAM. The orthogonality constraint
is limited only to the real field, while for CP-OFDM, it has to
be satisfied in the complex field [24].

Our main contributions are the following:
• We provide a new closed-form expression of the SINR,
for FBMC/OQAM systems, operating in arbitrary wide
sense stationary uncorrelated scattering (WSSUS) [25]
channels and Tx and Rx waveforms. We used the
ping-pong optimized pulse shaping (POPS) algorithm
for the optimization of Tx/Rx waveforms. We recall
that the POPS algorithm optimizes the Tx waveform
knowing the Rx one, and the Rx waveform knowing
the Tx one. Therefore, we need to express the SINR
in two different forms: a first form that expresses the
SINR as a function of the Rx waveform knowing the Tx
one, and another form that expresses the Tx waveform
knowing the Rx one. It is emphasized that these two
forms of SINR are not symbolically identical, unlike in
the continuous case where these two forms are identical.

• We compare, theoretically, the performance of FBMC/
OQAM, for critical lattice density, with FBMC/QAM,
for critical and non-critical lattice densities, in terms
of SINR, in an arbitrary propagation framework, when
optimized discrete-time waveforms with finite supports
are used.

• In the discrete case, sampled waveforms with finite sup-
ports are optimized. Thus, they can be directly used in
practice without any subsequent alteration. In contrast,
in a previous work in the continuous case [7], waveforms
required both sampling and truncation operations for
their employability.

• In the continuous case, for the FBMC/QAM,
especially for critical and close-to-critical lattice den-
sities, the waveforms are not well localized in time
and in frequency, which is in perfect agreement
with the Balian-Low theorem [5]. In this case, for
FBMC/OQAM, we explored in [7] the space of
integrable square functions through the use of a finite
number of Hermite functions. Therefore, there is no ade-
quacy with what we want to optimize -which is expected
to be not well localized in time and frequency, according
to the Balian-Low theorem- and the finite set of Hermite
functions that we use to explore the signal space, which
are well localized in time and frequency. Since the

Hermite functions are well localized in a decreasing
order, we do not have to reach a gigantic number of
Hermite functions without being able to have a good
exploration of the space. Therefore, SINR does not
saturate by increasing the number of Hermite functions,
as they are not well suited to the space exploration. Thus,
we have a precise exploration for FBMC/OQAM and an
incomplete exploration for FBMC/QAM. So, the com-
parison was not fair. In discrete-time, the exploration is
precise and fair. In fact, we use the same support duration
and the same number of samples for both systems.
In addition to that, we have exact values of the SINR
in both cases.

• We have noticed in [7] an exponential decrease in
time for continuous-time FBMC/OQAM waveforms.
We were not able to know if this decay is specific to
the optimal waveform, or it is inherited from the expo-
nential decay nature of Hermite waveforms, which were
used to explore the signal space for the optimization
of these waveforms. In this paper, in discrete-time con-
text, we find again this exponential decay. Therefore,
we highlight that this is an intrinsic property of the
optimal waveforms. Thus, we have a good localization
in time for FBMC/OQAM systems.

• We compare the optimal SINR obtained in continuous-
time [7] and discrete-time, for different signal to noise
ratio (SNR) values. We note that the exploration of the
signals space, in the continuous-time context, showed
a superiority of the FBMC/OQAM, compared to the
FBMC/QAM, especially in the critical case, since a
very reduced number of Hermite functions offers almost
the optimal predicted SINR. In this paper, we seek to
have an equivalent of this efficiency in the favor of
FBMC/OQAM in the discrete-time context. We sus-
pect that this efficiency will be found with very lim-
ited supports durations, to reach the optimal SINR,
for FBMC/OQAM, compared to FBMC/QAM, which
should require very extensive supports durations in time,
for a maximum asymptotic SINR.

C. ORGANIZATION OF THE PAPER AND NOTATIONS
This paper is organized as follows. In Section II, we present
the adopted system model for FBMC/OQAM and FBMC/
QAM in discrete-time context. Then, in Section III, we focus
on the derivation of the useful, interference, and noise powers.
We derive, in Section IV, the two slightly different forms of
SINR expression that allow to optimize the waveforms of
Tx knowing those of Rx and vice versa for FBMC/OQAM
systems. In Section V, we describe the discrete-version of
the POPS algorithm to design optimal waveforms. We ded-
icate Section VI to the illustration of the obtained analytical
results. Finally, we present our conclusion in Section VII.

1) NOTATIONS
Boldface lower and upper case letters refer to vectors and
matrices, respectively. The superscripts .∗, .T and .H refer
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to the element-wise conjugation, the transpose and the
conjugated transpose of a vector or matrix, respectively.

We denote by v =
(
. . . , vη(−1), vη(0), vη(1), . . .

)T
=(

vη(q)
)
q∈Z =

(
vη(q)

)
q an infinite vector with qth compo-

nent vη(q) = [v]η(q) = v [η (q)], and by M =(
Mη(p)χ(q)

)
p∈Z,q∈Z =

(
Mη(p)χ(q)

)
pq an infinite matrix with

(p, q)th entry Mη(p)χ(q) = [M ]η(p)χ(q), where η and χ are
functions that map indices p and q to new indices η (p)
and χ (q), respectively. We denote by σσσ k (·) the vector shift
operator that shifts all vectors entries by k positions, i.e.
if v =

(
vp
)
p, then σσσ k (v) =

(
vp−k

)
p, and we denote by

666k (·) the matrix shift operator that shifts all matrix entries
by k positions parallel to the main diagonal of the matrix,
i.e. if M =

(
Mpq

)
pq, then 666k (M) =

(
Mp−k,q−k

)
pq. The

symbols ⊗ and � represent, respectively, the convolution
operator of two vectors, and the component-wise product of
two vectors or matrices. We denote by E[·] the expectation
operator, by < {·} the real-part operator, by |·| the absolute
value, and by [[n,m]] the set of integers between n and m,
where n ≤ m. We denote by 〈x, y〉 = xHy the hermitian
scalar product, by 〈x, y〉< = <{〈x, y〉} the real scalar product,
and by ‖x‖ =

√
〈x, x〉 =

√
〈x, x〉< the norm of x. Finally,

we denote by mod the modulo operator.

II. SYSTEM MODEL
In this section, we consider the general FBMC system model
on which this work is based, in its discrete-time version. For
FBMC/QAM, the number of samples per symbol period is
N = Q for critical density systems, whereas it is N =
Q + Ng for non critical density systems, where Q is the
number of subcarriers and Ng is the size of the CP inter-
val. For FBMC/OQAM, the number of samples per symbol
period is N = Q/2. For both QAM and OQAM, we denote
by T the FBMC symbol period, by F the frequency separa-
tion between adjacent subcarriers, by FT the time-frequency
occupancy of each transmitted symbol, and by 1 = 1

/
FT

the lattice density. We denote by Ts = 1/QF the sampling
period and by Rs = 1/Ts the sampling rate.
The FBMC transmitted signal can be expressed as

e =
∑
m,n

amnϕϕϕmn, (1)

where m, n ∈ Z, amn is the data symbol transmitted at
time nT and frequency mF , and

ϕϕϕmn = ejθmn
(
ϕq−nN

)
q �

(
ej2πmq/Q

)
q

(2)

refers to the phase, time and frequency shifted version of
the transmitter prototype waveform, ϕϕϕ =

(
ϕq
)
q, used to

transmit symbol amn. We point out that all signals could be
seen as vectors in a space of infinite dimension in C and
that transmitted symbols contributions span finite dimensions
of this space (the number of which is given by the support
of the Tx waveform). To make the system implementable,

we assume that the supports durations, of both Tx/Rx wave-
forms, are finite and given by DϕϕϕT , where Dϕϕϕ is the number
of period in support duration. The phase shift θmn is used in
FBMC/OQAM to guarantee the orthogonality between their
in-phase and quadrature phase components counterparts in
FBMC/QAM with respect to the real scalar product 〈., .〉<.
In practice, we take θmn = (m+ n) π

/
2, for FBMC/OQAM,

and θmn = 0, for FBMC/QAM.
We consider a WSSUS channel [25] with a finite number

of paths, L, and a channel impulse response (CIR) equal to

c (p; q) =
L−1∑
k=0

ckej2πνkTsqδ (p− pk), (3)

where ck , νk and pk are, respectively, the amplitude, fre-
quency Doppler shift and time delay shift of the k th path at
time qTs. The paths amplitudes ck , k = 0, . . . ,L − 1, are
assumed to be centered and uncorrelated random complex
Gaussian variables with average powers πk = E[|ck |2].
The received signal is given by

r =
∑
m,n

amnϕ̃̃ϕ̃ϕmn + n, (4)

where ϕ̃̃ϕ̃ϕmn is the channel-distorted version of ϕϕϕmn,
seen at the receiver, with qth element

[
ϕ̃̃ϕ̃ϕmn

]
q =∑L−1

k=0 c (pk ; q)
[
ϕϕϕmn

]
q−pk

, and n =
(
nq
)
q is a discrete-

time base-band complex additive white Gaussian noise
(AWGN) with zero mean and N0 as variance, where
N0/2 is the two-sided power spectral density (PSD) of the
continuous-time noise in the channel.

III. DERIVATION OF THE EXPRESSIONS OF USEFUL,
INTERFERENCE AND NOISE POWERS
In this section, we derive the expressions of useful, inter-
ference and noise powers of both FBMC/OQAM and
FBMC/QAM systems, using the same propagation channel
conditions and by following the same steps as in [7].

A. FBMC/OQAM SYSTEMS
The decision variable on symbol akl , in (1), is given by

3kl =
〈
eχklψψψkl, r

〉
<
, (5)

where ψψψkl = ejθkl
(
ψq−lN

)
q �

(
ej2πkq/Q

)
q is the phase, time

and frequency shifted version of the receive prototype wave-
form, ψψψ =

(
ψq
)
q, used for the demodulation of the real

symbol akl , withDψψψ the number of period in its finite support
duration. We note that for simplification reasons, we assume
that Dϕϕϕ = Dψψψ = D. We note that D = DOQAM/2 =
DQAM, where DOQAM and DQAM are the number of period
in the support duration for FBMC/OQAM and FBMC/QAM
systems, respectively. The phase χkl is used to compensate,
even partially, for the phase shift incurred by the chan-
nel at time-frequency location, (lT , kF), occupied by akl .
Since the statistical characteristics of the decision variables
are invariant by time and frequency translations within the
time-frequency lattice of critical density, we can, without
loss of generality, focus on the evaluation of the SINR for

VOLUME 10, 2022 107719



W. Khrouf et al.: Fair SINR Performance Comparison of FBMC/OQAM and FBMC/QAM Multicarrier Communication Systems

symbol a00, at time-frequency location (0, 0). The decision
variable on a00 can be expanded into three terms, as

300 = a00
〈
ejχ00ψψψ00, ϕ̃̃ϕ̃ϕ00

〉
<︸ ︷︷ ︸

U00

+

∑
m,n

(m,n)6=(0,0)

amn
〈
ejχ00ψψψ00, ϕ̃̃ϕ̃ϕmn

〉
<︸ ︷︷ ︸

I00

+

〈
ejχ00ψψψ00, n

〉
<︸ ︷︷ ︸

N00

, (6)

where U00, I00 and N00 are the useful, interference and noise
terms, respectively.

We start by deriving the useful and interference powers,
and we will study the noise power later. The useful and inter-
ference powers must be averaged with respect to the channel
realizations, the modulated signal (so of the realizations of
the transmitted sequences amn) and the noise. These powers
depend only on the realizations of the transmitted signal and
the channel. Thus, we start by averaging with respect to the
realizations of the transmitted signal, conditionally to any
realization of the channel, then with respect to the realizations
of the channel. Conditional on a given realization of the CIR,
c (p; q), the average powers of the useful and interference
terms are given by
PcU = E

[
U2
00

]
= E

[
a200
] (
<
{
e−jχ00

〈
ψψψ00, ϕ̃̃ϕ̃ϕ00

〉})2
,

PcI = E
[
I200
]
=

∑
m,n

(m,n)6=(0,0)

E
[
a2mn

] (
<
{
e−jχ00

〈
ψψψ00, ϕ̃̃ϕ̃ϕmn

〉})2
.

(7)

The interference term in (7) results from the uncorrelated
nature of the real transmitted symbols, amn. The average
transmitted energy corresponding to real symbol amn is given
by Es = E

[
‖amnϕϕϕ‖2

]
= E

[
a2mn

]
‖ϕϕϕ‖2, which is equivalent

to have E
[
a2mn

]
=

Es
‖ϕϕϕ‖2

.

To calculate the SINR, an averaging over the channel
realizations is needed. To simplify the optimization problem,
we can use the transfer function of the channel, C (f ; q) =∑L−1

k=0 cke
j2πνkTsqe−j2πpkTsf , which is the Fourier transform

of the CIR, c (p; q), with respect to p, and choose the com-
pensation factor,

ejχ00 =
C (0; 0)
|C (0; 0)|

=

L−1∑
l=0

cl∣∣∣∣∣L−1∑k=0 ck
∣∣∣∣∣
. (8)

By averaging the expressions in (7) over the channel real-
izations, the useful and interference powers are, respectively,
given by
PU = E

[
PcU
]
=

Es
‖ϕ‖2

E
[(
<
{
e−jχ00

〈
ψψψ00, ϕ̃̃ϕ̃ϕ00

〉})2]
,

PI =E
[
PcI
]
=

Es
‖ϕ‖2

∑
m,n

(m,n)6=(0,0)

E
[(
<
{
e−jχ00

〈
ψψψ00, ϕ̃̃ϕ̃ϕmn

〉})2]
.

(9)

Let Es = Es
∑L−1

k=0 πk be the average energy received per real

symbol, and π̃k = πk
/∑L−1

k=0 πk be the normalizedmultipath
power profile of the channel. From (A.13) in Appendix A,
we deduce that

PU =
Es

2‖ϕϕϕ‖2

×


<

ψ
ψψH


(
L−1∑
k=0

π̃kξξξ νk � σσσ pk (ϕϕϕ)

)

×

(
L−1∑
l=0

π̃lξξξ νl � σσσ pl (ϕϕϕ)

)T
ψψψ∗


+ψψψH

[
L−1∑
k=0

π̃k888νk �
(
σσσ pk (ϕϕϕ)σσσ pk (ϕϕϕ)

H )]ψψψ


,

PI =
Es

2‖ϕϕϕ‖2
∑
m,n

(m,n) 6=(0,0)

×


<

ψ
ψψH


(
L−1∑
k=0

π̃kξξξ νk � σσσ pk
(
ϕϕϕmn

))

×

(
L−1∑
l=0

π̃lξξξ νl � σσσ pl
(
ϕϕϕmn

))T
ψψψ∗


+ψψψH

L−1∑
k=0

(
π̃k888νk

�

(
σσσ pk

(
ϕϕϕmn

)
σσσ pk

(
ϕϕϕmn

)H))ψψψ


,

(10)

where ξξξ ν is the complex vector defined as
(
ξξξ ν
)
q =(

ej2πνTsq
)
q,888ν is the Hermitian matrix defined as (888ν)pq =(

ej2πνTs(p−q)
)
pq, and σσσ k (·) is the vector shift operator.

The noise power is expressed as

PN = E
[(
<

{
e−jχ00

〈
ψψψ00, n

〉})2]
. (11)

The term
〈
ψψψ00, n

〉
is independent of e−jχ00 , which depends

directly on the channel realizations that are independent of
the noise. In fact,

〈
ψψψ00, n

〉
is a Gaussian complex random

variable whose statistical properties remain unchanged with
a phase shift such as e−jχ00 . Thus, e−jχ00

〈
ψψψ00, n

〉
is a circular

random complexGaussian variable that has the same variance
as
〈
ψψψ00, n

〉
. Therefore, <

{
e−jχ00

〈
ψψψ00, n

〉}
is a random real

Gaussian variable with the half variance of
〈
ψψψ00, n

〉
. Conse-

quently, the noise power can be written as

PN =
1
2
E
[∣∣〈ψψψ00, n

〉∣∣2] . (12)

Since the noise is white, with autocorrelation matrix
Rnn = N0I , where I is the infinite dimensions identity matrix,
we can write

E
[
|〈ψψψ, n〉|2

]
= ψψψH E

[
nnH

]
︸ ︷︷ ︸
Rnn=N0I

ψψψ,= N0‖ψψψ‖
2. (13)

Accordingly, the noise power is given by

PN =
N0

2
‖ψψψ‖2. (14)
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B. FBMC/QAM SYSTEMS
The SINR expression for FBMC/QAM systems was derived
in [23], in the discrete-time context. In this section, we briefly
present the main steps considered to find its closed-form
expression.

The decision variable on complex symbol akl , bearing
simultaneously both in-phase and quadrature phase compo-
nents, uses the conventional Hermitian scalar product, and
can be expressed as

3kl =
〈
ψψψkl, r

〉
, (15)

where ψψψkl =
(
ψq−nN

)
q �

(
ej2πmq/Q

)
q is the time and fre-

quency shifted version of the receiver prototype waveform,
ψψψ =

(
ψq
)
q, used for the demodulation of the complex

symbol akl .
As in FBMC/OQAM, we evaluate, without loss of gener-

ality, the SINR for symbol a00. The decision variable on a00
can also be expanded into three terms as

300 = a00
〈
ψψψ00, ϕ̃̃ϕ̃ϕ00

〉︸ ︷︷ ︸
U00

+

∑
m,n

(m,n) 6=(0,0)

amn
〈
ψψψ00, ϕ̃̃ϕ̃ϕmn

〉
︸ ︷︷ ︸

I00

+
〈
ψψψ00, n

〉︸ ︷︷ ︸
N00

,

(16)

where U00, I00 and N00 are the useful, interference and noise
terms, respectively.

Conditional on a given realization of the CIR, c (p; q), the
average powers of the useful and interference terms are given
by


PcU = E

[
U2
00

]
= E

[
a200
] 〈
ψψψ00, ϕ̃̃ϕ̃ϕ00

〉2
,

PcI = E
[
I200
]
=

∑
m,n

(m,n) 6=(0,0)

E
[
a2mn

] 〈
ψψψ00, ϕ̃̃ϕ̃ϕmn

〉2
. (17)

Let E be the mean energy of complex symbol amn. Then,
for comparison purposes and since we transmit separately
the in-phase and quadrature phase components in the case
of FBMC/OQAM, we assume that E = 2Es, which means
that E

[
a2mn

]
=

E
2‖ϕϕϕ‖2

. We re-iterate the same reasoning as in
Section III-A, we conclude that

PU =
E

‖ϕϕϕ‖2
E
[∣∣〈ψψψ00, ϕ̃̃ϕ̃ϕ00

〉∣∣2] ,
PI =

E

‖ϕϕϕ‖2

∑
mn

(m,n) 6=(0,0)

E
[∣∣〈ψψψ00, ϕ̃̃ϕ̃ϕmn

〉∣∣2] . (18)

Let E = E
∑L−1

k=0 πk be the average energy received per

complex symbol, and π̃k = πk
/∑L−1

k=0 πk be the normalized
multipath power profile of the channel. The useful and the

interference powers can be written as

PU =
E

‖ϕϕϕ‖2
ψψψH

[
L−1∑
k=0

π̃k888νk �
(
σσσ pk (ϕϕϕ)σσσ pk (ϕϕϕ)

H )]ψψψ,
PI =

E

‖ϕϕϕ‖2

∑
mn

(m,n) 6=(0,0)

ψψψH


L−1∑
k=0

π̃k888νk

�

(
σσσ pk

(
ϕϕϕmn

)
σσσ pk

(
ϕϕϕmn

)H)
ψψψ.

(19)

The noise power is given by

PN = E
[
|〈ψψψ00, n〉|2

]
= N0‖ψψψ‖

2. (20)

In the next section, we will use the obtained expressions of
the useful, interference and noise powers to derive the SINR.

IV. SINR EXPRESSION
The SINR expression is the following

SINR =
PS

PI + PN
. (21)

We inject in (21) the expressions in (10) and (14), for
FBMC/OQAM, and in (19) and (20), for FBMC/QAM.

In the sequel, we choose using real waveforms, since this
choice extremely simplifies the equations for FBMC/OQAM,
without affecting much their performance. This choice also
allows to compact the expressions for FBMC/QAM, as the
optimization shows that the optimal waveforms obtained for
these systems are real, with a term of close phase. In this case,
the SINR can be expressed as

SINR =
ψψψTMϕϕϕ

00ψψψ

ψψψT

 ∑
m,n

(m,n) 6=(0,0)

Mϕϕϕ
mn + (1+ γ )

N0
Ē
‖ϕϕϕ‖2

ψψψ
, (22)

where

Mϕϕϕ
mn = <



L−1∑
k=0

π̃k888νk �
(
σσσ pk

(
ϕϕϕmn

)
σσσ pk

(
ϕϕϕmn

)H)
+γ

(
L−1∑
k=0

π̃kξξξ νk � σσσ pk
(
ϕϕϕmn

))

×

(
L−1∑
l=0

π̃lξξξ νl � σσσ pl
(
ϕϕϕmn

))T


,

γ = 1 for FBMC/OQAM, and γ = 0 for FBMC/QAM.
To simplify derivations, we introduce the matrix

Mϕϕϕ
∞ =

∑
mn

Mϕϕϕ
mn = Mϕϕϕ

00 +
∑
mn

(m,n) 6=(0,0)

Mϕϕϕ
mn. (23)

Therefore, the expression of the SINR can be written as

SINR =
ψψψTMϕϕϕ

00ψψψ

ψψψT
(
Mϕϕϕ
∞ −M

ϕϕϕ
00 + (1+ γ )

N0
E
‖ϕϕϕ‖2

)
ψψψ
, (24)
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whereMϕϕϕ
00 andM

ϕϕϕ
∞ are, respectively, given by

Mϕϕϕ
00 = <



(
L−1∑
k=0

π̃k888νk �666pk
(
ϕϕϕϕϕϕT

))

+γ

(
L−1∑
k=0

π̃kξξξ νk � σσσ pk (ϕϕϕ)

)

×

(
L−1∑
l=0

π̃lξξξ νl � σσσ pl (ϕϕϕ)

)T


(25)

and

Mϕϕϕ
∞=<



(
L−1∑
k=0

π̃k888νk �
∑
n
666pk+nN

(
ϕϕϕϕϕϕT

))

�

(
Q−1∑
m=0

888m/QTs

)

+γ
∑
n


(−1)n

(
L−1∑
k=0

π̃kξξξ νk � σσσ pk+nN (ϕϕϕ)

)

×

(
L−1∑
l=0

π̃lξξξ νl � σσσ pl+nN (ϕϕϕ)

)T


�

(
Q−1∑
m=0

(−1)mσσσ pk
(
ξξξm/QTs

)
σσσ pl

(
ξξξm/QTs

)T)



,

(26)

with666k (·) is the matrix shift operator,Q−1∑
m=0

888m/QTs


pq

=

{
Q, if (p− q) mod (Q) = 0,
0, else,

(27)

andQ−1∑
m=0

(−1)mσσσ pk
(
ξξξm/QTs

)
σσσ pl

(
ξξξm/QTs

)T
pq

=

Q, if (p+ q− pk − pl) mod (Q) =
Q
2
,

0, else.
(28)

Using the expressions in (24), (25), and (26), we deduce a
second expression of the SINR as a ratio of two quadratic
forms on ϕϕϕ as follows

SINR =
ϕϕϕTMψψψ

00ϕϕϕ

ϕϕϕT
(
Mψψψ
∞ −M

ψψψ

00 + (1+ γ )
N0
Ē
‖ψψψ‖2

)
ϕϕϕ
, (29)

where

Mψψψ
∞

= <



L−1∑
k=0

π̃k888νk �
∑
n
666−pk+nN

(
ψψψψψψT )

�

(
Q−1∑
m=0

888m/QTs

)

+γ
∑
n



(−1)n

×666nN


(
L−1∑
k=0

π̃k666−pk
(
ξξξ νk �ψψψ

))

×

(
L−1∑
l=0

π̃l666−pl
(
ξξξ νl �ψψψ

))T



�

(
Q−1∑
m=0

(−1)mξξξm/QTsξξξ
T
m/QTs

)


(30)

and

Mψψψ

00 = <



L−1∑
k=0

π̃k888νk �666−pk
(
ψψψψψψT )

+γ

(
L−1∑
k=0

π̃k666−pk
(
ξξξ νk �ψψψ

))

×

(
L−1∑
l=0

π̃ l666−pl
(
ξξξ νl �ψψψ

))T


. (31)

In the sequel, we consider a diffuse scattering function in the
frequency domain, with aDoppler spectral density, decoupled
from the dispersion in the time domain, given by

S̃ (l; ν) = α (ν) β̃ (l) , (32)

where α (ν) is the Doppler specter density, and β̃ (l) =∑L−1
k=0 π̃kδ (l − pk), with π̃k is the total average power of all

paths with common delay pkTs, and L is the total number of
delays. In this case, we can rewrite the expressions in (25),
(26), (30), and (31) in a more compact form as

Mϕϕϕ
00

= <



(
L−1∑
k=0

π̃k666pk
(
ϕϕϕϕϕϕT

))
�555

+γ

(
L−1∑
k=0

π̃kσσσ pk (ϕϕϕ)

)(
L−1∑
l=0

π̃lσσσ pl (ϕϕϕ)

)T
� ηηηηηηT

,
(33)

Mϕϕϕ
∞

= <


����

∑
n
666nN

L−1∑
k=0

π̃k666pk
(
ϕϕϕϕϕϕT

)
+γηηηηηηT�∑
n
(−1)n666nN

L−1∑
k,l=0

(
π̃k π̃l222

(kl)

�
(
σσσ pk (ϕϕϕ)σσσ pl (ϕϕϕ)

T ) )

,

(34)

Mψψψ

00

= <



(
L−1∑
k=0

π̃k666−pk
(
ψψψψψψT ))

�555

+γ

(
L−1∑
k=0

π̃kσσσ−pk (ηηη �ψψψ)

)

×

(
L−1∑
l=0

π̃lσσσ−pl (ηηη �ψψψ)

)T


, (35)
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Mψψψ
∞

= <



����
∑
n
666nN

L−1∑
k=0

π̃k666−pk
(
ψψψψψψT )

+γ2222

�
∑
n
(−1)n666nN


(
L−1∑
k=0

π̃kσσσ−pk (ηηη �ψψψ)

)

×

(
L−1∑
l=0

π̃lσσσ−pl (ηηη �ψψψ)

)T



,

(36)

where the vector ηηη and the matrices555,���,222(kl), and2222 are
defined as

ηηη =
∫
α (ν)ξξξ νdν,

555 =
∫
α (ν)888νdν,

��� =
(∫
α (ν)888νdν

)
�

(
Q−1∑
m=0

888m/QTs

)
,

222(kl) =
Q−1∑
m=0

(−1)mσσσ pk
(
ξξξm/QTs

)
σσσ pl

(
ξξξm/QTs

)T
,

2222 =
Q−1∑
m=0

(−1)mξξξm/QTsξξξ
T
m/QTs .

(37)

The (p, q)th entries of the matrices ���,222(kl), and2222 can be,
respectively, written in a simpler way as

�pq =

{
Q5pq, if (p− q) mod (Q) = 0,
0, else,[

222(kl)
]
pq =

Q, if (p+ q− pk − pl) mod (Q) =
Q
2
,

0, else,

[2222]pq =

Q, if (p+ q) mod (Q) =
Q
2
,

0, else.

(38)

We note that the expressions of generalized Rayleigh ratios
that allow to optimize ϕϕϕ for a given ψψψ , and ψψψ for a given ϕϕϕ,
are not symmetrical in FBMC/OQAM systems, unlike the
FBMC/QAM ones. This makes the implementation of these
equations more difficult in FBMC/OQAM.

To preserve the same notations used in the continuous-
time, we can rewrite the SINR as

SINR =
ψψψTAϕϕϕψψψ

ψψψTBϕϕϕψψψ
, (39)

where Aϕϕϕ = Mϕϕϕ
00 and Bϕϕϕ = Mϕϕϕ

∞ −M
ϕϕϕ
00 + (1+ γ )

N0
E
‖ϕϕϕ‖2,

or as

SINR =
ϕϕϕTAψψψϕϕϕ
ϕϕϕTBψψψϕϕϕ

, (40)

where Aψψψ = Mψψψ

00 and Bψψψ = Mψψψ
∞−M

ψψψ

00+ (1+ γ )
N0
E
‖ψψψ‖2.

V. POPS OPTIMIZATION ALGORITHM
The resulting optimization problem is defined as(

ϕϕϕopt ,ψψψopt
)
= arg max

(ϕϕϕ,ψψψ)
SINR. (41)

Given the special forms of the SINR expressions in (39)
and (40), it is easy to see that the optimization problem
is equivalent to a maximization of a generalized Rayleigh
quotient. For finite values of the SNR, N0

E
is non-null, and

N0
E
‖ϕϕϕ‖2 and N0

E
‖ψψψ‖2 are trivial quadratic forms which, when

added to the positive Hermitian quadratic forms in the expres-
sions of BBBϕϕϕ and Bψψψ , guarantee their invertibility and their
relative well-conditioning.

Algorithm 1 POPS Algorithm in the Discrete-Time Systems

Require: SNR, BdTm, L, Q, D, FT , F = 1, Ts = 1/Q, ϕϕϕ(0),
SINR(0), i = 0, eSINR = 1 and ε = 10−7

1: Compute Bd and Tm for given BdTm and L.
2: Compute ηηη,555, and��� for given α (ν).
3: Compute2222.
4: while eSINR > ε do
5: Compute A(i)ϕϕϕ and B(i)ϕϕϕ .

6: Compute G(i)ϕϕϕ =
(
B(i)ϕϕϕ

)−1
A(i)ϕϕϕ .

7: Calculate
[
ψψψ (i), λ

(i)
1max

]
= eig

(
G(i)ϕϕϕ

)
.

8: Compute A(i)ψψψ and B(i)ψψψ .

9: Compute G(i)ψψψ =
(
B(i)ψψψ

)−1
A(i)ψψψ .

10: Calculate
[
ϕϕϕ(i), λ

(i)
2max

]
= eig

(
G(i)ψψψ

)
.

11: i← i+ 1
12: SINR(i)← λ2max
13: Evaluate errors: eSINR =

∣∣SINR(i) − SINR(i−1)
∣∣.

14: end while

The POPS approach, proposed to optimize the Tx/Rx wave-
forms, is detailed in Algorithm 1, where Bd and Tm are,
respectively, the Doppler spread and the delay spread,

α(ν) =


δ

Bd
+

2(1− δ)

πBd
√
1− (2ν/Bd )2

, if |ν| <
Bd
2

0, else,

(42)

and

β (l) =


δlTs
Tm
+
(1− δ) e−lTs/Tm

Tm
, if |l| ≤

L − 1
2

0, else,
(43)

where δ = 1 for the uniform distribution for the channel mul-
tipath power profile, β (l), and the uniform Doppler specter
density, α (ν), and δ = 0 for the exponential truncated decay-
ing model, β (l), and the classic Doppler specter density,
α (ν), (i.e. Jakes model). In the sequel, we denote by the first
channel ‘‘the uniform channel’’, and the second channel ‘‘the
exponential channel’’.

The main steps of the POPS approach (Algorithm 1) are
the following:
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• Step 1: We compute the matrices ηηη, 555, and ��� for
given α (ν).

• Step 2:We compute the matrix2222.
• Step 3: In the initialization step ofAlgorithm 1, we start
by an arbitrary non null vector ϕϕϕ(0), typically the Gaus-
sian function.

• Step 4: For iteration (i) , we compute ψψψ (i) as the eigen-
vector of G(i)ϕϕϕ with maximum eigenvalue, λ(i)1max.

• Step 5: Givenψψψ (i), we determine ϕϕϕ(i) as the eigenvector
of G(i)ψψψ with maximum eigenvalue, λ(i)2max.

• Step 6:We proceed to the next iteration, (i+ 1).
• Step 7:We stop the iterations when we obtain a negligi-
ble increase of SINR.

In the next section, we will consider this algorithm and
analyze the performance of the optimal obtained waveforms.

VI. SIMULATION RESULTS
In this section, we assess the performance of discrete-
time FBMC/OQAM systems, in terms of achieved SINR
and OOB emissions. Subsequently, we compare these per-
formances with those of discrete-time FBMC/QAM and
continuous-time FBMC/OQAM. It is very important to
compare the discrete-time and continuous-time versions of
FBMC/OQAM, since the ways to explore the signal spaces
are different. We report that in continuous-time context,
we use the Hermite functions in finite numbers to explore
a part of the infinite space of square-integrable function,
while in discrete-time context, we explore the entire space of
finite dimensions that represents the samples number of the
optimized waveforms support.

A. FBMC/OQAM SYSTEMS PERFORMANCE
In this section, we compare the performance corresponding
to the two models of channels defined by (42) and (43).
We initialize the POPS algorithm with the most localized
Gaussian vector,

[
ϕϕϕ(0)

]
k = 21/4e−2π t

2
k , where tk = kTs with

k ∈
[[
−(P− 1)

/
2, (P− 1)

/
2
]]
, P = NDOQAM = DQ, and a

sampling period Ts = 1/QF . We remind that N = Q/2 is the
number of subcarriers, and DOQAM = 2D is the number of
periods in the support duration, (D is the normalized support
duration), for FBMC/OQAM.

Figure 1 represents the evolution of the optimized SINR
as a function of D, for uniform multipath power profile of
the channel, where SNR = 40 dB and T = NTs, with
N = 256. We note that the SINR stabilizes, for all BdTm
values, at DOQAM = 4 (i.e. D = 8), which corresponds to
supports durations ofϕϕϕ andψψψ equal to 8T . Therefore, we stop
the optimization at D = 4, for FBMC/OQAM. We note that
the curves are so flat that a significant reduction in the value
of D causes a slight degradation. That makes FBMC/OQAM
more interesting since we can reduce the processing time,
complexity, and latency without degrading the performance.
We notice also that by decreasing the time-frequency dis-
persions, the SINR increases and becomes close to the SNR
value when BdTm is below 10−4, since the interference tends

FIGURE 1. SINR as a function of D, for Q = 512 and SNR = 40 dB.

to 0. On the other hand, we remark that the obtained SINR
remains high enough, even for large time and frequency
dispersions (BdTm = 10−2), which makes it possible to work
comfortably with 2-ASK or 4-ASK modulations, without
needing equalization or CP insertion, as proposed in [26].

In Figure 2, we compare the optimized SINR for uniform
and exponential channels (see (42) and (43) expressions).
For each case, we increase D until stabilization of the SINR.
For the exponential channel, the SINR stabilizes also at
D = 4. Numerical results in this figure show that for low
time-frequency dispersions (BdTm = 10−4), the two systems
become equivalent in terms of SINR. However, for high
time-frequency dispersions (BdTm = 10−2), the SINR of
exponential channel exceeds the SINR of uniform channel
by 3.4 dB. In fact, the uniform channel is the most entropic
channel.

In Figure 3, we present the optimal Tx waveforms, ϕϕϕopt ,
maximizing the SINR, for D in [[1, 4]]. We remark that the
optimal Tx waveforms, resulting from Algorithm 1, decay
linearly in time and frequency, in the logarithmic scale,
by increasing D. This behavior has also been observed in the
continuous-time context, but there was some doubt whether
this behavior was intrinsic to the optimized waveforms,
or was really inherited from the way in which the signal
space was explored. Indeed, Hermite functions are known to
decrease exponentially in time and frequency. In addition to
that, we note that the optimal Tx waveforms are localized
in time even for D = 2, which is important in the case
of practical hardware realizations. Therefore, with a reduced
support duration, we obtain almost the same performance in
terms of SINR.

B. FBMC/OQAM SYSTEMS VS. FBMC/QAM SYSTEMS
To compare FBMC/OQAM to FBMC/QAM systems, we rep-
resent in Figure 4 the evolution of the optimal SINR as a
function of BdTm, for SNR = 30 dB and different value
of FT for FBMC/QAM systems. This Figure is obtained by
selecting the optimal value of the SINR reached for each
value of BdTm. For BdTm = 10−2 and the critical density,
FBMC/OQAM outperforms FBMC/QAM by 4 dB. On the
other hand, this gain fades when reducing the lattice density

107724 VOLUME 10, 2022



W. Khrouf et al.: Fair SINR Performance Comparison of FBMC/OQAM and FBMC/QAM Multicarrier Communication Systems

FIGURE 2. SINR as a function of D, for uniform vs. exponential channel,
and SNR = 30 dB.

FIGURE 3. Amplitude of ϕϕϕ, for Bd Tm = 10−2, Q = 512, SNR = 30 dB and
D = 1, . . . , 4.

to 1 = 1/(1 + 1/32) ' 0.97, contrary to the continuous-
time case, the SINR of FBMC/QAM is equal to that of
FBMC/OQAM, for BdTm = 10−2. We note that, although
the performance has improved for FBMC/QAM compared to
the critical case, we obtain better performance in the discrete-
time, when reducing the lattice density by 3%, than in the
continuous-time version. Indeed, the way to sweep the space
in the discrete-time is more efficient than in the continuous-
time, and the processing is more faster in the discrete-time,
which allows to reach better results. Finally, for 1 = 1/(1+
1/16) ' 0.94, FBMC/QAM outperforms FBMC/OQAM by
1.65 dB, for BdTm = 10−2. Therefore, we note that the
reduction of the spectral efficiency by almost 4% allows to
obtain the same performance. This reduction can be justified
in practice in terms of complexity, since FBMC/QAM is
easier to use in multiple-input and multiple-output (MIMO)
systems.

Numerical results in Figure 5 show that the optimal Tx
waveform of FBMC/OQAM is more localized in frequency.
Thus, it reduces the OOB emissions with respect to Tx wave-
forms of FBMC/QAM. We note that by increasing the lattice
density, 1, for FBMC/QAM, we lose frequency localization
for high frequencies. We note that we took the case of single

FIGURE 4. Optimal SINR of FBMC/OQAM vs. FBMC/QAM, as a function of
Bd Tm, for SNR = 30 dB.

FIGURE 5. PSD of one subcarrier for SNR = 30 dB, Bd Tm = 10−2,
Q = 512, and D = 8.

user with comparable power density of the subcarriers at Tx.
However, when we want to use our optimized waveforms in
the case of multiple access, if we have an imbalance in the
power density for users that can in practice reach 20 dB,
we will have problems with the FBMC/QAM because the
waveforms are not well localized in frequency. In contrast,
for FBMC/OQAM, the frequency localization is sufficiently
excellent to circumvent the problem of interference between
users.

C. FBMC/OQAM SYSTEMS: CONTINUOUS-TIME VS.
DISCRETE-TIME
In Figure 6, we compare the optimal SINR obtained for
discrete-time, for D = 4, with continuous-time, using
K = 17 Hermite functions, as a function of BdTm, for differ-
ent SNR values and the uniform channel. We remark that the
obtained results are identical for the two systems. Therefore,
these two systems are equivalent. Moreover, we note that
when the SINR tends to 0, we have an asymptote equal to the
SNR, which is clear for SNR = 20 dB and SNR = 30 dB.
This is not the case for SNR = 40 dB because we have not
reduced enough the values of BdTm.

VOLUME 10, 2022 107725



W. Khrouf et al.: Fair SINR Performance Comparison of FBMC/OQAM and FBMC/QAM Multicarrier Communication Systems

FIGURE 6. Optimal SINR of FBMC/OQAM for continuous-time vs.
discrete-time as a function of Bd Tm, for SNR = 20, 30 and 40 dB.

FIGURE 7. Optimal SINR of FBMC/OQAM systems for continuous-time vs.
discrete-time vs. discretized continuous time versions, as a function of
Bd Tm, for SNR = 30 dB.

To obtain Figure 7, we sample the optimal Tx/Rx wave-
forms reached in the continuous-time, for K = 17 Hermite
functions, with a sampling period Ts = 1/QF , and using the
same time axis t defined in Section VI-A. Then, we calculate
the SINR of these waveforms, after truncation for D = 2, 3
and 4, using the discrete-time SINR expressions. We refer to
the obtained system by ‘‘discretized continuous time’’ in the
legend. Using the ‘‘discretized continuous time’’ waveforms,
we reach the same optimal SINR values for D = 3 and 4
compared to the continuous- and directly optimized discrete-
time systems. However, for D = 2, we lose 1.6 dB, in terms
of SINR, for BdTm = 10−4.

VII. CONCLUSION
In this paper, we studied the performance of the
FBMC/OQAM and FBMC/QAM systems, in the discrete-
time context, using an arbitrary WSSUS discrete-time propa-
gation channel. This work brings many benefits and insights
with respect to a previous work [7] on waveforms optimiza-
tion for continuous-time FBMC/OQAM and FBMC/QAM
systems.

First of all, we stood out from the previous work on the
continuous-time context by searching for the best Tx/Rx

waveforms through a perfect exploration of the finite dimen-
sion signal space, stemming from their finite support discrete-
time nature. In contrast, we recall that space exploration was
far from being perfect for FBMC/QAM operating at critical
or near-critical lattice densities, for which optimal waveforms
are known to be poorly localized. Indeed, the orthonormal
base of very well time-frequency localized Hermite functions
was at the origin of a bad exploration of the signal space
from which the poorly localized optimal waveforms should
be identified.

Secondly, the discrete-time finite-support optimal wave-
forms, obtained in this paper, have the merit of being ready-
to-use, and do not need any further processing for their imple-
mentation in practice. We recall that, in the continuous-time
context, the obtained waveforms are of infinite time support.
Therefore, they need to be sampled and truncated in time prior
to any practical use. As it is known, truncation in time can be
very severe in the case of low latency systems. For such severe
truncations, we noticed a significant decrease in optimized
SINR for FBMC/QAM, due to poor waveform localization in
this case. Although it is not covered in this paper, truncation
in time is expected to bring an increase in OOB emissions,
which can be detrimental in practice, especially in the pres-
ence of multi-users access. Fortunately, for FBMC/OQAM,
the system was enough robust, that we observed a preserva-
tion of SINR performance, even for severe truncations.

The present work on discrete-time framework allowed an
identical exploration of the signal space for FBMC/OQAM
and FBMC/QAM. Therefore, it ensured a fair comparison of
these systems. Indeed, we used the same supports durations
and the same number of samples to compare the two sys-
tems. Thus, we were able to accurately reveal the true gains
brought by FBMC/OQAM with respect to FBMC/QAM. For
example, we noticed that FBMC/OQAM systems present a
gain of 4 dB in SINR for low channel dispersions, and 1 dB
for relatively high dispersions, when both operate at critical
time-frequency lattice densities.We point out that this was not
possible for FBMC/QAM, in the continuous-time context for
FBMC/QAM, where the optimized SINR does not stabilize,
even if a gigantic number of Hermite functions is used for
signal space exploration.

We have also noticed in this work that, in order to
boost FBMC/QAM to achieve the same performance of
FBMC/OQAM, a sacrifice of spectral efficiency of less than
4% was sufficient. This is, in fact, in perfect agreement with
the previous work in the continuous-time framework. Again,
this reduction, which is deemed to be insignificant, has the
merit of offering a significant reduction in reception com-
plexity, when FBMC/QAM is used instead of FBMC/OQAM,
especially in the MIMO context.

In addition to all previously mentioned advantages, this
paper allowed a cross-validation of the present work on
discrete-time with the previous work on continuous-time.
Indeed, comparable results were obtained for FBMC/OQAM
due to an almost perfect, and therefore similar exploration
of the signal space in the two contexts. In addition to that,
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this work revealed that, contrary to the continuous-time
framework, the SINR expressions for the optimization of the
Rx waveform, given the Tx waveform, and the Tx wave-
form, given the Rx waveform, are not symbolically identical.
Finally, some of the obtained results brought to light an expo-
nential decrease in time for optimized FBMC/OQAM wave-
forms in the discrete case, where the signal space was freely
and fully explored, without any constraints.We recall that this
exponential decrease was also observed in the continuous-
time context. We underline that, at the time when the work
on the continuous-time context was carried out, it was not
possible to arguewhether the observed exponential decaywas
really an intrinsic property of the optimized waveforms or an
inheritance of the exponential decay of the Hermite functions,
used for signal space exploration.

APPENDIX A
DERIVATION OF THE USEFUL AND INTERFERENCE
POWERS IN FBMC/OQAM SYSTEMS
In this Appendix, we provide the derivation of the useful and
interference powers in FBMC/OQAM systems, i.e. PU and
PI . We set X =

∑L−1
l=0 cle

jπνlTspl ; Ymn =
〈
ψψψ00, ϕ̃̃ϕ̃ϕmn

〉
; and

Pmn = E
2‖ϕ‖2

E
[(
<
{
e−jχ00

〈
ψψψ00, ϕ̃̃ϕ̃ϕmn

〉})2]
.

Since the compensation factor is given by ejχ00 = X
/
|X |

(see (8)), we can write

Pmn =
E

2‖ϕ‖2
E

[(
<

{
X∗

|X |
Ymn

})2
]
. (A.1)

We find the expression (A.9) in [7], given by

E

[(
<

{
X∗

|X |
Ymn

})2
]

=
1
2

<
{(
E
[
X∗Ymn

])2}
E
[
|X |2

] + E
[
|Ymn|2

] . (A.2)

As a result, Pmn will be given by

Pmn =
E

4‖ϕ‖2

<
{(
E
[
X∗Ymn

])2}
E
[
|X |2

] + E
[
|Ymn|2

] . (A.3)

As Ymn =
∑
q

[
ψψψ00

]∗
q

∑L−1
k=0 ck

[
ϕϕϕmn

]
q−pk

ej2πνkTs
(
q+ pk

2

)
, the

inter-correlation between X and Ymn can be expressed as

E
[
X∗Ymn

]
=

∑
q

[ψψψ]∗q

L−1∑
k=0

πk
[
ϕϕϕmn

]
q−pk

ej2πνkTsq. (A.4)

We denote by ξξξ ν the complex vector defined as
(
ξξξ ν
)
q =(

ej2πνTsq
)
q. Using the time shift operator σσσ p (·), we can write

E
[
X∗Ymn

]
= ψψψH

(
L−1∑
k=0

πkξξξ νk � σσσ pk
(
ϕϕϕmn

))
. (A.5)

Hence, we obtain

<

{(
E
[
X∗Ymn

])2}

= <

ψ
ψψH


(
L−1∑
k=0

πkξξξ νk � σσσ pk
(
ϕϕϕmn

))

×

(
L−1∑
l=0

πlξξξ νl � σσσ pl
(
ϕϕϕmn

))T
ψψψ∗

 . (A.6)

Since the variance of X is

E
[
|X |2

]
=

L−1∑
k,l=0

E
[
c∗kcl

]
ejπTs(νlpl−νkpk ) =

L−1∑
l=0

πl, (A.7)

we can write

<

{(
E
[
X∗Ymn

])2}
E
[
|X |2

]

=
1

L−1∑
l=0

πl

<

ψ
ψψH


(
L−1∑
k=0

πkξξξ νk � σσσ pk
(
ϕϕϕmn

))

×

(
L−1∑
l=0

πlξξξ νl � σσσ pl
(
ϕϕϕmn

))T
ψψψ∗

 .
(A.8)

As Ymn = ψψψH
00ϕ̃̃ϕ̃ϕmn = ψψψ

H ϕ̃̃ϕ̃ϕmn, the variance of Ymn is

E
[
|Ymn|2

]
= ψψψHE

[
ϕ̃̃ϕ̃ϕmnϕ̃̃ϕ̃ϕ

H
mn

]
ψψψ, (A.9)

where

E[[ϕ̃̃ϕ̃ϕmn]p[ϕ̃̃ϕ̃ϕ
H
mn]q]

=

L−1∑
k=0

πk
[
ϕϕϕmn

]
p−pk

[
ϕϕϕmn

]∗
q−pk

ej2πνkTs(p−q). (A.10)

By noting by 888ν the Hermitian matrix defined as (888ν)pq =(
ej2πνTs(p−q)

)
pq, we can write

E
[
ϕ̃̃ϕ̃ϕmnϕ̃̃ϕ̃ϕ

H
mn

]
=

L−1∑
k=0

πk888νk �
(
σσσ pk

(
ϕϕϕmn

)
σσσ pk

(
ϕϕϕmn

)H)
.

(A.11)

Therefore, the variance of Ymn is given by

E
[
|Ymn|2

]
=ψψψH

[
L−1∑
k=0

πk888νk�
(
σσσ pk

(
ϕϕϕmn

)
σσσ pk

(
ϕϕϕmn

)H)]
ψψψ.

(A.12)

Finally, we inject (A.8) and (A.12) in (A.3). Thus, the final
expression of Pmn is given by

Pmn

=
E

4‖ϕ‖2

×


1

L−1∑
l=0

πl

<

ψ
ψψH


(
L−1∑
k=0

πkξξξ νk � σσσ pk
(
ϕϕϕmn

))

×

(
L−1∑
l=0

πlξξξ νl � σσσ pl
(
ϕϕϕmn

))T
ψψψ∗


+ψψψH

[
L−1∑
k=0

πk888νk �
(
σσσ pk

(
ϕϕϕmn

)
σσσ pk

(
ϕϕϕmn

)H)]
ψψψ


.

(A.13)
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