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ABSTRACT Gait feature recognition refers to recognizing identities by collecting the characteristics of
people when they walk. It shows the advantages of noncontact measurement, concealment, and nonim-
itability, and it also has good application value in monitoring, security, and company management. This
paper utilizes Kinect to collect the three-dimensional coordinate data of human bones. Taking the spatial
distances between the bone nodes as features, we solve the problem of placement and angle sensitivity of
the camera. We design a fast and high-accuracy classifier based on the One-versus-one (OVO) and One-
versus-rest (OVR) multiclassification algorithms derived from a support vector machine (SVM), which can
realize the identification of persons without data records, and the number of classifiers is greatly reduced by
design optimization. In terms of accuracy optimization, a filter based on n-fold Bernoulli theory is proposed
to improve the classification accuracy of the multiclassifier. We select 20000 sets of data for fifty volunteers.
Experimental results show that the design in this paper can effectively yield improved classification accuracy,
which is 99.8%, and reduce the number of originally required classifiers by 91%-95%.

INDEX TERMS Gait characteristics, Kinect v2, Bernoulli theory, least-squares support vector machine.

I. INTRODUCTION
Human gait is characterized by repetitive movements of dif-
ferent body joints. Unique features extracted from body joint
motions are utilized to identify a person [1]. Gait is gener-
ated unconsciously by an individual and is one of the most
difficult biological characteristics to replicate [2]. Compared
with physiological feature recognition technology (such as
those concentrating on human faces, fingerprints and irises),
gait recognition has the advantages of being noninvasive,
hard to conceal and not requiring explicit cooperation from
the subjects [3]. Therefore, it has great application value
in human-computer interaction [4], security, clinical diagno-
sis [5] and other fields.

Gait recognition is a challenging noncontact biometric
technology that has receivedmuch attention from researchers.
The classic process of gait recognition is shown in Figure 1.
Both the training and verification procedures include
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four steps: data collection, data preprocessing, feature extrac-
tion and classification [6].

(1) Data collection: The quality of the collected gait data
affects the performance of trained gait recognition models.
Typical gait capture sensors include multiple cameras, pro-
fessional motion capture systems (such as the Vicon Optical
Motion Capture system), or cameras with depth sensors (such
as Kinect).

(2) Data preprocessing: Data preprocessing mainly
includes image noise reduction and human contour extrac-
tion. Optical-based data acquisition methods usually use
background subtraction to obtain the outlines of pedestri-
ans [7]. Periodic extraction of data can also be performed at
this stage to divide the gait sequence into several gait cycles
to reduce data redundancy [8].

(3) Feature extraction: Gait features can be generated by
manual extraction and machine learning. Manually extracted
features are easily generalized to different datasets, while
machine-learned features are usually dataset specific.

(4) Classification: A classifier based on gait features
can be used for identity recognition. Traditional classifiers
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FIGURE 1. Gait recognition process.

(such as k-nearest neighbors, KNN) and modern classifiers
(such as deep neural networks) have achieved success
in facial recognition, handwriting recognition, and speech
recognition [9], [10].

In the past two decades, 2D-based gait recognition meth-
ods have been applied more than 3D model-based meth-
ods. 2D-based methods use human silhouettes as raw input
data, and they are usually divided into model-based and
model-free methods [11], where the former is sensitive to
human shape changes and the latter is computationally expen-
sive [12]. Kinect v2 is an integrated depth camera developed
by Microsoft that can provide accurate 3D human skeleton
information, which is insensitive to the human body and
appearance. Over the past decade, many approaches based
on Kinect gait biometrics have been devised with promising
results [13], [14], [15], [16]. However, traditional methods
cannot achieve high accuracy, while deep learning methods
are computationally intensive and have high requirements on
the operating environment [17].

In this paper, we try to design a new multiclassifier using
machine learning algorithms combined with knowledge of
probability theory. We chose machine learning algorithms
rather than deep learning algorithms to reduce computation,
which is more convenient in embedded applications. the spa-
tial information of human joints is collected by Kinect v2.
The main contributions of this paper include the following:

(1) A set of customized human gesture recognition datasets
suitable for Kinectv2 was constructed, including a total of
20,000 sets of data after screening;

(2)We skillfully combine the SVM-derivedOVO andOVR
algorithms. On one hand, we solve the problem that the OVO
classifier set cannot identify samples that do not exist in the
training set. On the other hand, we minimize the number of
classifiers in the classifier set by optimizing the design, the
classification speed can be increased by more than 13 times,
and high-speed classification is achieved under the premise
of ensuring accuracy.

(3) Furthermore, we have added a new classification rule
to the algorithm, which greatly improves the classifica-
tion accuracy by utilizing the n-fold Bernoulli algorithm in
probability theory. The classification accuracy is as high
as 99.8%.

In the second part of the article, the related work of
Kinect-based gait recognition technology is elaborated. The
main work of this paper is described in detail in Section III.
First, the overall process of the proposed algorithm is intro-
duced. In Subsection A, the knowledge about human joint
point extraction based on Kinect v2 is briefly introduced.
Data denoising, feature selection and feature extraction are
introduced in Subsection B. In Subsection C, we elaborate
on how to design a high-speed and high-accuracy multiclas-
sifier based on the OVO and OVR multiclassification algo-
rithms derived from SVM. In addition, we improve the pro-
posed algorithm through multiple Bernoulli theory and opti-
mization design to further improve the accuracy and speed.
In Section IV, the classification speed and accuracy of the
proposed algorithm are evaluated through experiments, and in
Subsection B, we compare the performance of the proposed
algorithm and state-of-the-art algorithms. The conclusions of
this paper are summarized in the fifth section.

II. RELATED WORK
Generally, gait recognition methods can be divided into
3D data-based and 2D data-based methods [18]. The
2D data-based gait recognition methods generally recog-
nize the human silhouette captured by 2D cameras, which
is common in video surveillance. Gait recognition methods
based on 2D data dominate the field of gait recognition
and are usually divided into model-based and model-free
methods [11], [19]. Model-free methods refer to analyzing
changes in human motion by generating binary segmented
images of gait sequence contours. Li and Chen [20] devel-
oped well-performing gait energy images (GEIs) by fusing
foot and head energy images from contour sequences. There
are other methods, such as active energy images [21], gait
flow images [22], and structural gait energy images [20].
Although these methods are not computationally expensive,
the recognition effect is affected by viewing angle and dis-
tance factors. Model-based methods refer to constructing a
model by estimating changes in parameters of different parts
of the human body in the video. BenAbdelkader et al. [23]
extracted features by deriving 3D models from 2D images to
compute step size and walking speed. Yam et al. [24] identi-
fied a person by calculating the change in motion between
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FIGURE 2. The overall idea of the proposed approach.

walking and running. In summary, most of these methods
construct models based on 2D images, which are computa-
tionally intensive. Therefore, they are not good methods for
many practical applications [12]. In addition, factors such
as clothing, viewing angles, and external environments in
2D images also affect the recognition rate of gait recognition
approaches [25]. Therefore, gait recognition studies based
on 3D information have gradually attracted the attention of
researchers.

Kinect v2 is an integrated depth camera developed by
Microsoft that can provide accurate 3D joint point data infor-
mation of the human body. Initially, Kinect rapidly expanded
its application range due to its low cost, portability, and
convenience of data access, such as fall detection in hospi-
tals [26], [27] and gesture signal interpretation for emergency
response [28]. Currently, Kinect sensors are used in out-
door environments [29], [30], [31], [32]. Kinect can generate
3D models of human skeletons in real time without any
labels attached to the human body [33], and the measurement
error of depth information is small [34], [35]. Therefore, the

3D data of the Kinect skeleton model can be utilized for
gait recognition. Clark et al. [36], conducted experiments on
kinectmatic, postural, and spatiotemporal analyses to validate
the usefulness of the Kinect sensor for gait analysis.

Many viable approaches based on Kinect gait biomet-
rics have been devised during the last decade to aid in
the successful recognition of individuals [14], [15], [37].
Preis et al. [13] pioneered model-based gait identification
using the Kinect sensor, including eleven handcrafted static
and two dynamic features, as well as rule-based, decision tree
(DTree), andNave Bayes classifiers. Using theK-means clus-
tering method, temporal features of eighteen angles derived
from selected body joints were retrieved to analyze gait
variables [38]. The multilayer perceptron (MLP) architec-
ture was used by Andersson and Araujo [37]; however, the
performance of the K-nearest neighbors (KNN) and support
vector machine (SVM) classifiers outperformed the MLP
architecture. Banerjee et al. [39] used the fuzzy C-means
clustering algorithm to identify elderly individuals based
on the gait sequences obtained by Kinect. Sabir et al. [40]
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proposed a three-dimensional gait recognition approach
using the spatiotemporal variations in relative angles among
various skeletal joints and changes in the measured distance
between limbs and land. Ahmed et al. [41] extracted features
based on the generated triangles using the triangle area and
the three angles of each triangle. Yang et al. [15] calculated
the average and standard deviation of relative distance fea-
tures from selected body joints over the frames of a gait
cycle. Sun et al. [42] extracted static and dynamic features
to train the standard KNN classifier by extracting features
from selected body joints in 2018. In 2019, researchers
designed a deep neural network with 3 hidden layers, the
first attempt to apply deep learning to the Kinect-based gait
recognition task [43]. Its frame-by-frame prediction may
cause prediction mistakes when a frame is similar to another
person’s gait pattern. Another study calculated the average
and standard deviation of handcrafted features over 30 frames
by extracting joint relative distance and joint relative angle
data [44]. The uniform kernel cannot be utilized to extract
hierarchical features using the CNN architecture because it
was trained with handcrafted features, and the model suffers
from overfitting. Bari et al. [45] designed two deep neural net-
works to realize Kinect-based gait recognition. In the ANN
approach, a deep learning neural network architecture based
on hand-engineered Joint Relative Cosine Dissimilarity and
Joint Relative Triangle Area features; in the CNN approach,
KinectGaitNet is utilized with a uniform kernel for the con-
volution to extract distinctive features [16]. Both methods
require a high number of model parameters because the neu-
ral network design utilizes a multilayer networkmethodology
and needs to be accelerated by GPU to achieve good recog-
nition effects that are not suitable for embedded systems.
In summary, these studies generally suffer from speed or
accuracy deficiencies.

III. GAIT RECOGNITION METHOD
The general idea of the proposed method is shown
in Figure 2. First, Kinect V2 automatically extracts the joint
points of the human body, establishes a spatial coordinate
system, and calculates the spatial coordinate information of
the joint points of the human body. After the data are fitted
and denoised, the static and dynamic features of the human
body are extracted, and feature dimensionality reduction is
achieved through principal component analysis (PCA) [46].
Then, the OVO classifier set->OVR multiclassifier algorithm
is designed. On this basis, the speed of the classifier can be
further improved by designing the OVR classifier set->OVO
classifier set->OVR classifier algorithm, and the classifica-
tion accuracy of the classifier can be greatly improved by
utilizing n-fold Bernoulli theory.

A. HUMAN JOINT POINT EXTRACTION BASED
ON KINECT v2
The frame data acquired by Kinect v2 contain a set of 25 joint
points of the human body, as shown in Figure 3.

FIGURE 3. Twenty-five joint points of the human body.

The data contain spatial coordinate information for each
joint. The human height measurement range is 0.5-4.5 m,
and up to 6 people can be simultaneously tracked. 0-5 means
the tracked body index, and -1 (0xFF) means no body is
found. The processing speed is 30 frames per second [35].
Human joint extractions tracked by the Kinect sensor show
an accuracy of less than 2 mm [47].

Kinect utilizes actively emitted infrared to generate 3D
depth images without illumination conditions. To reduce the
calculation, the human body is separated from the back-
ground by the background subtraction method, and only the
human body image is processed in the subsequent calcula-
tion [48]. By analyzing the depth-of-field image of the human
body, the specific parts of the human body can be judged. The
following formula is used:

fθ (I , x) = d1

[
x +

u
d1 (x)

]
− d1

[
x +

v
d1 (x)

]
(1)

where x represents the pixel value, d1 (x) denotes the depth
value of x in the image, θ= (u, v), u and v represent the
offsets, and 1/d1 (x) is used to normalize the offsets and scale
the size of the body.

A decision forest can be viewed as a combination of mul-
tiple decision trees [49]. A tree is trained on an image of
a body part containing the corresponding label and keeps
updating the tree until the correct classification of the body
part is determined. Then, the regions most likely to describe
each body part are selected. For example, if the ‘‘head’’
classification has the greatest probability, the region is judged
as a ‘‘head’’. Finally, the relative position of the classifier
node is calculated.

VOLUME 10, 2022 115747



Q. Zhou et al.: High-Performance Gait Recognition Method Based on n-Fold Bernoulli Theory

B. PREPROCESSING AND FEATURE EXTRACTION
1) DATA PREPROCESSING
The data collected by Kinect contain some noise. During
the preprocessing stage, this noise must first be removed.
Generally, when a person walks, the movements of their body
parts exhibit a certain degree of regularity, and their trajectory
can be easily fitted and predicted by artificial intelligence
algorithms [8, 50]. Here, the least-squares support vector
regression (LSSVR) algorithm is used to fit the collected
feature parameters [51]. The HHD (the distance between two
hands) is taken as an example, as shown in the following
formula:

yHHD (x) =
LHHD∑
k=1

αkK (x, xk)+ b (2)

where xk represents the SVM, K represents the kernel func-
tion, αk represents the optimal solution of the dual problem
of the SVR algorithm, and b represents the offset. x ∈ XHHD,
XHHD = {1, 2, · · ·, LHHD}. LHHD is the length of the HHD
data. Assuming that the true value corresponding to sam-
ple x is yHHD, we now utilize a threshold ε. If |yHHD (x) −
yHHD| > ε, then it is considered to be noisy data, and
x is removed. Figure 4 shows that this method is used to
effectively eliminate noise data. A, B, C, D, and E are noise
points in the figure.

FIGURE 4. Eliminating noise points.

2) FEATURE EXTRACTION
The Euclidean distances between the various joint points
of the human body are selected as features. The features
are less affected by the Kinect placement position and pose
when represented by relative parameters, thus improving the
robustness of the algorithm. The gait features used in this
article mainly include two types: static features and dynamic
features. Static features refer to features that are unchanged,
such as height and body length, as shown in Table 1. Dynamic
features refer to features that change significantly while walk-
ing, such as the distance between two hands. The combination

TABLE 1. Gait features.

of these two types of features can further improve the model’s
ability to express human features, thereby improving the
accuracy of recognition.

The length of the upper limb (HandLen) is taken as an
example. Figure 3 shows that the left arm of the upper limb
includes four points (5, 6, 7, and 8), and the right arm includes
four points (9, 10, 11, and 12). Therefore,

HandLen = D (p5, p6, p7, p8)+ D (p9, p10, p11, p12)

=
√
d (p5, p6)+

√
d (p6, p7)+

√
d (p7, p8)

+
√
d (p9, p10)+

√
d (p10, p11)+

√
d (p11, p12)

(3)

LegLen, Height and other static features can be obtained in
the same way.

For a dynamic feature, the Euclidean distance between two
points is calculated. A total of 300 combinations are available
for the 25 points in Figure 3. We utilize the PCA algorithm to
reduce the feature dimensionality to reduce computation [46],
and redundant data are eliminated on the premise of ensuring
the recognition accuracy of the model. Because there is no
clear mathematical relationship between the feature dimen-
sionality and target recognition rate, we obtain statistical
records of the feature dimensionality and recognition rate
through experiments. Then, on the premise of ensuring a
high recognition rate, the PCA algorithm corresponding to
the feature dimensionality with a low numerical value is
selected. Experiments prove that the best recognition effect
can be obtained by mapping 300-dimensional features to
80 dimensions. The results are shown in Table 2.

TABLE 2. The relationship between the feature dimensionality and the
recognition rate.

C. DESIGN OF A HIGH-ACCURACY MULTICLASSIFIER
1) MULTICLASSIFIER BASED ON AN SVM
Kinect can track and lock onto human bodies in its field of
view and assign an ID to each human body [52]. The recog-
nition algorithm can track and recognize multiple people
simultaneously. Gait recognition is amulticlassification prob-
lem that can be transformed into multiple dual-classification
problems; finally, dual classifiers can be used to solve the
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multiclassification problem [53]. In this paper, we propose
a multiclassification algorithm based on the OVO and OVR
classification strategies in SVM [54].

The joint data of 50 individuals were selected as test sam-
ples, and all samples of each category in the test set were
separately passed through the (OVO or OVR) classifier f(x).
The classifier accuracy was recorded, as shown in Figure 5.
The abscissa in the figure represents the category, and the
ordinate represents the accuracy. When f(x) is the OVO clas-
sifier set, the lower accuracy limit is 91%; when f(x) is the
OVR classifier set, the upper and lower accuracy limits are
94.6% and 76%, respectively, and the overall accuracy is
lower than that of the OVO classifier set. However, when
the samples of each class are only passed through the OVR
classifier corresponding to each class, the accuracy is greatly
improved, and the lower limit of the accuracy reaches 96.5%.
If the OVO classifier set is used alone, each classifier in the
OVO classifier set yields classification results (1 or - 1) [55],
which are the categories contained in the training set samples.
When the tested person does not exist in the training set, the
OVO classifier set also gives a classification result, that is,
a category included in the training set samples; obviously, this
is incorrect. However, if the OVR classifier alone is used as
the classifier, its accuracy cannot be guaranteed.

FIGURE 5. Accuracies achieved for various samples.

Therefore, according to the above analysis, by combining
the OVO and OVR classification strategies, we design a clas-
sifier with high classification accuracy that can distinguish
whether the tested category exists in the training set. For
the OVR classifier, we set the class to which the training
samples belong as the positive class and mark the Norecord
class as the negative class (representing no data records).
After sample xi passes through the OVO classifier set, a cat-
egory is produced; then, the sample passes through the OVR
classifier corresponding to the determined class. If a positive
class is obtained after passing through the OVR classifier,
the result class is the input class; otherwise, the result is the
Norecord class. We call this multiclassification algorithm the

OVO classifier set→OVR classifier algorithm, as shown in
Figure 2. Not only can this algorithm identify people without
data records, but it also addresses the problem that OVO
classification may yield multiple outcomes. The accuracy of
this method is analyzed below.

Let D = ‘‘the sample passes through the OVO classifier
set’’, and E= ‘‘the sample passes through the OVR classifier
corresponding to category C’’, where class C represents the
class marked after the sample passes through the OVO clas-
sifier set. The classification accuracy is set as P.

p = P (ED) = P (D)P (E|D) (4)

The corresponding OVR classifier can be selected only
after event D occurs [27], so the value of P (E|D) is the accu-
racy when f(x) is the OVR classifier corresponding to each
class. Therefore, the classification accuracy of the samples in
each class is equal to the multiplication of the upper two lines
in Figure 5.

Suppose that the number of samples belonging to the
i-th category (i-th person) is ni, and the accuracy of the OVO
classifier set for the i-th category is dpi. The classification
accuracy of the i-th OVR classifier for all samples in the i-th
class is depi, and the total number of test samples is N. Then,
the classification accuracy of the i-th category achieved by
using the algorithm designed in this article is pi = dpi×depi.
The total test accuracy is

ptotal =

50∑
i=1

nipi

N
(5)

2) IMPROVING OF CLASSIFICATION ACCURACY OF THE
MULTICLASSIFIER
Suppose that the classification accuracy of the SVM classi-
fication function f(x) on dataset s is p, and n samples X =
{x1, x2, · · · , xn} belong to class C. It can be proven that
when p>0.5 and n is an odd number, the probability of more
than 50% of the samples being classified as class C by the
classifier f(x) is greater than p. The proof is as follows.

Let eventAk=‘‘k samples are classified into class C’’ (k=0,
1, 2,. . . , n) and event B=‘‘the samples classified as class C
account for more than 50% of the total sample’’; which class
these samples are classified into is an independent event.
Then, from the n-fold Bernoulli probability formula [57],
we can obtain:

P (Ak) = Ck
n p

k(1− p)n−k (6)

The following formula is established:

P (B|Ak) =

{
1, k > n

2
0, k ≤ n

2

(7)

Applying the total probability formula, we obtain:

P (B) =
n∑
i=0

P (Ak)P (B|Ak) (8)
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Combining formulas (6) and (7), we obtain that when
k > n

2 ,

P (B) =



n∑
k= n

2+0.5

Ck
n p

k(1− p)n−k , n is odd

n∑
k= n

2+1

Ck
n p

k(1− p)n−k , n is even

(9)

To analyze the relationships between P(B), p, and n, the
value of p is varied from 0 to 1 in this paper with an interval
of 0.1. For each p, the value of n is varied from 2 to 50, and
P(B) is calculated; the results are shown in Figures 6-8.

FIGURE 6. The accuracy varying with the number of test samples n.

FIGURE 7. The accuracy varying when the number of test samples n is
odd.

FIGURE 8. The accuracy varying when the number of test samples n is
even.

Figure 6 shows that when p > 0.5, the accuracy increases in
a zigzag shape with increasing n. When p < 0.5, the accuracy

decreases in a sawtooth shape.With the increase in n, the saw-
tooth waveform becomes gentler, and the accuracies achieved
when n is odd and even gradually approach the same limit.
Figure 7 is a waveform diagram when n is an odd number.
If p > 0.5, as n increases, P(B) exhibits a monotonically
increasing trend and eventually tends to 1, and P(B) > p.
When p = 0.5, P(B) is always equal to 0.5. If p < 0.5, then
P(B) decreases monotonously as n increases and eventually
tends to 0, and P(B) < p. Figure 8 is a waveform diagram
when n is an even number. If p < 0.5, P(B) exhibits a mono-
tonically decreasing trend as n increases and finally tends to 0.
If p > 0.5, there is an integer N such that when
p < 0.5, P(B) decreases when n < N and and increases when
n > N and finally tends to 1.
According to the above analysis, when n are odd numbers,

the trend curve is smooth, and the classification effect will be
better. Therefore, we set n as odd. The class of each sample
classified by f(x) is recorded, and we count the categories
obtained and mark the category with the largest number as
the final category.

Here, for formula (5), we solve for the minimum value pmin

of ptotal , where N=
50∑
i=1

ni.

pmin = min
1≤i≤50

(pi) (10)

ptotal =

50∑
i=1

nipi

N
≥

pmin

50∑
i=1

ni

N
≥ pmin (11)

Therefore, p > pmin. According to formula (4), it is easy to
obtain that plow = 88.78% > 0.5. According to formula (9)
and Figures 7, it has been proven that when n is odd and
p > 0.5, P(B) is a monotonically increasing function. Thus,

P (B) =
n∑

k= n
2+0.5

Ck
n p

k(1− p)n−k

≥

n∑
k= n

2+0.5

Ck
n p

k
min(1− pmin)

n−k (12)

where n is an odd number. When n is set from 3 to 15, the
waveform of P(B) is obtained, as shown in Figure 9:
The accuracy reaches 96.5% when n=3, and the accuracy

is as high as 99.85% when n=7. The classification accuracy
is greatly improved.

3) IMPROVING THE CLASSIFICATION SPEED OF THE
MULTICLASSIFIER
When there are many categories to be classified, the num-
ber of OVO classifiers increases explosively, which will
increase the classification time and reduce the classification
efficiency [54]. To address this issue, the OVR classifier set
is added before the OVO classifier set → OVR classifier
algorithm because when samples pass through the OVR clas-
sifier set, only a part of the OVR classifiers obtain positive
classification results, and these classes are the most likely
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FIGURE 9. The trend curve of P(B) versus n when p=88.78%.

classes of the sample. Figure 5 shows that eachOVR classifier
has a higher classification accuracy for its corresponding
class. The positive class after the sample passes through the
OVR classifier set has a high probability of containing the
correct class of the sample [58]. We pass all samples of
each class through all OVR classifiers, record the number
of positive results as n after each sample passes through the
OVR classifier set, and depict the result in Figure 10. The
figure shows that for approximately 24% of the samples,
n ≥ 2; for approximately 2.82% of the samples, n ≥ 10. For
passed samples, the larger n is, the smaller the number of sam-
ples. The number of the followingOVO classifiers is the num-
ber of combinations of n groups of positive samples in each
batch. Most of these samples are concentrated in the range
when n is relatively small, so the number of combinations
is also greatly reduced, so it can greatly reduce the required
number of classifiers and greatly increase the classification
speed. This article refers to this multiclassification algorithm
as the OVR classifier set → OVO classifier set → OVR

FIGURE 10. The ratio of positive classes after all samples of each class
pass the OVR classifier set (the ratio of the number of positive classes
greater than or equal to n to the total number of samples after passing
through the OVR classification set).

classifier algorithm, as shown in Figure 2. In the experimental
section, we compare the classification efficiency of the OVR
classifier set→ OVO classifier set→ OVR classifier algo-
rithm with that of the OVO classifier set→ OVR classifier
algorithm in detail.

IV. EXPERIMENTAL RESULTS
Fifty volunteers are selected for data collection. Each volun-
teer is required to walk back and forth in front of the Kinect 5
times, and on average, at least 80 sets of data can be collected
each time. This article selects 20000 sets of data. The gait
recognition system is divided into three modules: the sample
collection module, where the main function is to collect
samples; the training module, where the main function is to
process the original samples and train the processed samples
to generate a classifier; and the classification module, where
the main function is to use the classifier generated by the
training module to classify the samples. The overall process
is shown in Figure 11.

FIGURE 11. Recognition software and the actual recognition process.

Additionally, we compare the performance of our pro-
posed method with current state-of-the-art methods. For
fairness, we compare the recognition results on two pub-
licly available Kinect-based benchmark gait datasets. The
UPCV gait dataset was released by Kastaniotis et al. [3] and
includes gait sequences of 15 males and 15 females. There
were five walking sequences for each participant, and each
gait sequence consisted of approximately 55-120 frames.
The video frame rate is 30 fps. Another dataset collected by
Andersson and Araujo recorded skeleton-based gait biomet-
ric data for 164 individuals [37]. Participants were directed
to walk along a semicircular path, and an X-Box 360 Kinect
sensor was used to capture gait sequences. Each walk-
ing sequence consists of 6-12 gait cycles, approximately
500-600 frames. In this paper, the Kinect gait biometric
dataset is denoted as the KGB dataset.

The performance of the proposed gait recognition method
is evaluated in terms of recognition accuracy, precision,
recall, and F-score. After feeding each sample to the model
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and receiving a classification, the predicted versus actual
classification can be counted in a table called a confusion
matrix.

TABLE 3. The confusion matrix.

The formulas for these four indices are: Accuracy =
(TP+ TN) / (TP+ TN+ FP+ FN), Precision= TP / (TP+
FP), Recall = TP / (TP + FN), F-score = (2 × Precision ×
Recall) / (Precision + Recall). In our study, we calculate the
accuracy, precision, recall, and F-score and report the average
for each class.

A. ALGORITHMIC CLASSIFICATION ACCURACY AND
SPEED VERIFICATION
We analyze the accuracy that the proposed method can
achieve in practical applications. We compare the accura-
cies achieved using the OVO classifier set, OVO classifier
set→ OVR classifier, OVR classifier set→ OVO classifier
set→ OVR classifier algorithm on the same dataset. Tenfold
cross-validation is used to record the accuracy of each algo-
rithm for each fold. All algorithms are compared on the same
dataset (including the training set and test set). The accuracy
achieved on each fold is recorded, as shown in Figure 12.

FIGURE 12. Comparison among the classification accuracies of the
different algorithms when the classes of the test set are included in the
training set.

When the test set sample classes are included in the training
set sample classes, the OVO classifier set has higher accuracy
than the OVO classifier set→ OVR classifier algorithm, and
the overall accuracy of the OVO classifier set→ OVR clas-
sifier algorithm exceeds 88.78%. In Figure 12, the accuracy
of the OVR classifier set → OVO classifier set → OVR
classifier algorithm is higher than that of the OVO classifier
set → OVR classifier algorithm in some intervals. This is

because after the OVR classifier set is added to the front, the
number of OVO classifiers after a sample passes through the
OVR classifiers is reduced, and the reduction in this number
may increase the accuracy of the OVO classifier set.

All the classes contained in the above test dataset exist in
the training set. In practical applications, the algorithm should
also be able to identify people without data records (marked
with Norecord). Therefore, we add samples belonging to
classes that do not exist in the training set to the test set. The
test accuracies achieved on each fold are compared, as shown
in Figure 13.

FIGURE 13. Comparison among the classification accuracies of the
different algorithms when the test set contains classes that do not exist
in the training set.

Comparing Figure 12 with Figure 13, it can be seen that the
accuracy of the OVO classifier set is greatly reduced, while
the accuracies of the two remaining multiclassifiers do not
change much. This is because the OVO classifier set cannot
recognize samples that do not exist in the training set; when
some samples belonging to classes that do not exist in the
training set are added to the test set, the OVO classifier set
yields incorrect results for these samples [59]. After adding
the OVR classifier set at the rear, this shortcoming of the OVO
classifier set can be compensated, which also demonstrates
the rationality of such a design. Figure 13 shows that the
OVR classifier set -> OVO classifier set -> OVR classifier
algorithm achieves high recognition accuracy for samples
without data records.

From Figure 13, the average test accuracy in the ten-
fold cross-validation scenario is 95.68%. Here, the Bernoulli
probability method is further used to improve themodel accu-
racy. Values of n from 1 to 21 are taken consecutively, during
the recognition process of a person, the recognition results of
consecutive n frames are counted, and if more than 50% of
the frame recognition results belong to a certain class, it is
judged as that class; tenfold cross-validation is performed for
each value of n, the resulting test accuracy is recorded, and
the graph is drawn. To compare the difference between the
actual and theoretical analyses, a theoretical change curve is
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FIGURE 14. Differences between the theoretical and practical
classification accuracies achieved after applying Bernoulli probability.

constructed according to formula (9), where P=0.9568. The
results are shown in Figure 14.

Figure 14 shows that some deviation occurs between the
actual curve and the theoretical curve; the maximum is 0.3%,
and the test result is very close to that of the theoretical
analysis. When n = 3, the accuracy exceeds 99.5%, and as
n increases, the recognition accuracy gradually tends toward
100%. Taking the recognition time factor into account, this
article selects n = 5, and the accuracy is 99.8%.
We further evaluate the performance of the proposed recog-

nition method using cumulative matching feature (CMC)
curves. CMC curves are the most popular evaluation metrics
for person re-identification methods, it can show the accuracy
of recognition of the algorithm formultiple chances, the prob-
abilities are typically expressed visually through the CMC
curve. The CMC curve of this method on this dataset is shown
in Figure 15. The rank-1 recognition accuracy is 99.80%. The
rank-4 recognition accuracy reaches 100%. Therefore, our
proposed method can achieve high accuracy.

FIGURE 15. CMC curve of the proposed method on our datasets.

To test the speed of the proposed algorithm, this paper
divides all the datasets into 10 equal parts, taking 9 of them

FIGURE 16. The number of classifiers passed through by the sample
when tested.

as the training set and 1 as the test set. We record the num-
ber of classifiers that obtain positive results after each sam-
ple passes through the OVR classifier set->OVO classifier
set->OVR classifier, and Figure 16 is obtained.

Figure 16 shows that the maximum number of classifiers
is 106. After subtracting the 50 OVR classifiers before the
OVO classifier, according to the formula C(C−1)

2 , it can be
inferred that up to 11 classifiers become positive after passing
through the frontal OVR classifier set. If the frontal OVR
classifier set is not used, each sample must pass through at
least 50(50−1)

2 = 1225 classifiers during the classification pro-
cess. To confirm the gains brought about by this design, this
paper compares versions of the proposed algorithm with the
OVR classifier set and without the OVR classifier set. Using
tenfold cross-validation [60], the running time of each fold is
recorded for comparison purposes, as shown in Figure 17.

FIGURE 17. Comparison between the classification times of the two
algorithms.

Figure 17 shows that the algorithm with the OVR classifier
set added in the front takes only 0.61 seconds to complete
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each fold, while the algorithm without the OVR classifier
set in the front takes at least 8.45 seconds to complete each
fold. Therefore, the gain brought by this method in practical
applications is at least a 13.85-fold improvement.

The above results are obtained by running on the CPU.
To facilitate comparison with other algorithms (includ-
ing deep learning algorithms), we rerun the algorithm on
the GPU. The system configurations for determining the
inference time are an Intel Core i7-8700 CPU of 3.20 GHz,
16 GB of RAM, and an NVIDIA GeForce GTX 1080 GPU.
The time of identification of a person is 0.21ms. It is notewor-
thy that the application of the n-fold Bernoulli algorithm pro-
posed in this paper is the statistics and judgment of the results
of 5 consecutive frames, which hardly increases the compu-
tational complexity of the algorithm. But the disadvantage
is that the program will not output the final judgment result
until after the first 5 frames to identify a person. In practical
applications, it will be more affected by the sampling speed
of the sensor. In general, the proposed algorithm is a multi-
classification algorithm with excellent performance.

B. COMPARISON WITH RELATED WORKS
To demonstrate the efficacy of our strategy, the proposed
gait recognition method’s recognition performance is com-
pared with that of state-of-the-art approaches. As mentioned
above, current gait recognition methods for Kinect-based
gait recognition are roughly divided into two categories:
machine learning-based methods and deep learning-based
methods. The works of Ball et al. [38], Preis et al. [13],
Ahmed et al. [41], Sun et al. [42], and Yang et al. [15] can
be classified into the former. Bari et al. [16], [45] proposed
a deep learning neural network to achieve good recognition
performance. We compare the proposed method with these
classic methods. To be fair, the platforms are run on the same
public datasets based on the same configuration of hardware.

We evaluate the performance of the proposed model using
the CMC curve. The CMC curve of the algorithm on the
UPCV dataset is shown in Figure 18a. The recognition accu-
racy at Rank-1 is 99.2% and reaches 100% at rank-4. The
CMC curve of the algorithm on the KGB dataset is shown in
Figure 18b. The recognition accuracy of ranking 1 is 99.81%
and reaches 100% at rank-5.

The performance of the proposedmethod is compared with
methods [13], [15], [16], [42], [45]. The proposed method
achieves 100% accuracy at rank-4 on the UPCV dataset and
100% accuracy at rank-5 on the KGB dataset. In previous
research, the algorithm of Bari et al. (CNN) performed the
best, achieving 100% accuracy at rank-4 on the UPCV dataset
and 99.98% accuracy at rank-10 on the UPCV dataset. The
overall performance is slightly lower than that of the proposed
algorithm. None of the other algorithms achieved 100% on
rank-10. In summary, the proposedmethod achieves the high-
est recognition rate at each rank. The CMC scores are better
at each rank, the normalized area under the curve is higher,
and the equal error rate is lower than in prior research.

FIGURE 18. Performance comparison of the CMC scores of the proposed
method with the state-of-the-art methods on the UPCV and KGB datasets.
(a) On the UPCV dataset. (b) On the KGB dataset.

The performance comparisons of the proposed method and
previous methods on the UPCV and KGB datasets are shown
in Table 4 and Table 5, respectively.

TABLE 4. Performance comparison of the proposed method with
previous methods on the UPCV dataset.

The proposed method achieves the best recognition perfor-
mance on both benchmark datasets. On the UPCV dataset,
the recognition accuracy, precision, recall and F-score are
99.20%, 98.79%, 99.17% and 98.71%, respectively. On the
KGB dataset, the recognition accuracy, precision, recall and
F-score are 99.81%, 99.83%, 99.79% and 99.80%, respec-
tively. Furthermore, our proposed method not only achieves
higher recognition accuracy but also secures higher precision,
recall, and F-score on both datasets.
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TABLE 5. Performance comparison of the proposed method with
previous methods on the KGB dataset.

TABLE 6. Running time comparison of the proposed method with
previous methods.

We compare the running time of the proposed algorithm
and the two best algorithms on the same computer configu-
ration. The results are shown in Table 6. This shows that our
algorithm has a faster inference speed than the previous two
algorithms.

V. CONCLUSION
Identity recognition is a multiclassification problem. The
binary classification strategy based on OVO and OVR can be
used to achieve multiclassification. Although the OVO clas-
sification strategy can achieve higher accuracy than the OVR
classification strategy, when many categories are present,
the number of classifiers in the OVO classifier set increases
explosively, consuming considerable time and leading to
low classification efficiency. Moreover, the OVO classi-
fier cannot identify samples without data records. To solve
these two problems, this paper designs a multiclassification
algorithm combining OVR and OVO classifiers. The algo-
rithm solves the abovementioned problems effectively; the
algorithm is capable of identifying samples without data
records, and its classification speed is improved by a large
margin.

Although the above design realizes the recognition of
samples without data records and improves the classification
speed of the algorithm, it also leads to a decrease in classifi-
cation accuracy. To solve this problem, this paper designs an
accuracy improvement method based on the characteristics
exhibited by Kinect when tracking the human body. Kinect
assigns each person in its field of view an ID, and all samples
extracted from this ID belong to the same person’s samples.
Based on this, this article continuously tests multiple samples,
counts the number of marked classes for all samples, and
selects the class with the largest number of samples as the
target class. According to the experimental verification, when
the number of consecutive test samples reaches a certain
value, the accuracy is close to 100%.
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