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ABSTRACT Adopting Internet-of-things (IoT) in large-scale environments such as smart cities raises com-
patibility and trustworthiness challenges, hindering conventional service discovery and network navigability
processes. The IoT network is known for its highly dynamic topology and frequently changing characteristics
(e.g., the devices’ status, such as battery capacity and computational power); traditional methods fail to learn
and understand the evolving behavior of the network to enable real-time and context-aware service discovery
in such diverse and large-scale topologies of IoT networks. The Social IoT (SIoT) concept, which defines
the relationships among the connected objects, can be exploited to extract established relationships between
devices and enable trustworthy and context-aware services. In fact, SIoT expresses the possible connections
that devices can establish in the network and reflect compatibility, trustworthiness, and so on. In this paper,
we investigate the service discovery process in SIoT networks by proposing a low-complexity context-
aware Graph Neural Network (GNN) approach to enable rapid and dynamic service discovery. Unlike the
conventional graph-based techniques, the proposed approach simultaneously embeds the devices’ features
and their SIoT relations. Our simulations on a real-world IoT dataset show that the proposed GNN-based
approach can provide more concise clusters compared to traditional techniques, namely the Louvain and
Leiden algorithms. This allows a better IoT network learning and understanding and also, speeds up the
service lookup search space. Finally, we discuss implementing the GNN-assisted context-service discovery
processes in novel smart city IoT-enabled applications.

INDEX TERMS Community detection, service discovery, graph neural networks, social Internet of Things.

I. INTRODUCTION
Smart cities are intended to provide improved quality of
life for the present and future generations by exploiting the
perpetual advances in digital technologies and infrastructure.
With over half of the world population currently living in
cities and expected to reach almost 70% by 2050 [1], several
countries have started investing in innovative smart city ini-
tiatives to deliver intelligent technological solutions for their
residents and ease their daily life challenges. Furthermore,
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novel technologies are instrumental in leveraging the quality
of civil and public services, especially with the rising demand
in cities, and in promoting rich and actionable insights (e.g.,
alerts). In this context, the Internet-of-Things (IoT) plays a
significant role in the process of smartening futuristic cities
by generating a tremendous amount of real-time data, called
Big Data, that can be used instantaneously to assess a given
situation, alert residents and authorities, and/or actuate vari-
ous devices spread over the city [2]. For example, the United
Parcel Service (UPS) uses sensors on its delivery vehicles to
monitor speed, miles per gallon, mileage, number of stops,
and engine health. The system captures more than 200 data
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FIGURE 1. An illustration of the widely adopted service discovery
technique.

points for each vehicle in a fleet of more than 80,000 daily [3].
This tremendous amount of collected data helps the company
reduce idling time, fuel consumption, harmful emissions, and
save money.

However, this increasing use of IoT devices, e.g., smart
home systems, wearable health monitors, and autonomous
vehicles, raises many concerns about security risks, higher
network complexity, management, and service interoper-
ability [4], [5]. Moreover, the massive growth of heteroge-
neous interconnected smart devices, which is estimated to
reach 50 billion devices by 2030 [6], will lead to a dense
network that is composed of multiple devices requesting
various services, inter-connected with different communi-
cation protocols, and being vulnerable to internal threats
and external attacks. Indeed, one of the main features of
practical large-scale IoT systems is the ease of connection
and access to various IoT devices. However, this could lead
to severe security issues, particularly with the large-scale,
widely distributed devices that enable unwanted requests
from malicious devices or even initiate Denial of Services
(DoS) attacks on the IoT system [7]. Ensuring trustwor-
thy collaboration between IoT devices while preserving
their security and privacy will require more efficient and
scalable service discovery processes. The latter process is
an automated mechanism that allows devices to find and
request services from their connected peers in a context-
aware manner. However, locating desirable services offered
by a corresponding object is not straightforward in a diver-
sified and large-scale network. Moreover, service discovery
is highly affected by the dynamic nature of the IoT systems
where devices may appear and disappear, physically move,
and evolve with time, e.g., variation of their battery level
and dynamic availability of their computational capacities.
These complex issues will eventually limit the IoT benefits,
adaptability, and scaling.

IoT systems enable individuals and organizations to col-
lect data, monitor the environment, and use the devices for
automated actuation and intelligence [8]. The process of
assisting an IoT entity in finding the correct service, primarily
its provider in the large-scale network, is identified as the

IoT service discovery. A real-world example of such service
discovery could be noticedwhen aCCTV tracks an object that
went out of its coverage zone and requests help from other
camera-equipped devices to resume the tracking.

In Fig. 1, the architecture comprises a service provider,
a registry, and a consumer. The service provider will first
register all the devices available to provide the services. The
consumer will request permission from the service provider,
and after granting the permission to access a specific device
or service, the consumer will lookup through the registry for
a suitable device. Finally, the requested service will be pro-
vided to the consumer. It is a standard procedure to depend
on a centralized registry that collects service consumers’ and
providers’ information to aid in service discovery. Usually,
the service registry indicates the service provider’s address to
the service consumer to achieve the service needed. Despite
that, a semantic-based IoT service discovery is required.
Our work specifies a semantic-based service discovery as
a context-aware approach. In addition, adopting flexible
and scalable context-aware service discovery solutions to
enhance security and trustworthiness, information exchange
and storage, and data analysis capabilities are required to
avoid undesired data manipulation and promote the use of
IoT devices in a safe, smart city environment. There is a
need to design automated solutions to support, facilitate,
and analyze the relations between the interconnected IoT
entities in such a vast network. Such relations refer to the
associations that devices establish between each other such as
trust, compatibility, and connectivity. Enabling such solutions
guarantees secure, safe, and trustworthy IoT services and
data exchange. These solutions need to better understand
the network and capture its proprieties (e.g., semantic, spa-
tial, etc.) and general structure. For example, a relationship
between two IoT devices with the same owner can exhibit
secured communication and service compatibility. Exploiting
these IoT devices’ relations can provide additional informa-
tion about the network, promote better decisions, and enable
insights into the overall system.

In this context, Social IoT (SIoT), which refers to the
social relationships established between IoT devices, was
introduced to provide more information and context about
the nature of connections between the devices, consequently
enhancing the IoT system’s relations and trustworthiness
[9], [10]. Moreover, the SIoT, by establishing connections
between the available devices, helps model the IoT network
with semantic and latent relations while capturing important
information such as the devices’ characteristics and capabil-
ities. Applications relying on human social network analysis
and tools, such as Blogjects [11] and Things Twitter [12],
were investigated in several studies to benefit the IoT system.
However, IoT is much more heterogeneous and complex due
to the heterogeneity of its entities. These entities vary in their
technical specifications, capabilities, and offered services.
Moreover, the relations interconnecting these entities vary
based on criteria such as location, ownership, and nature of
collaboration. Nevertheless, IoT devices’ relations are similar
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FIGURE 2. A high-level architecture of the IoT system where machine
learning and graph analytic tools can be jointly utilized to perform
real-time service discovery and decision-making processes.

to the ones of people’s social relations, which are oppor-
tunistic networks. Thus, the concepts used in social network
analysis can benefit from establishing trustworthy relations
between the devices to aid service discovery.

One of the SIoT concepts’ main goals is to enable reli-
able service discovery and navigation methods to serve in a
large-scale and complex smart city system such as Intelligent
Transportation Systems (ITS), university campuses, or indus-
trial zones (i.e., industrial IoT). The service discovery in SIoT
assures the trustworthiness among the connected devices.
Furthermore, it aims to exploit the SIoT relations intercon-
necting the social objects, such as their geolocation, social
relations, and relations establishment policies, to delivermore
effective and trustworthy service discovery outputs [13].

Nevertheless, even when relying on SIoT, providing a solu-
tion for the challenge of service discovery is a complex task.
The profoundly dynamic and substantial number of devices
connected to the SIoT hinders the raw use of SIoT. Exploiting
the relations between the devices as a solution relies heavily
on how and what information to extract. The SIoT devices
and their different relations can bemodeled as amathematical
graph to leverage the variety of the existing graph analytic
tools. In Fig. 2, a conceptual architecture for a SIoT data
analytical framework is provided. The figure illustrates how
graph analysis and machine learning techniques can be used
to perceive the SIoT system’s structure via a cloud gate-
way to exchange the necessary data, such as the location
and specifications of the devices. From this information and
other IoT devices’ features, graphs that model the different
social relations between the devices can be determined and
exploited to devise effective context-aware service discovery
techniques in large-scale IoT networks [14].

This paper overviews graph-based techniques to enable
service discovery processes in large-scale IoT networks.
We propose leveraging the SIoT concept to create graphs
reflecting the different relations that can interconnect the
devices. First, we present the main SIoT relations and dis-
cuss traditional community detection techniques, mainly the
Louvain and Leiden methods. We also highlight their use
and application in facilitating service discovery and helping
determine suitable devices able to address the required ser-
vices. Afterward, we propose a low-complexity deep learning

approach as an alternative solution to these conventional
unscalable methods. We design a context-aware commu-
nity detection approach based on Graph Neural Networks
(GNNs). This approach involves the neural network com-
ponents to generate an embedding for each node of the
graph while capturing not only the social relations in the
network, as with the traditional methods but the devices’
features such as battery capacity, computational resources,
existing sensors, etc. The GNN approach is followed by an
embedding-based clustering technique to determine several
groups for different contexts and with strong social rela-
tions. The proposed approach allows a better understanding
of the network’s nodes by simultaneously incorporating the
devices’ features and relations. It also helps in shrinking the
service space. We show that the GNN approach speeds up
the service lookup search space and outperforms the tradi-
tional graph-based techniques. Finally, we present practical
IoT-enabled applications where service discovery using the
SIoT concept can be massively leveraged.

The contributions of this paper can be summarized as
follows:

• We overview the service discovery in SIoT and highlight
its potential in enabling a more reliable and trustworthy
network navigability in the IoT network.

• We provide a practical approach to model SIoT relation-
ships such as co-location, social friendship, and owner-
ship relations to ensure robust service allocation.

• We design a context-aware community detection
approach, based on Graph Neural Networks, that maps
devices’ attributes and their social relationships from a
3-D format into a 2-D format then clusters them to form
groups of communities.

• We conduct extensive experimental evaluations on
a real-world dataset and show the effectiveness the
designed neural network based community detection
approach for enabling service discovery, specifically in
reducing the services lockup search space and reducing
the problem complexity.

• We provide some practical applications in large-scale
IoT networks where the developed context-aware ser-
vice discovery approach can be applied.

The remainder of this paper is organized as follows.
Related work is reviewed in Section II. In Section III,
we discuss the SIoT relations while highlighting the different
possible virtual relationships between the devices in the net-
work and pointing out two conventional community detection
techniques. After that, Section IV presents a deep learning
approach for community detection based on GNNs. Later on,
we include several simulations and experimental results in
Section V to evaluate and compare the different community
detection approaches. In SectionVI, we showcase several use
cases of community detection in SIoT networks for various
practical approaches such as mobile crowdsourcing, edge
computing, and real-time navigation. Finally, Section VII
concludes the paper.
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II. LITERATURE REVIEW
This section reviews the related literature that covers service
discovery and graph analytics in IoT systems. We discuss
some of the studies that approached two classical community
detection techniques, mainly Louvain and Leiden algorithms,
and go through some of the GNNs approaches applied to
enable graph nodes’ clustering in general.

Over the last decade, several service discovery approaches
in IoT systems have emerged [15]. They can bemainly encap-
sulated into three categories: directory-based architecture,
directory-less architecture, or both [16]. In the directory-
based architecture, an IoT device can act as a service provider,
service consumer, or service directory. Service providers
register their services to the service directory, and service
consumers become aware of the available services by query-
ing the service directory. On the other hand, directory-less
architectures do not rely on directories. Service providers and
service consumers interact directly to advertise and retrieve
services according to predefined patterns. A hybrid architec-
ture considers the coexistence of the directory-based archi-
tecture and directory-less architectures. In this case, service
providers can register their service to a service directory if
they locate any in their vicinity or broadcast service adver-
tisements. In the same way, service consumers can query
the service directory or broadcast their requests and wait
for responses from service directories or other IoT devices.
These approaches, although proven to be useful under certain
conditions [17], cannot be applied for large-scale IoT systems
since they are based on the traditional Universal Descrip-
tion Discovery and Integration (UDDI) registry, which suf-
fers from maintaining the state availability of services and
generating an unnecessary amount of traffic in the network.
Alternative approaches proposed the use of synthetic descrip-
tion languages, inspired by the traditional web services,
which provide a description for the devices using a key-value
structure and allow the discovery of the services to be per-
formed using keywords matching [18]. However, these meth-
ods lack the ability to enable several services, such as the
criteria-dependent ones (e.g., the geolocation), since an exact
keyword matching for the producer and the consumer in the
IoT system is needed to query the desired service.

On the other hand, service discovery can also be viewed
from two different categories: 1) the protocol-based IoT ser-
vice discovery and 2) the semantic-based IoT service dis-
covery [15]. The first category is the widely adopted and
standard procedures used to assist in the interaction between
the devices in the network. These protocols are easy to apply
and well defined, but they assume homogeneous communica-
tions and interactions between the devices in the IoT system.
Therefore, this category is protocol dependent and does not
sustain systems interoperability. The second category, on the
other hand, relies on the use of semantic web technologies.
In the literature, these approaches use ontologies to give a
semantic description for web services. However, applying
the semantic web directly on constrained devices imposes an
excessive load on these devices.With all of this being said, the

nature of IoT systems is large and dynamic. These protocol-
based solutions can be useful in the context of small-scale
IoT networks. However, on a large scale, the semantic and
synthetic descriptions added to provide sufficient service dis-
covery generate massive data traffic to the system.

Other state-of-the-art studies approached service discovery
from another perspective and relied on the SIoT paradigm and
graph analytic tools. In fact, as devices with their different
SIoT relations can be modeled as a mathematical graph, the
analytical tools enable the interpretation of the interactions
between these devices and provide clear ideas of the overall
structure. This is mostly done by developing a computation
method based on the graph attributes (e.g., their relation-
ships) to extract several information. For instance, Amin et al.
[19] highlighted the importance of using the SIoT and the
analysis of such networks to serve numerous research fields
and applications. The authors underlined the significance
of using analytical tools in SIoT social networks to reveal
the structure and its effects, also addressing the challenges
such as the network. Premarathne et al. [20] proposed a
trust computation method in SIoT to compute the strength of
the trust among SIoT members based on the pre-defined set
of social relationships they have. Furthermore, using graph
analytic tools helps in service discovery and trustworthiness
management for SIoT systems [21]. The SIoT concept can be
modeled as a dynamic and complex network with heteroge-
neous devices and relationships [22], [23]. Therefore, consid-
ering the networks’ temporal and spatial aspects is crucial to
SIoT networks. The relationships between the objects raise
the emergence of trust and friendlessness between objects
for navigating the network [24], by identifying the different
trusts, such as direct trust where the two objects establish a
link, and indirect trust, such as a friend of friend relationship
between the devices. By exploiting the relationships among
devices to recommend services or providers, a lot of appli-
cations can be enabled, such as predicting new relations or
nodes [25], [26] in the SIoT. An additional application is to
model the relationships differently using a hyper-graphmodel
in which each hyper-edge connects the users, objects, and
services in an IoT system and conducts further network analy-
sis [27]. It can further assist the diverse groups of devices with
common characteristics based on their relationships [28].

A community detection paradigm is also an interesting
approach to identifying communities in real-world graphs.
The main idea behind community detection is to identify the
communities in real-world graphs. However, its applications
are not limited to finding different communities within a
network but also extend to analyzing these communities and
explaining why they are clustered together. A community
is defined by Flake et al. [29] as a set of nodes that are
connected to a greater extent than the rest of the network.
Radicchi et al. [30] extended the definition with notions of
a strong community and a weak community based on the
density of the links within the community. Moreover, the
promise of community detection is to gain a deeper under-
standing of a complex system by revealing the structural
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patterns within a network structure. In this regard, one of the
challenges that are apparent in IoT graphs is the high volatil-
ity and dynamism of the networks. Several nodes will be
introduced or removed from the system, which increases the
complexity of computing and finding communities in such
a dynamic network. Some GNNs approaches have targeted
community detection. In fact, Chen et al. [31] proposed to
solve community detection problems in supervised learning
settings using Line Graph Neural Networks (LGNNs). They
showed that their model achieves close performance to Belief
Propagation (BP) under certain simplifications and assump-
tions. However, their results were not conducted on SIoT, and
they were purely based on the hypothesis that the number
of communities to be detected is fixed. In [32], a service
discovery process for a mobile crowdsourcing application
where a conventional community detection technique, either
Louvain or OSLOM, is implemented followed by a Natural
Language Processing (NLP) solution to recognize the submit-
ted requests and extract information to match them with the
devices of IoT dataset and select the suitable works. Agrawal
et al. [33] presented various existing GNN techniques and
discussed several simulations and comparisons with different
human social network datasets.

All of these relatedworks have either discussed classic web
service discovery approaches lacking applicability and scal-
ability for heterogeneous large-scale IoT networks, proposed
techniques to enable community detection in large-scale
IoT systems, or only focused on clustering communities in
human social networks. Moreover, such approaches cannot
be applied in large-scale IoT systems since they suffer from
maintaining the state availability of services and generating
an unnecessary amount of traffic in the network. In other
words, such techniques are able to allocate a service in a
large-scale network but with a high time-complexity. Alter-
native approaches that use synthetic description language are
relatively faster but they are criteria-dependent, which means
that they fail to provide some services such as geo-location
matching where the device is looking for a service from
another device in a specific region. To the best of our knowl-
edge, we are the first to study service discovery in large-scale
IoT networks while leveraging neural network techniques to
exploit SIoT relations. The novel contribution in our paper
is the design of a neural network architecture that efficiently
divides the devices into several communities that encapsulate
the provided services, while exploiting the social relations
of the SIoT. By embedding the SIoT graph and the devices’
characteristics using GNN, the limitations of the conventional
service discovery methods can be surpassed by providing an
effective service lookup.

III. RELATIONSHIP MANAGEMENT IN SIOT AND
CONVENTIONAL COMMUNITY
DETECTION METHODS
In this section, we explain the idea of relationship manage-
ment between IoT devices. We start by defining the con-
cept of SIoT and show the purpose behind enabling service

discovery. After that, we present several possible relation-
ships that can be considered among the IoT devices while
mentioning two traditional community detection techniques
leveraging the grouping of similar devices to detect their
provided services.

A. SOCIAL INTERNET-OF-THINGS
The concept of SIoT has put forward the idea of social-
ization in IoT, where devices can establish social relations,
autonomously similar to people’s social networks, to indict
a collaboration or permission between each other. In other
words, IoT devices are allowed to establish social relation-
ships under certain conditions, where they can exchange
information and build their own network. Each IoT device
has its ego-centric network. For example, devices sharing
the same communication protocols and located in the same
region can be leveraged with their computing resources as a
temporary distributed data center in the case of critical system
failure (e.g., traffic light control center outage). The adoption
of the SIoT paradigm presents several advantages. In fact, the
resulting structure of the things’ social network can be shaped
as required to guarantee network navigability to perform the
discovery of objects and services effectively and to guarantee
scalability as in human social networks. Also, a level of
trustworthiness can be established for leveraging the degree
of interaction among things that are friends. Furthermore,
models designed to study social networks can be reused
to address IoT-related issues (e.g., service discovery, pri-
vacy, etc.). Network navigability establishes different types
of connections between IoT devices in an efficient and scal-
able manner to serve in service discovery [34]. In addition,
trustworthiness management is required to ensure a reliable
and secure IoT system. This being said, SIoT still presents
some challenges [35]. Heterogeneity, for example, is one as
the network contains different natures of objects leading to
issues such as interoperability and compatibility. Morover,
resource-constrained devices also present limitations to the
SIoT network. In fact, the network contains devices with
limited resources and this issue has a direct impact on the
life of the network and the exchange of information. Further
SIoT challenges and limitations could be found in recent
studies [36], [37].

B. TYPE OF RELATIONS
Relationship management [43] in an IoT context is concerned
with providing a dynamic and intelligent method that builds
connections between the devices in which the objects can
realize friends and foes to start, update, or terminate friend-
ships with other objects. Efficient relationship management
can assist in requesting the relevant services from a trustwor-
thy object in the IoT network, according to Afzal et al. [44].
The type of relationships between objects can be established
based on the usage and context of the SIoT. There are several
evolving events that can occur in a network of devices. First,
the different types of relationships between the devices and
the devices’ features can change over time. The network’s
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TABLE 1. Qualitative comparison of our proposed framework with recent relevant studies.

spatial properties can also change over time with the devices’
motions in different positions within the system. With regard
to the temporal aspects of the graph, the features of the
devices and the relations between them change over time. The
most important and usually used social relations in SIoT are
presented as follows [23]:
• Parental–child relation (PCR): In this type of relation-
ship, a tree structure is formed. Thus, each node in the
graph is connected to the upper-level node. For example,
ZigBee and IEEE 802.15.4 protocol layers show the con-
nected devices. This type of graph or network is known
as a tree or hierarchical topology. Furthermore, Nitti et
al. [34] defined this type of network as similar objects
built in the same period by the same manufacturer. This
definition disregards the structure of the network and the
limitation of the definition and implies it will result in
a limited effect on the network topology in many use
cases.

• Co-Location/Co-Work based Relation (CLOR): The
network structure is influenced by either the spatial
or other types of tasks. Therefore, co-location can be
a network of nodes that shares a physical location
(co-habituation) or is within the network domain. Simi-
larly, the type of tasks may need a set of nodes, devices,
or objects to accomplish the task.

• Social Object Relation (SOR): This is the relationship
established when the objects come into contact with
a network. These relationships can be sporadically or
continuously based on the needs of the policies of the
devices. Social objects can be based on the same types
of objects, such as devices or people looking for specific
services.

• Object Ownership Relation (OOR): This is based
on the ownership of the object for different objects.

This network can be influenced by how the objects are
connected to each other. As the simplest example, the
ownership of a set of smart devices can control the
connectivity and type of authentication needed to access
this set of devices. Devices such as phones, tablets, game
consoles, and home sensors can be connected based on
these devices’ ownership.

In a previous study [32], we have combined the SOR and
OOR relations and proposed a new relationship called Social
Friendship andOwnership Relation (SFOR). This SFOR rela-
tion can be defined as follows:

• Social Friendship and Ownership Relation (SFOR):
This relationship is established by considering the social
relationships of the owners of the IoT devices. For exam-
ple, two devices having the same owner are assumed
to have an SFOR relationship. Another example could
be the case of two devices owned by two different enti-
ties. However, if these owners have any kind of social
relationship (friends or collaborators), they have some
privileges regarding accessing their respective devices.

These relationships can be modeled using undirected
weighted or multiple graphs. The IoT devices constitute the
graphs’ vertices, while the edges represent the social rela-
tionships between them. Some nodes may not be connected
to specific social relations. In that case, an edge will not
be established. Moreover, the graph has no self-loop edges
for the nodes. Finally, the weights on each edge indicate the
strength of a relationship.

In Table 1, we perform a qualitative comparison between
recent studies on service discovery and network navigability
that uses graph-based algorithms. First, we examine the main
characteristics of these studies, such as the type of graphs,
the size of the IoT network, the clustering algorithm, and the
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application domain. To reduce the search space, we notice the
employed of diverse conventional clustering techniques such
as heuristic and greedymethods. Still, none of them employed
learning algorithms except [42] where the IoT devices are
clustered based on their computational capabilities and hard-
ware specifications. After that, an Artificial Neural Network
(ANN) is used to predict the suitable devices that can execute
the requested task.

For the applications, we align the examined papers with
the four application types: 1) relationship management,
2) trustworthiness management, 3) network navigability, and
4) service discovery. We can notice the mentioned literature
focuses on the service discovery that can help in many chal-
lenges facing the IoT systems. For the size of the IoT network,
we consider that if the IoT graph contains less than 100 nodes,
it is labeled as a small network. We consider the medium-size
network between 100 to 2000 devices as medium size IoT
network, and with more than 2000 devices, we label it as an
extensive IoT network. For the IoT devices, we notice most
of the studies are done in simulation, or small-scale experi-
mental settings except [28]. Therefore, utilizing a real-world
data set that uses smart cities or smart campus-scale can be
helpful to see the impact of proposed techniques in large IoT
systems. Besides that, most studies consider small-scale net-
works and only focus on the devices’ geographical locations.
The objective is to search devices in the neighborhood, and
hence, location-based clustering is performed.

C. SERVICE DISCOVERY
Service discovery describes the process where IoT devices
locate each other’s offered services in the IoT network.
This paradigm enables the automatic detection of the char-
acteristics and features made available by the devices in
the network. In fact, IoT devices rely on these announced
features in order to target other devices and enable smooth
and fast service exchange. Service discovery promotes IoT
devices to have information about the other devices in the
network. These information include the characteristics and
specifications of the available devices such as communication
protocols, capabilities, built-in sensors, availability, location,
etc. The devices can exploit these information to gain knowl-
edge about the other devices and consequently target the
appropriate class of devices that could satisfy their needed
services. For example, when requesting a resource allocation
for computing sensitive information with privacy concerns,
IoT devices must target devices that are considered to be
trustworthy.

Several service discovery protocols have been used in
content-delivery management and client-server architecture.
This usage has been successful in web applications. But in
IoT, there are fundamental differences and challenges. One
of these challenges is that devices and services are hetero-
geneous and diverse, based on each entity’s need in the net-
work. Furthermore, the massive number of IoT devices that
interact directly and indirectly makes the web-applications
approaches inadequate. Therefore, conceiving an efficient

service discovery procedure in such large-scale networks
remains impeded by the system’s increasing complexity.
In our paper, we exploit the SIoT paradigm to leverage
the social relationship between devices. These relationships
generate information about the IoT network structure and
highlight the connectivity and compatibility of the devices
with each other. Furthermore, the different SIoT relations
presented in Section III-B help better map the topology of
the IoT network, understand the relations between devices to
consequently enable a low-complexity service discovery for
large-scale IoT systems. In the following section, we refer
to some community detection techniques that divide the IoT
network into several communities with close SIoT relation-
ships and common features and services as part of the service
discovery approach.

D. CONVENTIONAL COMMUNITY DETECTION
TECHNIQUES
Community detection has been lately a trending research
topic in the field of ubiquitous computing. One of the critical
features of social networks is the community’s structure.
So far, several methods have been proposed to detect com-
munities, which represent the high importance of discovering
communities for understanding social networks and detecting
the useful and hidden patterns in the aforementioned net-
work. Community detection can help people understand the
topology of a network and identify meaningful clusters. Since
there can be any number of communities in a given network
with varying sizes and properties, community detection is not
a straightforward procedure, and some techniques are more
adapted to some problems than others. One of the well-known
community detection algorithms are the Louvain method [45]
and the Leiden algorithm [46] that we will be presented and
employed in Section V-B as benchmarking approaches to our
proposed method.

IV. GRAPH NEURAL NETWORKS FOR COMMUNITY
DETECTION
A large variety of community detection algorithms are
applied to IoT network graphs. However, some of these
algorithms lack the ability to capture the weights and direc-
tions of the edges of the SIoT network. In this study,
we aim to enable service discovery in large-scale IoT net-
works using a more sophisticated approaches to better assess
and understand the SIoT network structure and its compo-
nents. Thus, a probabilistic context-aware approach relying
on GNNs is used with the SIoT graphs to reduce the dimen-
sionality of the large-scale network features and relations.
Afterwards, an unsupervised machine learning algorithms is
applied to cluster the devices into groups of devices sharing
common characteristics and social relations. The obtained
groups can be then used to enable fast service discovery.
The overall mechanism can be divided into two main parts:
i) SIoT network embedding and ii) clustering. During the first
part, the GNN operates on the graph structure and embeds
each device’s structure in the SIoT into a two-dimensional
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FIGURE 3. Visualization of the embedding process where the original 3-D network is transformed into an embedding space with 2-D vectors. The
node embedding techniques transform the graph into a vector with 22×m dimension, where m represents the embedding dimension. The graph
embedding techniques transform the graph into a single vector with m′ rows, where m′ represents the graph embedding space.

vector. In the second part, an unsupervised machine learning
approach is applied to the obtained vectors to perform a clus-
tering analysis and detect communities having common fea-
tures and sharing strong relations within the SIoT network.

As the goal of the embedding step is to retrieve the SIoT
graph semantic and latent complex structure and transform
it into a representative 2-D vector space, several approaches
with different focuses have been proposed in the litera-
ture [47], [48]. Some of them have studied embedding the
nodes in the graph [49], where each vertex is encoded with
its vector representation, while other approaches designed
mechanisms to embed the entire graph [50], where the whole
graph is transformed into a single vector. A more figura-
tive explanation is included in Fig. 3, where the difference
between node embedding and graph embedding is high-
lighted. Indeed, each of these embedding types has its specific
application.

In our proposed approach, we are interested in extracting
information from the SIoT network structure and the IoT
devices’ specifications (i.e., location, computational charac-
teristics, etc.). Therefore, we proceed with embedding the
nodes in the graph. In order to achieve this, we need to explore
three stages: 1 mainly) define an encoder F (i.e., a mapping
from nodes to embeddings), 2) define a node similarity func-
tion (i.e., a measure of similarity in the original network),
it specifies how the relationships in vector space map to the
relationships in the original network, and 3) optimize the
parameters of the encoder, so that similarity of two nodes in
the original 3-D network is the same as the one in the resultant
2-D embedding space. Throughout the literature [47], [49],
the encoderF was represented as a simple embedding-lookup
with F(a) = ya = Y × ea where each column in matrix Y
indicates a node embedding. The total number of rows in Y
equals the dimension/size of embeddings. ea is the indicator
vector with all zeros except one in the column indicating
node a.

The second stage is to define nodes’ similarity functions
for the original 3-D network, denoted by S3D, and the embed-
ding space, denoted by S2D. The similarity between two

nodes a and b in the embedding space can been defined as,
S2D(a, b) = y>a yb, the dot product between the vectors. Our
goal is to define an appropriate S3D and optimize the embed-
dings such that S3D ≈ S2D. In other words, the degree of sim-
ilarity of two nodes in the original 3-D network must be kept
in the 2-D embedding network. Deepwalkwas among the first
proposed mechanisms for node embedding [51]. It proposes
a strategy R that runs a fixed-length, unbiased random walk
starting from each node in the graph to define S3D and pro-
duces the embeddings. However, this technique was proven
to have several limitations, including omitting information
in the embedded node’s neighborhood. The authors of the
Node2vec approach have surpassed this issue by proposing
a flexible, biased random walk strategy R that can trade-off
between local and global views of the network [49]. In fact,
Node2vec introduces two parameters p and q. Parameter q
defines how probable the random walk would discover the
undiscovered part of the graph, while parameter p defines
how probable the random walk would return to the previous
node. An example of computing the probability to transition
from one node to another can be further explained in Fig. 4.
The resultant node similarity function is computed as the
likelihood of visiting node b on a random walk starting from
node a using the random walk strategy R. To determine the
embeddings ya of node a, we optimize and minimize the loss
function written as:

L =
∑
a∈V

∑
b∈NR(a)

− log P (b/za) , (1)

where V is the overall set of nodes and NR(a) is the multiset
of nodes visited on random walks starting from a. P (b/za)
represents the likelihood of random walk co-occurrences and

it is expressed as follows: P (b/za) =
exp

(
z>a zb

)
exp(

∑
n∈V z>a zn)

. Note

that NR(a) could have repeated elements since nodes can be
visited multiple times on random walks. Two classic strate-
gies to define a neighborhood NR(a) of a given node a are
BFS and DFS. The nested sum over nodes yileds O(|V |2)
complexity. Therefore, we rely on the negative sampling
technique where we introduce the sigmoid function σ and Pv
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means random distribution over all nodes such that:

log

(
exp

(
z>a zb

)
exp

(∑
n∈V z>a zn

))
≈ log

(
σ
(
z>a zb

))
−

k∑
i=1

log(z>a zni ), where ni ∼ Pb, (2)

with Pb a random distribution over all nodes. In fact, instead
of normalizingwith respect to all nodes, we normalize against
k random ‘‘negative samples’’ ni. In this way, we need to sam-
ple k negative nodes proportional to the degree to compute the
loss function.

Because this embedding procedure captures only the SIoT
graph topology, vertex-to-vertex relationship, and sometimes
other relevant information about graphs, subgraphs, and ver-
tices, we also propose to design another service discovery
approach with an embedding level capable of capturing the
nodes’ characteristics and features while including them in
the resultant output embedding vectors. Hence, the proposed
GNN community detection algorithm is more generic and
robust.

To this end, the function F() must be carefully defined
so that the resultant vector value ya can include either the
SIoT vertex-to-vertex relationship or the devices’ features.
The encoder is a computational graph with multiple encoding
layers in this case. It takes a vector, for example, Xa, 0 for
node a, which involves the SIoT relationships and attributes
of the node a at layer 0. F(I0u) = zu = IKu where I0u is the
first layer input and represents the nodes’ features and IKu is
the optimized embedding and the final layer K output. The
neural layers corresponding to layer k for a node u are defined
as I ku and can be written as follows:

F(I0u) = σ

Wk

∑
a∈N (u)

Ik−1a

|N (u)|
+ BkIk−1u

 , (3)

∀k ∈ {1, . . . ,K } (4)

The initial 0-th layer embedding I0u are equal to the node
features xu and the optimized embedding zu are equal to
the final layer embedding IKu . The function σ denotes the
non-linearity (e.g., relu), and Wk and Bk represent the train-
able weight matrices that will be adjusted with the loss
function. The term

∑
a∈N (u)

Ik−1a
|N (u)| represents the average of

neighbors’s previous layer embedding. A more illustrative
pseudo-code for the GNN embedding procedure is included
in Algorithm. 1. The outer loop indicates the number of
update iteration, while IkN (v) denotes the latent vector of node
v at update iteration k . At each update iteration, IkN (v) is
updated based on an aggregation function, the latent vectors
of v and v’s neighborhood in the previous iteration, and a
weight matrixW k . There are many aggregation function such
as mean aggregator, LSTM aggregator, and pooling aggrega-
tor. In our paper, we choose themean aggregator as it takes the

FIGURE 4. Illustration of the graph embedding procedure where the
probability to transition from a node v to any one of its neighbors is
illustrated.

average of the latent vector of a node and all its neighborhood
and consequently, preserving the passed information from all
the nodes’ surroundings.

After determining the vector representation for each node
in the SIoT graph, a clustering analysis approach is con-
ducted. The resultant embedding vectors go through a dimen-
sional reduction algorithm (e.g., T-SNE or PCA) to reduce
the number of variables in the data and extract only the
most important ones from the pool. This step is important
as it alleviates the clustering problem, speeds up the com-
putation process, and presents a visualization method in the
2-dimensional space for the clusters. This step is achieved
before running an unsupervised machine learning process to
group the IoT devices with common features and attributes
into SIoT clusters or communities. Throughout the literature,
there have been a wide variety of possible machine learning
approaches for clustering [52]. Since the task of clustering
is subjective, the means that can be used for achieving this
goal are plenty. Every methodology follows a different set of
rules for defining the similarity among data points. In fact,
there are more than 100 clustering algorithms known. But
few of the algorithms are used popularly, such as Agglom-
erative Clustering, DBSCAN, K -Means, OPTICS, Spectral
Clustering, and Mixture of Gaussians [53]. The psuedo-code
for the community detection included in Algorithm 1 illus-
trates the clustering process with K-means. The convergence
condition for the k-means is where the centroid positions no
longer change. The result of the clustering analysis phase
gives multiple communities where each community contain
devices that are more close and similar to each others in
terms of features (i.e., social network and/or characteristics)
than to the devices in the other communities. Such clusters,
consequently, by design gives context to the devices as each
device in a specific community is socially connected to other
devices and have similar characteristics.

We should note that in this paper, the mobility of the
devices is captured by the CLORSIoT relation, which reflects
the relative positions of the service requesters and providers.
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Algorithm 1: Pseudo-Code of the Graph Neural Network
Algorithm for Community Detection Using K-Means
Input: A SIoT Graph G(V, E), input features
{xu,∀u ∈ V}, depth K , weight matrices
{Wk ,∀k ∈ {1, . . . ,K }}; non-linearity σ , neighborhood
function N : v→ 2V , number of clusters k .
Output: A set of k clusters of devices {C1, · · · ,Ck}

and the vector representations zv for all devices v ∈ V .
I0u← xu,∀u ∈ V .
for k=1,. . . ,K do

for v ∈ V do
IkN (v)← AGGREGATEk

({
Ik−1u ,∀u ∈ N (v)

})
F(Ikv )←
σ
(
Wk
· CONCAT

(
Ik−1v , IkN (v)

)
+ BkIk−1u

)
end
F(Ikv )← F(Ikv )

∥∥F(Ikv )∥∥2 ,∀v ∈ V,
end
zv← F(IKv ),∀v ∈ V.
Initialize k centroids randomly from zv.
while not convergence do

Associate each data point from all the zv with the
nearest centroid, this will divide the data points into
k clusters in {C1, · · · ,Ck}.
Recalculate the position of centroids as mean over
all assigned points.

end

In other words, it takes into account the mobility of devices.
To better capture the mobility changes over time in the IoT
network, the proposed approach requires updating its relation
in each time step and re-predict the new communities to find
suitable service providers.

V. RESULTS AND DISCUSSION
In this section, we investigate the performances of the
proposed GNN technique for large-scale service discovery.
At first, we start by presenting the used dataset and environ-
mental setup. Then, we define some of the evaluation metrics
and analyze the behavior of the GNN approach by investigat-
ing the embedding and clustering performances to, finally,
close the loop by comparing the behavior of the proposed
approach with those of the Louvain and Leiden community
detection approaches.

A. DATASET AND EXPERIMENTAL SETUP
We use a dataset provided by Marche et al. [54]. The
dataset includes real IoT objects in Santander, Spain, mixed
with simulated objects such as smartphones, tablets, and
personal computer devices. The total number of objects is
16, 216 devices, of which 14, 600 are from private users
and 1, 616 from public services. Fig. 5 presents the avail-
able information for each device in the dataset, such as
the type, the brand, and the model. In addition, the dataset

FIGURE 5. High-level entity relationship of the SIoT dataset.

indicates whether a device is static or mobile and provides
its geographical locations in the Cartesian coordinate system.
A more detailed information about the dataset can be found
online.1 For private devices, additional information about
the owner identification is stored in the user_id . Moreover,
a detailed description of the dataset features is contained in
Table 2. In our simulations, we considered two types of SIoT
relations: CLOR to capture the location changes between
devices and SFOR to consider the devices’ trustworthiness
and acceptability.

In order to implement the GNN service discovery
approach, we employ the node2vec approach as a single layer
GNN and set the number of node embedding dimensions
to 64. The walking strategy R is set as a 10 random walk
from the source with a length of 10 nodes. The parameters
P and Q are set to 1. For the multi-layer GNN, we implement
the Attributed Network Representation Learning (ANRL) via
deep neural networks by Zhang et al. [55]. We set the number
of feature embedding dimensions to 256, and increased the
walk length and the number of walks to 15 while keeping
the other parameters the same. Also, we propose to include a
coefficient w ∈ [0, 1] to reflect the degree of the IoT devices’
features that will be taken into consideration. The value of
ω = 0 means no attributes were embedded (i.e., single
layer GNN), and ω = 1 means all the available attributes
were embedded (i.e., multi-layer GNN). In the following
experiments, all algorithms are implemented in a Python
3.6 environment and run on a 32 socket Intel(R) Xeon (R)
E5-2698 v3 @2.30GHz CPU with 72G of RAM.

B. BENCHMARKING SCHEMES
The Louvain method [45] was proposed in 2008 for detect-
ing non-overlapping communities in a graph by researchers
from the University of Louvain, which is how it acquired
its name. The technique maximizes the modularity score for
each community. Modularity represents the quantification of

1http://www.social-iot.org/index.php?p=downloads
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TABLE 2. Description of the SIoT dataset features.

FIGURE 6. 2-D representation showing the IoT devices’ embeddings after
performing node embedding with ω = 0 and k-means for clustering using
CLOR relation. IoT devices belonging to the same cluster have similar
colors in the figure as they are highly inter-connected.

the quality of the assignment of nodes to communities by
examining the density of the edges of a set of nodes compared
to how the set would be connected in a random network. It is
a hierarchical algorithm where in every stage, it clusters a set
of nodes and converts them into one node with a self-loop
representing the edges between them. Then, the condensed
graph with the new resultant nodes from the previous step
is used for the next level of clustering until the process of
grouping becomes stable without new nodes.

Unlike the Louvain algorithm that merges the communities
in each level, the Leiden algorithm [46], introduced in 2019,
mainly splits and merges the clusters in each level. Therefore,
it guarantees that it leads to more well-connected clusters.
Compared to the Louvain algorithm, the Leiden algorithm
can conduct a fast local move approach. The approach allows
the movement of one or more nodes from one cluster to
another to improve the clusters’ quality in each iteration on
finding communities. The selection of the nodes to be moved
if and only if the nodes are unstable. This difference improves
the running time of the Leiden algorithm compared to the

FIGURE 7. 2-D representation showing the IoT devices’ embeddings after
performing GNN with ω = 0.5 and k-means for clustering using the CLOR
relation. IoT devices belonging to the same cluster have similar colors in
the figure as they are highly inter-connected and have partially similar
characteristics.

FIGURE 8. 2-D representation showing the IoT devices’ embedding after
performing GNN with ω =1 and k-means for clustering using CLOR
network. IoT devices belonging to the same cluster have similar colors in
the figure as they are highly inter-connected and have similar
characteristics.

Louvain method. Moreover, the Leiden algorithm can over-
come one of the main inefficiencies of the Louvain method.
In fact, the latter, in some cases, can generate poorly con-
nected nodes as a community and might lead to a discounted
network community [46].

C. EVALUATION METRICS
To assess the quality of the different clustering results, we use
three of the standard cluster quality metrics in our study:
modularity, coverage and performance. Graph modularity
analyzes the presence of each intra-cluster edge of the graph
with the probability that that edge would exist in a random
graph. It is expressed as follows:

Q =
1
2m

∑
vw

(
Avw −

kvkw
2m

)
δ (v,w) ,

where δ is the Kronecker delta, it equals to one if v and w
belong to the same community and 0 otherwise, kv is the
degree of node v, m is the number of edges in the graph,
and Avw is the element located at row v and column w of the
adjacency matrix A. As for coverage metric, it compares the
fraction of intra-cluster edges in the graph to the total number
of edges in the graph. It is given by:

Cov =

∑
i,j Aijδ

(
Ci,Cj

)∑
i,j Aij

,
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TABLE 3. Quality metrics illustrating the clustering performances of Leiden algorithm, Louvain algorithm, GNN (Node Embedding only), GNN (Partial node
and relation embedding with ω = 0.5 and Full node and relation embedding with ω = 1.

whereCi is the cluster to which node i is assigned and δ(a, b)
is 1 if a = b, otherwise is equal to 0. Coverage falls in the
range 0 to 1, and 1 is the highest score that indicates that a
graph topology is well-clustered.

The performance P, is another quality function that counts
correct vertices also known as ‘‘interpreted’’ pairs of vertices,
i.e., if there are two nodes in the same community and has
an edge, or two nodes in different communities and not
connected by an edge. The definition of performance, for a
each partition P, is presented as follows:

P(P) =

∣∣{(i, j) ∈ E,Ci = Cj
}∣∣+ ∣∣{(i, j) /∈ E,Ci 6= Cj

}∣∣
n(n− 1)/2

,

where n is the number of vertices within the cluster and E
represents the set of edges of the total graph.

D. PERFORMANCE ANALYSIS OF THE PROPOSED
SOLUTION
After performing the embeddings, we obtain the results illus-
trated in Figs. 6-8. Each figure contains the resultant 2-D
vector of the IoT devices in the embedding space (i.e., real
vectors). Each point represents an IoT device, and the color
reflects the community to which that device belongs. The
distance between two nodes represents the distance between
the IoT devices in the social network.Moreover, the more two
nodes are similar and close in the social network, the closer
they are in the embedding space. The clustering process
was achieved using a vector quantization technique, namely
k-means, which it aims to partition n observations into k
clusters in which each observation belongs to the cluster with
the nearest mean. The cluster centers, aka clusters’ centroid,
are colored in black. The nodes having similar colors are
assigned to the same community. For k-means, the number
of clusters must be determined a priori. Therefore, we use
several clustering validationmethods, such asDavies Bloudin
and Elbow Distortion. An example of these simulations using
node2vec to embed the CLORnetwork is shown in Fig. 9. The

optimal number of clusters corresponds to the Davies Boudin
index’s minimum value and nearly 20% of the maximum dis-
tortion values. Before performing the clustering, we applied
a dimensional reduction algorithm, namely Principal Compo-
nent Analysis (PCA), to reduce the number of variables in the
resultant embedding vector by extracting the most important
ones.

E. COMPARISON WITH BENCHMARKING APPROACHES
The quality metrics after performing a Monte-Carlo simu-
lation for 1000 community detection simulation using these
approaches, along with the Louvain and Leiden approaches
for CLOR, and SFOR relationships, are included in Table 3.
We notice that the highest number of communities, 18 com-
munities, is outputted by the GNN approachwhen embedding
the whole available features (i.e., GNN when ω = 1) while
the Louvain algorithm results in only 6 clusters. The effect of
including IoT devices’ attributes in the community detection
framework results in more communities as the number of
resultant communities increases while increasing the number
of attributes in the embedding. The GNN embedding for
both ω = 0.5 and ω = 1 can be seen as a form of clus-
tering aggregation. In fact, these approaches tend to create
clusters inside the Louvain clusters with precise community
detection. However, we notice themodularity decreases when
adding the attributes in the clustering. This can be explained
by the fact that the clustering no longer regroups close IoT
devices in the network but rather close and similar IoT devices
having relative attributes leading to a decrease in modular-
ity. To furthermore evaluate the behavior of the approaches
towards the variation of ω and with respect to Louvain and
Leiden algorithms, we have computed the average standard
deviation andmax standard deviation of the obtained clusters.
We can notice that the proposed GNN embedding approach
achieves the lowest mean standard deviation with the value
of ω = 1. This shows that the formed clusters with the
fully embedding approach are very tight and condensed, and
hence reflects that the selected nodes in the clusters are highly
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FIGURE 9. Evaluating the distortion of clustering with respect to the
number of clusters using (a) Davies Bouldin and (b) Elbow methods after
applying GNN to the CLOR graph.

similar. The maximum standard deviation is also minimum
for ω = 1 and increases when embedding lower information
about the devices. Leiden and Louvain algorithms achieves
higher mean standard deviations, which signifies that they
induce higher dispersion in the formed clusters.

VI. PRACTICAL APPLICATIONS
In this section, we discuss selected practical smart city and
IoT applications that can be leveraged via fast and effec-
tive service discovery procedures. We also present high-level
graph-based mechanisms applied to the SIoT in order to
devise effective service discovery in large-scale networks.

A. MOBILE CROWDSOURCING
Mobile Crowdsourcing (MCS) utilizes the power of mobile
devices to accomplish specific sensing and data collection
tasks without requiring pre-deployed dedicated infrastruc-
ture. MCS and crowdsensing concepts are intertwined with
many applications of the IoT systems, such as ride-sharing,
transportation, disaster management, agriculture, and com-
munity healthcare [56], [57], [58]. The IoT devices that could
play the role of service providers and/or service requesters
in the SIoT network can be captured and utilized in MCS.
As such, the tasks requested by IoT end-users or devices
can be crowdsourced to other entities connected to the net-
work, such as mobile devices, users, and vehicles [58], [59].
In MCS, we aim to find trustworthy and capable devices
or groups of devices that can share information from their
personal sensing activities to satisfy the need of the requested
task [60]. Fig. 10 demonstrates a high-level architecture that
can be used in MCS applications. The IoT devices will be
selected based on the task requirements and the social rela-
tionships that may connect the task requester with the existing
devices. Hence, using community detection techniques or
GNN, the SIoT can be reduced to amanageable set of relevant
devices. Then, different recruitment and selection approaches
can be applied to the small set of relevant devices to assign
the devices that will handle the crowdsourced request.

B. EDGE COMPUTING
The IoT devices possess distinct resource and computational
capabilities. Many of them, especially sensors, have minimal

FIGURE 10. A high-level architecture of a smart SIoT community detection
allowing the search of workers in mobile crowdsourcing context.

computing power. Therefore, this category of devices can
seek support from their surrounding peers to share part
of their computational and storage resources, if available,
to process some of the collected data and hence, relax the load
for the cloud servers [61], [62]. To scale the computational
resource sharing to a large IoT network scenario, context-
aware service discovery in SIoT can look into the extensive
network and cluster it accordingly, e.g., the latency that can be
reflected via the co-location relations and the devices’ trust-
worthiness based on ownerships and privileges. GNN can
also incorporate the edge computers’ features in the search,
allowing a more accurate search and clustering of the devices.
As an example, in [63] and as illustrated in Fig. 11, we present
a graph-based community detection on SIoT devices to deter-
mine trustworthy edge computers sharing strong social rela-
tions with the device requiring data processing. Afterward,
a machine learning algorithm is applied to predict the time
that will be required by a machine to process the task. Finally,
the fastest and most available computing devices are selected.

C. REAL-TIME NAVIGATION
For modern smart cities, interconnected IoT devices can
be exploited for a variety of navigation problems such as
autonomous unmanned vehicle navigation and pedestrian
routing [64]. Several applications can be considered in this
context including pedestrians and cyclists in path segments
with better air quality [65], [66], [67] or employing the IoT
data to assist in practicing social distancing and avoiding
crowded areas based on mobile IoT devices [68], [69]. Social
network information can also help avoid contact with friends
during an outbreak such as COVID-19 [70]. In Fig. 12,
we provide a high-level framework showcasing how the SIoT
data can be used to determine crowded areas and avoid meet-
ing with friends to help practice social distancing. Aweighted
graph has the map intersections as nodes, and as edges, the
path segments connecting them (e.g., streets) are developed.
The weights of the graph correspond to the safety levels of
the path segments. They are computed based on the social
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FIGURE 11. High-level architecture for edge computer recommendation.
The SIoT data and relations are exploited to determine edge computers
available to execute the offloaded tasks.

FIGURE 12. A high-level architecture for safe pedestrian navigation. The
SIoT data and relations are used to identify crowded areas and safe path
segments where social distancing can be practiced.

relations connecting the devices. By detecting their commu-
nities, the CLOR relation helps in determining the crowd-
edness level in each path segment, while the SFOR relation
is used to identify users that may have a close relationship
with the navigating user. Finally, the shortest path algorithm
is applied to the updated graph to recommend a safe route to
the user.

VII. CONCLUSION
In this paper, we investigated graph-based techniques for
context-aware service discovery in IoT networks. We dis-
cussed the role of social relations among the connected
devices in better understanding the network’s structure.
We have also showcased the role of community detection
in shrinking the search space and speeding up the service
discovery process. We have proposed to employ the GNN
algorithm as a novel tool for community detection in social
IoT. We have shown that GNN enables the achievement of
a higher quality clustering compared to conventional com-
munity detection algorithms due to its ability to embed the

nodes’ features and relations simultaneously. GNN will play
an instrumental role in fostering novel IoT-enabled applica-
tions requiring deep network understanding and rapid service
discovery search by representing the devices’ characteris-
tics with simple numerical vectors. This being said, the
quality of the embedding is critical to our approach as the
clustering analysis is highly correlated with the embedding
efficiency, and consequently, creating a better representa-
tion of the nodes results in better performances. Also, the
dynamic nature of the networkwhere nodes frequently appear
and disappear makes the model susceptible to an overall
re-embedding from time to time. In future works, we will
investigate using several GNN-based tools such as link pre-
diction and node classification on large-scale IoT networks
and study their impact on enhancing the service discovery
process while avoiding re-embedding the whole graph when
a change happens to the network. We will also focus on lever-
aging smart city applications by exploiting graph analytic
techniques.
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