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ABSTRACT In the field of the acquisition of sports skills, a common way to improve sports skills, such as
golf swings, is to imitate professional players’ motions. However, it is difficult for beginners to specify
the keyframes on which they should focus and which part of the body they should correct because of
inconsistent timing and lack of knowledge. In this study, a golf swing analysis tool using neural networks
is proposed to address this gap. The proposed system compares two motion sequences and specifies
keyframes in which significant differences can be observed between the two motions. In addition, the system
helps users intuitively understand the differences between themselves and professional players by using
interpretable clues. The main challenge of this study is to target the fine-grained differences between users
and professionals that can be used for self-training. Moreover, the significance of the proposed approach is
the use of an unsupervised learning method without prior knowledge and labeled data, which will benefit
future applications and research in other sports and skill training processes. In our approach, neural networks
are first used to create a motion synchronizer to align motions with different phases and timing. Next,
a motion discrepancy detector is implemented to find fine-grained differences between motions in latent
spaces that are learned by the networks. Furthermore, we consider that learning intermediate motions may
be feasible for beginners because, in this way, they can gradually change their pose to match the ideal form.
Therefore, based on the synchronization and discrepancy detection results, we utilize a decoder to restore
the intermediate human poses between two motions from the latent space. Finally, we suggest possible
applications for analyzing and visualizing the discrepancy between the two input motions and interacting
with the users. With the proposed application, users can easily understand the differences between their
motions and those of various experts during self-training and learn how to improve their motions.

INDEX TERMS Computer vision, machine learning, motor skill training, golf.

I. INTRODUCTION
In sports, it is difficult for beginners to improve their skills
without prior knowledge or assistance from coaches. As a
conventional method, people go to lessons to meet experts
and learn how to play in the proper form. However, in most
sports, players spend considerable time training alone to
achieve outstanding results in the field and retain exceptional
body conditions. Therefore, it is important to design and
implement an effective and accurate self-training process for
such situations.

In the field of the acquisition of sports skills, one way
to improve sports skills is to replicate professional players’
motions. People watch the movements of professional ath-
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letes on television or the Internet and try to make their bodies
move similarly to professionals. To accelerate this process,
many systems have recently been developed to help users
understand the movements of professionals [1], [2], [3], [4],
[5]. However, in these previous works and systems, users may
struggle to refine their movement with no idea which timing
of the whole motion, which parts of the body they should
focus on, or how they can change their body movements to
get their form closer to that of professionals.

With significant advances in machine learning technolo-
gies, many systems have been built to recognize differ-
ent objects, make predictions for decisions, or even predict
the future [6]. Researchers have focused on producing
self-training systems with neural networks [7]. A recent
study [8] introduced a climbing training system in which
users can receive recommended poses and movements to
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be learned in the future, based on their current poses, after
training the network with professional poses. The advantage
of incorporating machine learning is that the system can learn
without prior knowledge. Therefore, no expert or coach is
required to build such a system, and it can be generalized to
many other tasks. In addition, apart from image information,
multiple sensors have recently been fused to measure human
motion, and deep learning technologies can efficiently take
advantage of processing such fused data [9]. However, super-
vised learning requires abundant data from a specific domain,
which makes it difficult to design a generalized sensor fusion
application.

In this study, we address these gaps in the literature to
provide users with interpretable clues so that they can intu-
itively understand the difference between themselves and
professional players. We choose golf as our network learning
subject because golf is an individual sport, and the player’s
standing position is fixed when performing a swing. Recent
studies [10], [11] have demonstrated the ability of deep
learning to retrieve fine-grained information necessary for
golf swing analysis. However, after retrieving the essential
factors from human motion, the system designer must know
which part of the body is vital in golf and determine which
parts must be processed for analysis. Furthermore, the cal-
culation is manually designed for golf swings; thus, it is
difficult to generalize the proposed methods to other sports
analyses without prior knowledge or the help of experts.
In this study, we propose a golf swing analysis tool using
deep neural networks to help users recognize the difference
between the user’s swing motion and an expert’s motion
obtained from the Internet or broadcasted media. Further-
more, we address the previous issues in an unsupervisedman-
ner to encourage the network to learn standard features from
professional players without adding domain-specific infor-
mation. Consequently, the proposed network can be applied
to other sports and skill-training processes.

The proposed system consists of three modules: a motion
synchronizer, motion discrepancy detector, and motion
manipulator. The motion synchronizer matches the two input
motions with different timings and speeds. The motion dis-
crepancy detector can recognize the difference between the
two motions and find the frame in which the difference
is large. The motion manipulator is designed to produce
intermediate motions between the two motions to provide
more intuitive instructions for users to learn. To evaluate the
accuracy and effectiveness of the proposed modules, we col-
lect golf swing data from existing databases and generate a
pseudo database containing raw video data, 3D pose data,
and labels for the phases during the swing. Next, we examine
the accuracy of the motion synchronizer and the capability of
motion discrepancy using three types of inputs (raw video,
video without background, and 3D human pose). Finally,
we discuss the accuracy of the results and explain the correla-
tion among the learned latent space, human motion, and other
features. On the other hand, qualitative results are shown to
evaluate the ability of the motion manipulator to reproduce

motions from the latent space and create new motions unseen
in the database.

Furthermore, we discuss the proposed analytical tool and
its possible applications in future research. The proposed
application visualizes the image frames and human motions
where the discrepancy between the expert and the user’s
swing is large and helps the user quickly recognize themotion
that needs to be corrected. Compared to existing methods,
the main contributions of this study can be summarized as
follows:

• A golf swing analysis method and its applications are
introduced.

• The proposed method distinguishes when the difference
between two motions is large and small.

• The proposed method helps users understand the differ-
ence between themselves and professional players.

• The proposed method provides intermediate poses that
are acceptable during the early learning phase of sports.

• Crucial factors that can influence the accuracy of sports
analysis are discussed.

II. RELATED WORK
A. SPORTS TRAINING FOR SKILL ACQUISITION
Many recent studies have focused on developing sports
training systems to help beginners improve their skills. Stud-
ies [13], [14], [15] have proposed multi-modal sports training
systems based on sports theories. In their system, users
received visual, haptic, and audio feedback when they did not
ideally move their bodies or instruments. However, the ideal
movement could differ from sport to sport, meaning that it
may be difficult to generalize these methodologies to other
sports.

On the other hand, another way to learn sports skills is
imitating professional players’ motions [1], [3], [4], [5].
Ikeda et al. [16] proposed a golf swing training system that
uses the motions of professional golfers. In their system,
a user’s motion was synchronized with a selected ideal
professional’s motion, and the two motions were overlaid and
projected onto the ground during training. Sasaki et al. [17]
also reported the importance of beginners copying expert
motions and proposed a climbing training system using pose
prediction. Their system predicted and visualized the pose of
experts based on the user’s current hand and foot positions.
While these recent studies have shown the effectiveness of
using multi-modal feedback and the potential of applying
neural networks to create AI teachers for sports training, it is
difficult for users to change their motion forms immediately
to match ideal forms. Thus, building a system that can teach
users step-by-step to improve their sports skills remains
challenging.

B. VIDEO AND MOTION ALIGNMENT
An efficient way to evaluate whether a person is performing
a motion correctly is to compare their motion with oth-
ers whose motion is considered correct. However, owing
to the various timings and speeds of motion of different
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individuals, we must align the motions to make them com-
parable. A conventional method for aligning two temporal
sequences is dynamic time warping (DTW), which was intro-
duced by Berndt and Clifford [18]. In this method, every
index in a sequence is matched with one or more indices from
another sequence, and the mapping of the indices from the
first sequence to the other sequences must be monotonically
increasing. The DTW concept has been introduced in several
domains. For example, Ikeda et al. [19] proposed a real-time
golf swing projecting system that simultaneously visualized
professional and user forms with matched timing. To align
the two motions in real-time, they measured the DTW only
over a short period and penalized the previous cost value at
a later time. Halperin et al. [20] utilized the concept of DTW
in speech and presented an audio-to-video alignment method
for matching speech-to-lip movements.

On the other hand, self-supervised neural networks have
recently been developed to tackle video alignment tasks
using the latent space representation [12], [21], [22]. In this
approach, an embedder is used to compress input videos
into a latent space. After the embedding process, a loss is
designed to find correspondences through time in the latent
space, thus encouraging the network to learn a latent space
where similar motions should appear to be close. This method
helps synchronize high complexity temporal sequences, such
as videos. In this study, we base the loss of our network on the
temporal cycle-consistency loss used by Dwibedi et al. [12],
but apply DTW along with the loss for smooth temporal
matching.

C. DISCREPANCY DETECTION
By comparing the two synchronized motions, we can deter-
mine the difference between them in terms of human pos-
tures. In early studies, abnormal detection referred mainly
to finding patterns in data that did not match the expected
behavior [25]. Recently, two methods have been proposed for
detecting abnormalities In the first approach, abnormal infor-
mation is referred to as prior knowledge. For example, Parra-
Dominguez et al. [26] trained a binary classifier on annotated
data to determine whether abnormal events occurred during
a stair descent. In the second approach to abnormal detec-
tion, abnormal information is not provided in advance. The
research group of Nater et al. [27] proposed an unsupervised
learning method for learning normal human behavior. They
used a hierarchical representation of the appearance and
action level of regular movements to detect abnormal events.

While a network may be trained to detect abnormal events,
such as falling to the ground, we focus on whether a neural
network can be trained to automatically detect fine-grained
differences between two regular motions. We call this detec-
tion of the fine-grained difference discrepancy detection. The
most relevant of these studies is that of Abati et al. [28]. They
designed a deep autoencoder with a parametric estimator
that learned a probability distribution from the latent space
to detect discrepancies. The encoder effectively remembered
standard samples and could distinguish between normal and

FIGURE 1. System overview. X is the input motion sequence and Y is the
output human poses restored from the latent space.

abnormal images. However, although the network could eas-
ily detect surprise samples, fine-grained differences among
standard samples were not discussed. In addition to image-
based methods, recent studies have focused on systems that
use 3D human pose information [29], [30]. In this study,
we apply discrepancy detection to both videos and 3D
human poses and discuss the ability of the system to detect
fine-grained differences between two input motions.

III. METHODS
This study aims to create a system that captures user motions
and provides fine-grained feedback to improve users’ forms
by comparing their motions with those of professionals.
To achieve the goal of building such an application, the
method proposed in this study is to first train a neural network
with professionals’ motion data. After training the network,
the system compresses the user motions through the network
into a latent space and compares their motions with those of
professionals in the latent space. Figure 1 shows an overview
of the proposed system. The workflow of the approach is
divided into three parts: motion synchronization, motion dis-
crepancy detection, and motion manipulation. The system
first receives two motion inputs X1 and X2 and uses encoder
E to embed the input motions into the latent space, where the
two motions are represented as L1 and L2. The encoder is
trained to learn a latent space in which similar motions appear
to be close.

Next, using the learned latent space, the motion synchro-
nizer MS matches the timing of the two motions in the
latent space by measuring the Euclidean distance between
L1 and L2. The motion discrepancy detector then captures
the two synchronized latent vectors V1 and V2, measures the
difference between them, and passes a distance vectorD12 to
the motion manipulatorMM.
Finally, the MM integrates V1, V2, and D12 to specify

the key frames where large differences occur and create an
intermediate latent vector Vinter. The system uses decoder D
to restore the intermediate human poses Y from Vinter for
users to gradually improve their motion forms.

A. MOTION SYNCHRONIZER: ALIGNING MOTION
SEQUENCES WITH DIFFERENT TIMING
For motion synchronization, we aim to design a network
that learns a latent space that shows motion similarity.
A common way to achieve this is by constructing an
autoencoder and decoder, whose input and output are the
same motions. On the other hand, previous studies have
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shown that cycle-consistency methods are useful for aligning
video inputs with different phasing and timing. Our method
is inspired by the temporal cycle consistency (TCC) learning
method proposed byDwibedi et al. [12]. The TCC network is
designed to allow the network to learn not only the similarity
of motion, but also the temporal order of the entire motion.
Inspired by this previous study, we implement the TCC algo-
rithm as follows:
• The encoder E compresses two motion sequences to
latent vectors L1, L2.

• For each node of L1, find the nearest node of L2.
• For each identified node of L2, we find the nearest node
of L1 (cycle back).

• If the node is cycling back to itself, there is no loss;
otherwise, TCC loss is calculated.

For the encoder network, we implement a video-based
network and two skeleton-based networks. Each network
consists of a base network and an embedder network. While
the base network is designed to extract features from a given
video or skeleton sequence, the embedder network uses the
output of the base network and embeds it into the latent space.

For the embedder network, we first store the features of any
given frame together with its context frames along the time
dimension. Next, we apply 3D convolutions to aggregate the
temporal information and reduce the dimensionality using 3D
max-pooling. Finally, we use two fully connected layers and a
linear projection to obtain a 128-dimensional embedding for
each frame.

Three types of networks are implemented in the base net-
works: video TCC (V-TCC), skeleton TCC (S-TCC), and
skeleton-attention TCC (SA-TCC). V-TCC is a network that
uses videos as its input. The original TCC implementation
is followed to construct the V-TCC. We use the ResNet-50
[31] architecture pre-trained with ImageNet [32] to extract
features from the output of the Conv4c layer. All frames
in a given video sequence are resized to 224 × 224, and
the extracted convolutional features are 14 × 14 × 1024.
The convolutional features produced are then fed into the
embedder network.

S-TCC is a straightforward implementation of our baseline
method that uses skeletons (human poses) as its input. The
S-TCC consists of only fully-connected layers. All frames in
a given skeleton sequence have a size of 3× 16 (joints), and
we expand the skeleton input to a single 1 × 48 vector and
feed it to the embedder network.

Because the plain implementation of S-TCC may not be
able to learn the relationship among the 3D joints, SA-TCC
is another skeleton input version of our TCC network that
uses the concept of the self-attention mechanism. As shown
in Figure 2, in the SA-TCC network, we first expand the 3×
16 skeleton input to a single 1 × 48 vector x and then turn
it to query q(x), key k(x), and value v(x). The output y of
the attention block is fed to the embedder network, and the
transformation in the attention block is formulated as follows:

βij =
exp(sij)∑
i exp(sij)

, where s = q(x)T k(x) (1)

FIGURE 2. Self-attention block. x is the skeleton input, and y is the
output. q(x), k(x), and v (x) is the production of the query, key, value
respectively.

⊗
is the matrix multiplication.

FIGURE 3. Discrepancy detection. The proposed network is encouraged to
find a latent space where similar motions appear to be close. After
synchronization, frames with large distances in the latent space are
considered keyframes where large motion differences occur.

yi = f (
∑
j

βijv(x)j) (2)

In the above transformation, the weights to be learned for
q(x), k(x), and v(x) are implemented as 1× 1 convolutions.
We aim to enable the network to recognize the relationships
between different skeleton joints by learning the attention
matrix inside the attention block.

B. MOTION DISCREPANCY DETECTOR: FINDING
FINE-GRAINED MOTION DIFFERENCES
After training the network, similar motions must be close
together in the latent space. In this section, we focus on
the distance between two motions in the latent space to
detect and retrieve fine-grained discrepancies and compare
two different swing forms, particularly for the differences
between beginners and experts. As previously mentioned, the
TCC network synchronizes the input sequences by calculat-
ing the Euclidean distance between latent vectors. At this
point, similar motions appear close to each other in the latent
space. As shown in Figure 3, because we assume that the
network is trained using the golf swings of advanced golfers,
a small difference is computed when the input motion is
performed similarly to advanced golfers. On the other hand,
if the poses between the two input motions are dissimilar in a
specific frame, causing a large distance between the aligned
latent vectors, we may find a significant motion difference
in that frame. Therefore, we take the latent vectors of the
input motions V1 and V2, which are timing-matched by
the motion synchronizer, and calculate the frame-by-frame
distance vector D, which indicates the degree of difference
between the motions:

Di =
∑
i

||V1i − V2i||
2 (3)
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FIGURE 4. Three types of datasets.

C. MOTION MANIPULATOR: DISCOVERING
INTERMEDIATE MOTION BETWEEN HUMAN POSES
During self-training, it is not always simple for beginners
to imitate an ideal motion form, which is very different
from their current form. In this study, we propose a motion
decoder to generate an intermediate motion. As mentioned
previously, the TCC network is trained to learn a latent space
that shows motion similarity. Therefore, we understand that
a high-dimensional data point in latent space can be rep-
resentative of a human pose. To retrieve the intermediate
motion between two points in the latent space, we train a
decoder using latent vectors to predict human poses that
are the same as the inputs. In particular, we first input the
training set data into the trained TCC network to obtain the
outputs of the latent vectors. Next, using the latent vectors
as inputs, we trained a simple decoder consisting of a single
fully-connected layer to produce the outputs of the human
poses. For the loss function LMSE , we take the mean square
error (MSE) between the output and input poses:

LMSE =
∑
i

||Yi − Xi||2 (4)

where Xi is the ith joint of the input human pose X and Yi is
the ith joint of the output human pose Y .
After training the motion decoder, we retrieve a new latent

vector Vinter between the two timing-matched latent vectors
using linear interpolation:

Vinter = (1− α)× V1 + α × V2 (5)

where V1 and V2 are the two latent vectors synchronized by
the motion synchronizer, and α ∈ 0.0, 1.0 is the magnitude
parameter. In the above formulation, by increasing the value
of α, we can obtain a human pose whose latent vector is closer
to V2, and the restored human pose should ideally be more
similar to the human poses generated from V2.

IV. EXPERIMENTAL SETUP
To evaluate the accuracy and effectiveness of the three mod-
ules introduced in the previous section, we collected golf
swing data via the Internet and created a pseudo database
consisting of raw video data, without-background-video data,
and 3D pose data (Figure 4). Next, we implemented three
models of the network (V-TCC, S-TCC, and SA-TCC) uti-
lizing TCC loss and conducted statistical analysis under four
different conditions:
• V-TCC using video inputs with backgrounds

FIGURE 5. Key event and phase. The impact moment and the top moment
are labeled as key events. Frames between them are labeled as swinging
down phases.

• V-TCC using video inputs without backgrounds
• S-TCC using 3D human pose inputs
• SA-TCC using 3D human pose inputs
The following sections introduce the data collection pro-

cess and the evaluation metrics used in this study.

A. VIDEO DATASET
As the training dataset, we used GolfDB [33], a video dataset
collection for all types of golf iron swings and driver swings,
consisting of 1400 high-quality golf swing videos of male and
female professional golfers. Although the GolfDB provided
preprocessed video clips for a frame size of 160 × 160,
we rebuilt our pseudo dataset with high-resolution videos.
In addition to clean videos, we created another video dataset
without background information. This was because, in our
hypothesis, the background information, for example, the
human shadow,might influence the alignment of the network.
Moreover, the network might also learn the motion of props,
such as golf clubs. We used Mask R-CNN [34], a generic
object detection and segmentation network, to detect the
human body in a single image frame. We then removed the
background pixels and left only the human body (Figure 4).

B. 3D POSE DATASET
To conduct a more precise analysis of only human poses,
we created a new pseudo dataset consisting of 3D point
data of human body poses. In this dataset, we first used
HRNet [35] to retrieve the time series of 2D human poses
from golf-swing videos. While the time series of 2D poses
could roughly represent human motion, 2D poses could vary
significantly owing to camera poses, and it was difficult to
address the normalization problem in 2D space. Therefore,
human 3D poses were produced using the simple linear net-
work structure proposed in [36]. The estimated 2D poses from
the HRNet were fed to a linear network to retrieve the 3D
human poses (Figure 4).

C. EVALUATION METRICS
Because we used a self-supervised learning method,
we trained the network until the TCC loss converged. To eval-
uate how well the network was trained, we applied an accu-
racy metric showing the precision of the alignment using two
label types: key events and phases. A key event is a single
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frame showing a particular moment, and the phase is a time
series between two key events. For example, as shown in
Figure 5, a key event in golf may be themoment when the golf
club hits the ball (impact), and the motion before the golf club
hits the ball can be considered as the phase of the golf club
approaching the ball (swinging down). Note that all the
frames in the period between two key events have the same
phase label. Following the key event annotation of GolfDB,
we labeled our pseudo dataset with eight key events: address,
toe-up, mid-backswing, top, mid-downswing, impact, mid-
follow-through, and finish. Phases were labeled between
every two key events, for a total of seven phases.

The phase classification accuracy was per frame phase
classification. To calculate the accuracy, we first used the
encoders of our TCC networks to extract latent vectors.
We then trained a simple classifier on the latent vectors to
predict the labeled phases. The classifier was trained under
several conditions by changing the percentage of the given
labeled data. After the classifier was trained, we used all
labeled data to calculate the phase classification accuracy.
In general, the larger the size of the given labeled data, the
higher the accuracy of the classifier.

To explore more specifically the effectiveness of the net-
work in detecting discrepant motion, we investigated whether
the distance in the latent space could represent the discrep-
ancy between two input sequences by computing Pearson’s
correlation coefficient. Because 3D poses varied for differ-
ent camera views, we could not directly compare the two
human poses using the results from the 3d pose estimator.
Thus, we applied Procrustes analysis to align the two human
poses to ensure that they were seen from the same camera
direction. In our experiment, we compared the distance in the
latent space with the mean per joint point error (MPJPE) and
measured the Pearson’s correlation coefficient ρ:

ρD,E =
cov(D,E)
σDσE

(6)

where cov is the covariance; D is the distance in the latent
space; E is the MPJPE; and σD and σE are the standard
deviations of D and E .

V. RESULTS
This chapter presents the results of an early qualitative
analysis investigating the potential of the proposed method
to detect discrepant motion differences, followed by more
detailed results comparing different modules. Finally, the
intermediate human poses generated by the motion manip-
ulator are visualized for qualitative studies.

A. CASE STUDY
In our early study, we conducted a qualitative analysis by
exploring the latent space to investigate whether the network
could trace fine-grained differences. We first used the V-TCC
to synchronize the swing motions of professionals and begin-
ners. We then computed the distances between the aligned
videos in the latent space and visualized the overlaid 3D
human poses for qualitative comparison (Figure 6).

TABLE 1. Phase classification accuracy. This is the accuracy metric
showing the ability of the network to classify any given motion frame to
its corresponding phase.

B. PHASE CLASSIFICATION ACCURACY
We trained the V-TCC using the GolfDB video dataset with
and without background subtraction. In contrast, S-TCC and
SA-TCC were trained using the pseudo skeleton dataset
with unit vector normalization. After training the four mod-
els, we computed the phase classification accuracy for each
trained model by assigning 1%, 5%, 10%, 30%, and 80% of
labeled data.

The results are presented in Table 1. As we trained the
network properly, the phase classification accuracy was low
when the given labeled data were insufficient and rose with
an increase in the number of labeled data.

C. CORRELATION
We computed Pearson’s correlation coefficient using the
four models. For video inputs, a 0.69 Pearson’s correla-
tion coefficient was measured for regular video, and a
0.72 Pearson’s correlation coefficient was obtained when the
background was removed (Figure 7). For skeleton inputs,
an over 0.76 Pearson’s correlation coefficient was found
when using the SA-TCC; however, the lowest Pearson’s cor-
relation coefficient with 0.51 was obtained from the S-TCC
(Figure 8).

D. MOTION INTERPOLATION
For the qualitative results, we computed and visualized the
intermediate human pose between a pair of human poses
considering the following three circumstances:
• The two poses were from a single person. The two poses
were in different phases (Figure 9 (a)).

• The two poses were from different individuals. The two
poses were in the same phase (Figure 9 (b)).

• The two poses were from different individuals. The two
poses were in different phases (Figure 9 (c)).

VI. DISCUSSION
A. CASE STUDY
In our early case study, we observed that in most cases, when
the distance in the latent space was small, the difference
between the two 3D poses was small(Figure 6 c). On the
other hand, when the distance was considerable, the 3D poses
showed more differences(Figure 6 b, d). This suggested that
the network could distinguish between beginners and profes-
sionals. Thus, we can use this feature to retrieve motion fea-
tures that help users target the key moves they have to correct.
However, as depicted in Figure 6 (a), the distance in the latent
space remained large even in certain circumstances where the
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FIGURE 6. Case study with the V-TCC. The line graph shows the distance between two synchronized motions in the latent space. The red line in the
graph indicates the threshold for discrepancy detection. The colored skeleton and black skeleton indicate the user’s pose and expert’s pose,
respectively. The density and radius of red spheres indicate the degree of joint position difference between the two skeletons.

FIGURE 7. Pearson’s correlation test for V-TCC. Left: normal videos. Right:
videos without background.

FIGURE 8. Pearson’s correlation test with skeleton input. Left: S-TCC.
Right: SA-TCC.

joint difference was negligible. This might be explained by
the fact that the network focused not only on human motion
but also on other motion features. In this case, the golf club’s
movement, which was also critical during the swing, might
be the main factor causing the enormous distance in the latent
space. This led us to the following quantitative studies, where
we conducted statistical tests to examine the accuracy of the
synchronization and the correlation between the latent space
and joint difference under various conditions.

B. PHASE CLASSIFICATION ACCURACY
In this quantitative study, we discovered that the previous
TCC implementation had limited precision in terms of syn-
chronization. As our hypothesis suggests, synchronization
quality might be influenced by various background informa-
tion and other movements, such as the golf club’s and human
shadow’s motions.When the background was removed, a sig-
nificant increase in the accuracy of the V-TCC model was
observed. This result supported our hypothesis that infor-
mation outside the human region would affect alignment.

Various types of information from the background, the
movement of human shadows, and the motion of properties
controlled by a humanmight be learned as features by the net-
work, thus affecting the accuracy of the analysis. Because of
the significant superiority of the without-background version,
we considered it necessary to apply background subtraction
before synchronization when building applications for real
usage.

Next, considering the skeleton version, both S-TCC and
SA-TCC outperformed V-TCC under all conditions. Given
only 10% of the labeled data, both S-TCC and SA-TCC
achieved a phase classification accuracy of over 90%. This
might be explained by the fact that the skeleton version
had more compressed and precise information than the
video version, where the color information might be noisy.
Additionally, 3D poses represented high-level human fea-
tures. Therefore, the features outside the human region were
removed when retrieving 3D human poses, resulting in more
precise accuracy for further golf swing analysis. Note that the
skeleton data were the estimated results from the video data,
and the estimation could not be perfect for every human pose.
Despite imperfect skeleton inputs, the S-TCC and SA-TCC
networks outperformed V-TCC. This result suggested that we
could use the skeleton version for more precise implementa-
tion in actual usage.

Finally, comparing the two skeleton version mod-
els, S-TCC performed better than SA-TCC under most
conditions. However, SA-TCC remained competitive in some
circumstances (better than S-TCC with 10% labeled data).
This led to the following correlation test, in which we dis-
cussed the ability of the networks to detect discrepancies
between two motions.

C. CORRELATION
Discussing the correlation test, as shown in Figure 7,
we observed a correlation between the distance in the latent
space and the MPJPE. While the distribution of the data pairs
seemed to be scattered, a Pearson’s correlation coefficient of
over 0.69 showed the potential of the network to distinguish
whether the difference between the two motions was small
or large. However, as discussed in the case study section,
in some circumstances, the network failed to detect discrepant
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FIGURE 9. Motion manipulation. Unseen intermediate motions between two different 3D human poses are retrieved from the latent space using
linear interpolation. α is the blending value. The same color of the skeleton denotes the same person.

motion showing no difference in the latent space, while
the joint difference was significant. As shown in Figure 7,
a greater correlation and a more clustered distribution were
foundwhen the background and golf club were removed from
the scene. This indicated that the network could learn the
motion features of the club, and that it is essential to analyze
the clubmotion when showing the difference between the two
input motions.

For the two skeleton models, an over 0.76 Pearson’s corre-
lation coefficient was found when using the SA-TCC. On the
other hand, only a 0.51 Pearson’s correlation coefficient could
be obtained from the S-TCC. Therefore, alongwith the results
shown in Table 1, we found that although the S-TCC network
had the most remarkable performance in tackling synchro-
nization, its limited ability to detect discrepant motions might
be a drawback in terms of real application implementations.
In contrast, SA-TCC had a superior Pearson’s correlation
coefficient over all other competitors while maintaining an
acceptable phase classification accuracy. Overall, the skele-
ton model with the attention module implementation outper-
formed the video models in all aspects of evaluation. There-
fore, based on the results, we considered the attention module
the best choice for actual usage. We then used SA-TCC as
our final version of the TCC network for the decoder and
application implementation, which will be discussed in the
next section.

D. MOTION INTERPOLATION
From the results shown in Figure 9 (a), we observed that
the trained decoder could restore the ground truth of human
poses. Furthermore, the motion decoder demonstrated its
ability to generate new human poses unseen in the training
dataset. This suggested that the TCC network could learn
fine-grained features of the poses of a single person. Notably,
the intermediate motion exhibited a continuous change from
one pose to another. From this, We could infer that the human

FIGURE 10. Visualization of body parts for revision suggestions. The
attention-based network focuses on different body parts at three
different phases (address, top, follow-through from left to right). The
density and radius of red spheres show the intensity of the attention of
the network.

poses of a motion sequence were arranged in orders in the
high-dimensional latent space.

Next, as depicted in Figure 9 (c), we found that the trained
decoder could perform fair interpolation between different
poses. Specifically, intermediate poses had the character-
istics of two different input human poses. For example,
we observed continuous changes in the distance between
limbs from one human pose to another. This suggested that
similar poses which pass through the TCC network were
embedded in nearby points in the latent space regardless of
the poses from different individuals.

Finally, as shown in Figure 9 (b), the motion decoder could
generate meaningful intermediate poses at an aligned time.
We observed that the human pose gradually changed from an
abnormal to a standard form. This suggested that instead of
teaching beginners directly with professionals’ swing forms,
we could provide them with a preliminary pose that is more
acceptable for beginners to imitate.

VII. APPLICATIONS
The proposed method can be used for self-training sys-
tems that detect discrepant motion frames using the distance
between golf swings in the latent space and compare 3D
human poses at the detected frames. As an application proto-
type, we combine the motion synchronizer, motion discrep-
ancy detector, and motion manipulator into a single graphical
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user interface where users can select any professional’s form
from the database and compare the difference between their
forms and the professional’s. In addition, instead of directly
imitating the selected motion, users can gradually imitate
intermediate human poses using a motion manipulator. Fur-
thermore, we visualized the attention maps along with the
self-attention module to demonstrate the importance of each
body part (Figure 10). This may be a clue for discovering
body parts that should be focused on and what can be ignored.
To go a step further, this might indicate the importance of the
body parts that trainees should follow to revise their poses
optimally. In the future, we plan to conduct user studies to
evaluate the training effectiveness of the proposed system
and determine whether the crucial points shown by the atten-
tion maps can be used in real training scenarios. Moreover,
we consider that using a high-quality motion capture sys-
tem can enhance the solidity of the proposed system with
high-precision human poses despite the high speed of motion,
such as golf swings.

As this work focuses on proposing a novel flow for con-
structing a sports analysis tool, and because user studies may
vary from domain to domain and are flexible for the system
designer, further user studies evaluating the proposed sys-
tem’s efficiency have not been addressed in practice. As pre-
viously mentioned, there are many ways to design a proper
way to provide feedback to users for training. Related works
that use multi-modal feedback to alert users when performing
the wrong way compared to professionals have shown their
significance during training. In the future, we plan to combine
our approach with other feedback systems and evaluate the
effectiveness of the system. Furthermore, we plan to apply the
proposed approach to other sports and skill training processes
to explore the generality of the proposed method.

VIII. CONCLUSION
We propose a golf swing analysis tool that uses neural net-
works to help users intuitively understand the difference
between themselves and professional players. We divide our
work into three parts: synchronization, discrepancy detec-
tion, and manipulation. First, the motion synchronizer aligns
motions with different phases and timings. The experi-
ment shows that our implementation using skeleton inputs
can achieve a better performance than state-of-the-art video
implementations.

Second, using the proposed networks, we use a motion
discrepancy detector to find fine-grained differences between
golf swings in the latent space. By applying comparative anal-
ysis, such as comparing 3D human poses in those detected
frames, we conclude that the motion discrepancy detector can
distinguish whether the difference between the twomotions is
small or large. The proposed SA-TCC network outperforms
the previous TCC network in terms of phase classification
accuracy and has the best ability to show the correlation
between the distance in the latent space and the MPJPE.

Third, based on the synchronization and discrepancy detec-
tion results, we introduce a decoder structure called a motion

manipulator to restore motion from the latent space. The
restoration results suggest that the network can retrieve inter-
mediate human poses between two motions that do not
exist in the original dataset. Furthermore, instead of teach-
ing beginners directly about professional forms, the motion
manipulator can provide them with an intermediate pose that
is more acceptable for beginners to start with.

Finally, with the above three main contributions of this
work, we create an application for analyzing and visualiz-
ing the discrepancy between two input golf swing motions.
For user interaction, users can quickly grasp the difference
between their swings and those of various experts during
self-training. In addition, by understanding the continuous
changes step-by-step between the two selected human poses,
we aim to help users efficiently learn an ideal form in a
gradual manner instead of directly imitating ideal motion.
Using the proposed system, users can choose an ideal form
to imitate and learn to play sports without the help of coaches
during self-training. We intend to refine the proposed pro-
totype application and conduct user studies to investigate its
effectiveness.
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