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ABSTRACT This paper estimates the multidimensional Gaussian profile parameters from the noisy
measurements in the exponential function’s argument domain. The proposedmethodminimizes the weighted
squared error between the natural logarithm of the model and the logarithm of the normalized input data
with the weights set to the input data values or model values. The proposed method is an iterative method
where the parameters of the covariance matrix and the profile’s peak position are alternatively estimated.
The main advantage of the proposed method is a one-step analytical solution for the parameters of the
covariance matrix and the linear profile scale for the given initial centroid position for arbitrary dimensions.
The profile’s peak position is then updated given the estimated parameters by solving a system of nonlinear
coupled equations using an iterative optimization procedure. Finally, the proposed method in the log domain
is compared with the LS method in the domain of Gaussian profile values, where all profile parameters
are simultaneously estimated using an iterative procedure for solving a system of nonlinear equations using
numerical optimization. The proposed log domain estimation method yields similar results as the numerical
LS method in the value domain for sufficiently high signal-to-noise ratios (SNRs) and narrow regions-of-
interest (ROIs) concerning their precision. However, it converges much faster due to the analytic solution.

INDEX TERMS Multidimensional Gaussian profile fitting, weighted least-squares method, estimation in
the log domain.

I. INTRODUCTION
The Gaussian profiles of various dimensions are widely
applied in many engineering fields. For example, the 1D
Gaussian profile is used in spectroscopy to fit emission or
absorption spectral lines [1], [2], [3]. The 2DGaussian profile
is used in image processing to approximate an Airy disk in the
case of a diffraction-limited imaging system or to approxi-
mate the image blur of the point source caused by different
degradations during the imaging process. Also, it has an
application in astrometry for the identification and tracking of
stellar objects [2], [4], [5]. The 2D and 3D Gaussian profiles
are also applied in PET/CT imaging for image reconstruction
of a volume of interest [6] or microscopy for single-particle
tracking [7].
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In this paper, we propose the iterative method for the
parameter estimation of the Gaussian profile of arbitrary
dimension in the log domain from the data corrupted with
additive noise. Several papers have already dealt with the
estimation of the 1D Gaussian profile parameters in the log
domain from the noisy measurements using the least-squares
(LS) method, where the estimation problem is simplified to
parabola fitting [8], [9], [10]. However, for the multidimen-
sional Gaussian profile, the number of parameters quadrati-
cally increases, and consequently, the estimation complexity.
Moreover, the analytic LS solution for all model parameters
exists only for the 1D case since optimal parameters are
non-linearly coupled for higher dimensionality. The inverse
covariance matrix in the quadratic form and the determinant
of the covariance matrix in the normalization term in front
of exponential additionally complicates the estimation of the
proper linear profile’s scale for higher profile dimensions.
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The original approach proposed in this paper exploits the
fact that minimizing the weighted sum of squared residuals
in the log domain concerning the parameters of the inverse
covariance matrix and one additional unknown, which is the
residual vertical shift of the log target, yields a system of lin-
ear equations with the one-step analytical solution given the
initial profile’s peak position. However, minimizing the same
objective function concerning the remaining parameters, i.e.,
the profile’s peak position, yields a system of nonlinear equa-
tions that require an iterative optimization procedure given
the previously analytically estimated parameters. Therefore,
to reduce the computational costs and speed up the estimation
of the multidimensional Gaussian profile parameters, we pro-
posed a two-stage weighted least-squares (WLS) method
in the log domain that combines both the analytical and
iterative approaches described above. These two stages are
iteratively exchanged depending on the required accuracy, but
the method usually converges in only a few iterations.

The proposed method’s accuracy and complexity are com-
pared with the numerical LS method in the domain of values,
where all profile parameters are estimated simultaneously.
In addition, the 2D Gaussian profile parameters are estimated
from data corrupted with additive noise, and the results are
directly compared with those previously published in [11] for
conventional value domain estimation.

The estimation weights were introduced to ensure that
the reduction of weighted squared error in the log domain
simultaneously reduces the sum of squared errors in the
domain of values and two types are considered: model-driven
or input data-driven estimation weights. In addition, we have
also analyzed the influence of negative input samples and
the difference in the informativeness of input data depending
on the chosen size of the estimation domain, also called
region-of-interest (ROI), on the accuracy of the model esti-
mation in the log domain as a function of the input noise
level.

II. RELATED WORK
There are a few approaches to estimating the Gaussian
profile’s parameters from the noisy data depending on the
required precision, implementation complexity, and prior
knowledge of some parameters or noise statistics [7]. Two
approaches considering the estimation domain are the esti-
mation in the domain of values or the domain of exponential
function’s argument.

The simplest method in the domain of values is the fast
and non-iterative method of moments. The first moment cal-
culates the expected peak location while the second central
moment yields the expected profile’s variances [12], [13].
Disadvantages of themoment-basedmethods are the sensitiv-
ity to noise and selected ROI and a bias with underestimated
profile variances. However, this method can be applied in
real-time applications such as particle tracking [14].

The second group of estimation methods consists of itera-
tive methods that search for optimal profile parameters either

in the least-squares (LS) or maximum likelihood (ML) sense.
Both approaches require solving an overdetermined system of
nonlinear equations using some of the iterative optimization
techniques such as the quasi-Newton method [15], downhill
simplex method [14], [16], and Levenberg–Marquardt algo-
rithm [17], [18].

The commonly used LS method in the value domain min-
imizes the sum of squared residuals between the observa-
tions and the fitted model values [19]. However, it has high
computational costs, does not guarantee the optimal solution,
and highly depends on the initial guess of model parameters.
The modified and more robust version of the least squares
method for fitting a multidimensional Gaussian function was
proposed in [20] where the regularization term that measures
the closeness of the observations and the Gaussian function
using the Kullback-Leibler divergence [21] was added.

On the other hand, the optimal solution can be searched in
the ML sense wondering which parameters are most likely to
yield the observed data. Moreover, unlikely the LS method,
theML estimation requires prior knowledge of noise distribu-
tion. Hagen et al. [22], [23] proposed theML estimation of 1D
and 2D Gaussian profile parameters from the data corrupted
with additive Gaussian noise. Also, they provided analytical
gradients and Hessian matrix of log-likelihood function and
used a Newton method for parameter update. Additionally,
they provided analytical expressions for estimated parameter
variances by using the Cramer-Rao bound and inverting the
Fisher information matrix. Namely, the ML estimate is unbi-
ased and achieves the Cramer-Rao lower bound but requires
many input samples.

The estimation can be transformed to the argument domain
by taking the logarithm of the observed data and exponential
function of the model (profile), thus avoiding the nonlinear
optimization and simplifying the estimation problem to poly-
nomial fitting. Caruana et al. [8] proposed a fast algorithm
for the 1D Gaussian fitting using the LS method in the log
domain by solving the overdetermined system of linear equa-
tions. However, despite the high speed of the proposed non-
iterative method, the method’s accuracy is strongly reduced
in the presence of additive noise. Namely, the ratio of the
noise variance and the squared profile value occurs in the
expectation of the quadratic error in the log domain; conse-
quently, the small profile values can significantly increase the
total error. The loss of precision was especially emphasized at
wide ROIs far from the profile’s peak position, where additive
noise and small profile values dominate. Guo [9] proposed
the WLS estimation in the log domain with weights equal
to Gaussian profile values to account for the influence of
additive noise. Such weighting yields the expectation of the
quadratic error independent of the Gaussian profile values
and reduces the method’s sensitivity to additive noise. Since
the actual profile values were unknown, the input data values
were used to estimate ideal weights. With the thresholding
of small values, the method becomes even more precise.
Additionally, in the case of long-tailed contamination, the
method degrades significantly since the approximation of
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error function with only the first term of the Taylor series is
insufficient on such wide ROIs where the difference between
the actual profile value and observation can be considerable.
Guo [9] introduced the iterative procedure using the esti-
mated model values from the last iteration as a weight for
the next iteration to solve the problem of long-tailed noise
contamination. Al-Nahal et al. [10] proposed a fast, accurate,
and separable method for 1D Gaussian fitting in the log
domain where the direct formula for the profile’s standard
deviation (STD) is derived by equating the total area under
the Gaussian function obtained numerically and Q-function
properties. At the same time, the remaining two parameters
were calculated the same as in Guo’s method. An iterative
procedure is further introduced to solve the problem of long-
tailed noise.

Another approach that avoids iterative procedure and trans-
forms the nonlinear least-squares fitting into a standard linear
least-squares fitting was proposed by Roonizi [24], which
uses differentiation and integration and assumes that the
Gaussian function is placed on the polynomial background.
The method suffers from accumulated noise error from the
numerical integration process whichwas solved in [25]. How-
ever, both methods are proposed only for the case of 1D
Gaussian.

Anthony et al. [16] estimated the parameters of the 2D
Gaussian profile in the log domain, but only the uncorre-
lated 2D Gaussian profile was considered. Furthermore, the
influence of noise was neglected, and it was assumed that the
background was removed.

This paper proposes the iterative method for the general-
izedmultidimensional Gaussian profile fitting using theWLS
method in the log domain. The method analytically estimates
all remaining profile parameters, including the covariance
matrix and the linear scale for the Gaussian profile of arbi-
trary dimension for a priorly known profile’s peak position.
The profile’s peak position is then updated, given the pre-
viously estimated parameters. Moreover, the iterative proce-
dure was introduced to increase the method’s accuracy. To the
best of our knowledge, this is the first case of approaching
the estimation of Gaussian profile parameters in this way,
and in addition, a more generalized multidimensional profile
estimation is considered.

III. MULTIDIMENSIONAL GAUSSIAN PROFILE
The multi-dimensional Gaussian profile is a function of the
form

f (x,µ,6,A)

=
A

√
(2π)n|6|

exp
(
−

1
2
(x− µ)T6−1(x− µ)

)
, (1)

where x(i) = [x(i)1 , . . . , x
(i)
n ]T corresponds to the column

vector of the ith input sample positions in n-dimensional
space ∀i ∈ (1,m) where m is the total number of estimation
input samples, A is the unknown linear scale, µ ∈ Rn is the
vector of centroid position, i.e., profile’s peak position and
6 ∈ Sn++ is the n × n covariance matrix that is symmetric,

positive definite, invertible and of full rank. The estima-
tion process involves optimization over all samples enclosed
within the estimation input domain, the so-called, region-of-
interest (ROI).

(x1, . . . , xm, z) are the given empirical input data, where
the set of vectors X = (x1, . . . , xm) defines the domain of
input samples, i.e., ROI, which does not necessarily need to
be defined over a rectangular grid in n-dimensional space,
but it is only assumed that it is bounded and symmetrically
distributed around the expected peak position. The vector
of input sample values z = [z(1), . . . , z(m)]T represents the
discrete sample values of n-dimensional probability density
function (PDF) multiplied by an unknown linear scale A.
Since the input domain is bounded, the PDF should fit the
truncated Gaussian PDF, as described in subsection IV-F.

IV. AN ITERATIVE METHOD FOR GAUSSIAN
PARAMETERS ESTIMATION IN THE ARGUMENT DOMAIN
This section describes the proposed iterative method for fit-
ting a multidimensional Gaussian profile in the log domain.
The illustration of the proposed method is given in Fig. 1. The
main steps involve:

1) Initialization
• Calculation of the spatial coverage factor k that
determines the width of enclosed convex region-
of-interest (ROI) around the profile’s peak position

• Calculation of the initial centroid position µinit
• Normalization of input data z

2) Taking the logarithm of the normalized input data val-
ues ln(zn)

3) Selection of the normalized estimation weights wn as
either initial model or input data-driven weights

4) Minimizing the weighted sum of squared residuals in
the log domain by solving the system of linear equa-
tions to obtain the parameters of the inverse covariance
matrix ˆ6−1 and the residual vertical shift of the log
target ẑ0 given the centroid µ̂

5) Update centroid position µ̂ given the estimated param-
eters 6̂ and ẑ0

6) Update linear scale Â by fitting the obtained model to
input data as follows

Â =
f (X, µ̂, 6̂, 1)T z

f (X, µ̂, 6̂, 1)T f (X, µ̂, 6̂, 1)
(2)

7) Repeat steps 4-6 using the profile’s parameters esti-
mated in the previous iteration until achieving the given
stop criterion, such as convergence or a maximal num-
ber of iterations

The method finds an optimal solution that minimizes the
weighted L2 norm in the log domain concerning noisy input
data. In the noiseless case, mmin =

n(n+1)
2 + 1 input samples

are sufficient to find a unique and universal analytical solution
to the linear system of equations in the first stage of the
proposed method, regardless of chosen estimation weights,
as long as those samples meet certain conditions described
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FIGURE 1. Illustration of the proposed method.

in subsection IV-C. Namely, mmin represents the number of
unknowns including the unique elements of the covariance
matrix 6, i.e., its inverse 6−1, and the residual vertical shift
of the log target z0. The minimal number of input samples
mmin is sufficient to define the model uniquely, but in that
case, noise in input data can strongly affect the accuracy
of the estimated parameters and their variances. Therefore,
a much larger number of input samples is recommended
to reduce the noise variance by averaging and to achieve a
higher estimation accuracy. The proposed method attempts
to iteratively correct the covariance matrix 6 and centroid µ
to obtain a model in each iteration closer to empirical noisy
input data.

Due to the nonlinearity of the exponential function, the
sum of squared errors in the log domain does not have the
same meaning as the sum of squared errors in the domain of
values. Thus, the sum of weighted squared errors is used in
the log domain to obtain results that mimic those obtained by
minimizing the sum of squared errors in the domain of values.
Thereby, the estimation weights can be model-driven or input
data-driven weights.

The advantage of optimization in the domain of argument
is in the fact that the optimal inverse covariance matrix can

be found as an analytical solution to the system of linear
equations with n(n+1)

2 unknowns for a given centroid vector
µ. Moreover, it is even better to extend this linear problem
to the n(n+1)

2 + 1 variables where an additional unknown
is the residual vertical shift of the target in the log domain
z0, thus automatically solving the problem of the unknown
residual scale factor of normalized input data that are not
perfectly normalized. Namely, the initial scale factor Ainit
used for input data normalization is not optimal, and there
is also an unknown determinant of the covariance matrix in
the normalization term in front of the exponential. Ignoring
these two quantities, the scale factor and determinant of the
covariance matrix prevents the transition of the input data to
the log domain, because both quantities cause the inseparable
vertical shift of the log target.

After finding the optimal covariance matrix, 6, and the
residual vertical shift in log domain z0, an additional centroid
correction can be made to find a better solution for the
fixed covariance matrix that will further reduce the weighted
squared error of the argument. Unfortunately, this correction
has no analytical expression because the optimal solution
is defined with n complete the third order polynomials in
variables [µ1 . . . µn]. However, it is possible to find analytical
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gradients of the weighted squared error of the argument for
[µ1 . . . µn], as well as the corresponding Hessian matrix, and
find the optimum using a numerical optimization procedure
that typically converges in two or three iterations. By repeat-
ing the whole procedure with reasonable assumption on the
convergence of such a two-step optimization procedure (alter-
nately 6, then centroid µ), the new model will always be
better than the previous one.

A. DETERMINATION OF ESTIMATION WEIGHTS
Estimating the Gaussian profile parameters in the log domain
by minimizing the sum of weighted squared residuals
requires a properly selected weight function to ensure that
the sum of squared residuals in the domain of values is
minimized as well. It is easily shown that the optimal sample
weight is precisely equal to the noiseless profile value for
the same sample position. The proof of this statement is
given in Appendix A. Such a choice of estimation weights for
weighting the error of the exponential function’s argument is
the best prediction of the error in the exponential function’s
value domain.

Since the ideal Gaussian profile values are usually
unknown, the empirical input sample values can be used as
estimation weights instead of the ideal profile values, but
only for small argument error that consequently yields a
small error in the domain of values. Therefore, this paper
chooses the estimation weights either as input sample values
or initial model values for the same sample positions. We also
analyzed the effects of both types of estimation weights on
estimation accuracy. To regularize the dynamic range of esti-
mated profile parameters, we used normalized input data and,
consequently, the normalized estimation weights, which are

wn = zn, (3)

where zn is the normalized input data column vector.
In the case of model-driven weights, a normalized ini-
tial moment-based model of the form f (X, µ̂init , 6̂init , 1) is
used. Such chosen weights are calculated only once, and
the same weights are used in all iterations of the proposed
method. Normalization of the input data is described in
Subsection IV-F.

B. THE OBJECTIVE FUNCTION
The vector of parameters of the n-dimensional Gaussian pro-
file is

β = [A, 611, 612, . . . , 6nn, µx1 , . . . , µxn ], (4)

which includes the linear scale A, the unique members of
the symmetric covariance matrix 611, 612, . . . , 6nn, and the
profile’s peak position µx1 , . . . , µxn . The unique members
of the symmetric covariance matrix, 611, 612, . . . , 6nn, are
unambiguously defined by the unique members of its sym-
metric inverse, 6−111 , 6

−1
12 , . . . , 6

−1
nn , which occur directly in

the quadratic form of the exponential function’s argument.
For each pixel position x(i) within the selected ROI and its

corresponding normalized value z(i)n , the sample’s error in the
log domain can be calculated as

e(i)arg = ln z(i)n − ln
(
f (x(i),µ,6,A)/A

)
(5)

= ln z(i)n − ln
(

1
√
(2π )n|6|

)
(6)

+
1
2
(x(i) − µ)T6−1(x(i) − µ), ∀i ∈ [1,m]. (7)

If the residual vertical shift of the log target is expressed as
an auxiliary variable z0

z0 = ln
(

1
√
(2π )n|6|

)
, (8)

the sample’s error in the domain of argument becomes

e(i)arg = ln z(i)n − z0 +
1
2
(x(i) − µ)T6−1(x(i) − µ). (9)

The vector of samples’ errors is then the column vector of the
form earg = [e(1)arg, . . . , e

(m)
arg]T . The objective function is the

weighted squared error as follows

D =
m∑
i=1

(w(i)
n e

(i)
arg)

2. (10)

C. DETERMINATION OF THE INVERSE COVARIANCE
MATRIX IN THE LOG DOMAIN
The first stage of the proposed method involves the esti-
mation of the inverse covariance matrix and the auxiliary
variable z0 so the vector of unknown parameters p has the
following form p = [6−111 , 6

−1
12 , . . . , 6

−1
nn , z0]

T . The vector
of unknowns p is calculated by minimizing the objective
function (10) as

p̂ = argmin
p
D(p), (11)

where

e(i)arg = ln z(i)n − z0 +
1
2
(x(i) − µ̂)T6−1(x(i) − µ̂). (12)

The partial derivatives of the objective function (10) consid-
ering vector p given an initial centroid µ̂ yield a system of
linear equations with a one-step solution. The gradients of the
objective function for the vector of unknowns p in the matrix
form are

∇D(p) = Ap− b, (13)

where A is the matrix of coefficients and b is the vector of
constant terms. The solution can be found as

p̂ = A−1b. (14)

The matrix of coefficients A is calculated as

A =
m∑
i=1

2 w(i)
n d(i)dT

(i)
, (15)

while vector of constant terms b is

b =
m∑
i=1

−2w(i)
n ln(z(i)n )d(i). (16)
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The auxiliary vector d(i) is the vector of the form

d(i) =
[

dx(i)1,1/2, dx
(i)
1,2, dx

(i)
1,3, · · · , dx

(i)
1,n, (17)

dx(i)2,2/2, dx
(i)
2,3, · · · , dx

(i)
2,n, · · · , (18)

dx(i)n−1,n−1/2, dx
(i)
n−1,n, dx

(i)
n,n/2,−1

]T
, (19)

where dx(i)j = x(i)j −µxj , dx
(i)
r,s = dx(i)r ·dx

(i)
s and the index pairs

(r, s), with 1 ≤ r ≤ n and r ≤ s ≤ n, denote the unique row
and column indices of the inverse covariancematrix elements,
taking into account the symmetry property.

The Hessian matrix of the objective function (10) for
the vector of unknowns p is equal to the matrix of coeffi-
cients A. According to (15), the matrix A depends only on
the input samples’ positions and corresponding estimation
weights. We use the positive estimation weights according
to (3) and the matrix A is formed as the weighted sum of
sample autocorrelation matrices which are positive semidef-
inite by definition. Consequently, the matrix A, which is also
the Hessian matrix, is positive semidefinite too. Hence, the
solution of the linear system p̂ is the unique and optimal
solution for the global minimum of the quadratic objective
function (10) for the given centroid µ̂ and for the chosen
and fixed estimation weights, provided that A is nonsingular,
i.e., that the Hessian is strictly positive definite. The matrix
A can become singular and the system of linear equations
yields infinitely many solutions only for the exceptional cases
which are: an insufficient number of input samples or their
collinearity relative to the centroid position, resulting in a
non-full rank system. It occurs if the number of input samples
is minimal (mmin) and if their absolute distances from the
profile’s peak position are equal concerning any one of the
n axes (rank(A) < n if |dx(1)j | = |dx

(2)
j | = . . . = |dx

(mmin)
j | =

const, 1 ≤ j ≤ n). In that situation, the positions of all of the
mmin input samples are on a flat hyperplane perpendicular to
one of the n axes, either left (−const) or right (+const) of
the peak position. Therefore, in the case of a regular grid,
the geometric centre of those mmin input samples must not
coincide with the profile’s peak position since, in that case,
all input samples are equidistant from the peak position for all
axes. In all other cases, the matrix A and the Hessian matrix
are positive definite, ensuring that the obtained solution for
the inverse covariance matrix and the residual vertical shift
of the log-target is unique and represents the global minimum
of the objective function for the given centroid position and
the chosen fixed estimation weights.

Finally, the optimal solution for the covariance matrix 6̂ is
found by inverting ˆ6−1 whose unique elements are contained
in p̂ by imposing the symmetry of the inverse. Thus, the
solution 6̂ will also be a symmetric matrix, but to be a valid
covariancematrix, it also has to be positive semidefinite. The-
oretically, the estimated covariance matrix 6̂ can have some
of the axes (eigenvalues) of zero length, thus indicating that
the given Gaussian is actually of a lower dimension than the
dimension of the input vectors, n. The condition for positive
semidefiniteness of 6̂ also requires positive definiteness of

ˆ6−1, because if any eigenvalue of ˆ6−1 is negative, then its
reciprocal value, which is the eigenvalue of 6̂, will also be
negative. Also, none of the eigenvalues of ˆ6−1 must be zero
since, in that case, ˆ6−1 would be singular, and would not
have an inverse. Since the solution for p̂ in (14) depends on
the input data (sample positions, their values, and weights),
the estimated matrices ˆ6−1 and 6̂ might become invalid for
estimation from noisy data. Experiments have shown that
such exceptions occur only for very low SNRs and for a small
number of input samples k , which is comparable with the
number of unknowns.

D. DETERMINATION OF IMPROVED CENTROID
The second step is the calculation of the improved centroid
µ̂ using the estimated inverse covariance matrix 6̂

−1
which

will further reduce the summary weighted squared error of
the argument. The centroid was calculated by minimizing the
same objective function (10) as

µ̂ = argmin
µ
D(µ), (20)

where

e(i)arg = ln z(i)n − ẑ0 +
1
2
(x(i) − µ)T 6̂

−1
(x(i) − µ). (21)

If earg is the column vector of errors of the exponential
function’s argument and wn is the column vector of normal-
ized estimation weights with m elements that correspond to
the number of input samples, then the expressions for gradi-
ents and Hessian matrix of the objective function concerning
the centroid position have the following matrix forms,

∇D(µ) = −26−1
T
LTWnearg, (22)

H(D(µ)) = 2(6−1
T
LTWnL6−1 + wT

n earg6
−1), (23)

where Wn = diag(wn), and dxj = (dx(1)j , . . . , dx(m)j )T

denotes the column vector of distances of allm input samples
from the given initial centroid for the jth dimension, and
L = (dx1, . . . ,dxn) is the matrix of such column vectors for
all of n dimensions.

E. UPDATE LINEAR SCALE
The previously estimated linear scale Â is updated either
from the solution of the system of linear equations (14)
by using the estimated 6̂ and ẑ0 or by fitting the obtained
normalizedmodel to input data in the value domain according
to (2) using the estimated 6̂ and µ̂.
In the first case, the previously estimated linear scale is

multiplied by the residual scale calculated from (8) to obtain
the updated scale of the form

Â = Â exp (ẑ0)
√
(2π )n|6̂|. (24)

However, it is easier andmore accurate to update a linear scale
in the value domain according to (2), but adding the residual
vertical shift of the log target z0 to the set of unknowns is
necessary to decouple the scale and shape of the Gaussian
profile.
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F. INITIALIZATION
Applying the proposed method requires an appropriate nor-
malization of the input data values and the initial estimate of
centroid position.

The ROI used for model estimation can be defined as a
region enclosed within an arbitrarily rotated hyper-ellipsoid
in n-dimensional space centered around the profile’s peak
position, where the chosen (or available) domain of input
samples determines the ROI width. To simplify the domain
selection for a multidimensional case and to describe it
using a single scalar width parameter, it is convenient to
bound it using the chosen maximumMahalanobis distance of
samples’ positions to the centroid. Regrettably, the profile’s
parameters must be known (centroid and covariance) to find
these distances. However, since the values of the samples are
known, and these are assumed to belong to the underlying
Gaussian profile, simple thresholding of sample values can
be used to extract those expected to be within the desired
ROI. For example, if the maximum value of input samples is
max(z), then the chosen marginal threshold zedge will extract
only those samples whoseMahalanobis distance to the profile
center is k at most, where k equals

k =
√
−2 log (zedge/max(z)), (25)

Such selection is invariant concerning the unknown linear
scale A since it is canceled in the quotient in (25). Moreover,
since input sample values may be contaminated with noise,
the binary domain matrix obtained through thresholding can
be further refined using morphological smoothing to ensure
it is convex and homogeneous in all dimensions.

After extracting only the samples within the chosen
bounded hyper-ellipsoidal ROI, these samples approximate
the truncated multidimensional Gaussian profile, which is
truncated at Mahalanobis distance of k . The total probability
of all samples within such a truncated region is known to be
erf (k/

√
2), which can be used to normalize the input data

(i.e., to remove the unknown scale Ainit ).
In the case of uniformly sampled ROI, the initial scale fac-

tor Ainit can be calculated as a quotient of the total probability
under the n-dimensional histogram of input data and the total
probability of the truncated Gaussian profile as

Ainit =

∑
z · δx1 · .. · δxn
erf ( k

√
2
)

, (26)

where δxj denotes the distance between neighboring samples
for the jth axis in n-dimensional space in the case of regularly
and uniformly sampled ROI.

Therefore, the input data values z are normalized according
to

zn =
z · δx1 · .. · δxn

Ainit
=

z · erf ( k
√
2
)∑

z
, (27)

where zn represents the normalized n-dimensional histogram,
approximating the regularly sampled Gaussian profile trun-
cated at maximal Mahalanobis distance k .

The initial centroid can be determined by any method
known in the literature, but the simplest case of centroid
determination using the method of moments in the domain
of values is presented below. The first moment yields the
expected centroid, i.e., the profile’s peak position, along the
xj-axis as

µxj =

∑m
i=1 x

(i)
j z

(i)
n∑m

i=1 z
(i)
n

, (28)

where the denominator represents the total probability within
the enclosed input region of truncated Gaussian, m is the
number of input samples within the ROI, and j is the notation
of the axis in n-dimensional space (j ∈ [1, n]).
In the case of using the normalized moment-based model

of the form f1 = f (X, µ̂1, 6̂1, Â)/Â = f (X, µ̂1, 6̂1, 1)
as estimation weights, the corresponding covariance matrix
has to be calculated as well. The second moment yields the
variances that form the covariance matrix as follows:

6rr = σ
2
r =

m∑
i=1

z(i)n (x(i)r − µxr )
2, (29)

6rs = σrσsρrs =

m∑
i=1

z(i)n (x(i)r − µxr )(x
(i)
s − µxs ), (30)

where σr and σs denotes the profile’s STDs for the r and
s axes and ρrs ∈ [−1, 1] is the Pearson product-moment
correlation coefficient of r and s. Since the Gaussian profile
is truncated at the maximal Mahalanobis distance k , the cal-
culated profile’s STDs have to be additionally scaled using
the following expression

σtrunc = σ/

√√√√1−
k exp(−k2/2)√

π
2 erf (

k
√
2
)

(31)

Additionally, the optimal scale factor can be calculated by
fitting the obtained model to empirical data as the ordinary
LS estimate in a simple linear regression model as

Â1 =
fT1 z

fT1 f1
, (32)

where the numerator in (32) represents the sample covariance
between the initial model and input data values, while the
denominator represents the sample variance of the estimated
model.

V. EXPERIMENTS AND RESULTS
This section consists of two main parts. In the first part,
the parameters of the 3D Gaussian profile were estimated
analytically for a given actual centroid position, comparing
the results with other methods. In the second part, the 2D
Gaussian profile was fitted to the noisy data by using the
proposed iterative method, and an extensive analysis of the
iterative method’s accuracy, complexity, and convergence
was made.
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A. 3D GAUSSIAN PROFILE FITTING FOR A GIVEN
CENTROID
To demonstrate the accuracy and the speed of the proposed
method, we estimated the parameters of the 3D Gaussian
profile from the synthesized noiseless data and data contam-
inated with additive Gaussian noise by using the proposed
method and compared the results with the results of the com-
monly used method of moments [13], LS method [18], [26],
[27] and ML method [23]. Two examples of 3D Gaussian
fitting to the noisy data using the proposed method are shown
in Fig. 2.

To emphasize the method’s speed and to easily compare it
with the mentioned methods, we fixed the centroid position
and measured the accuracy and the execution time for estima-
tion of all other profile parameters: the covariance matrix and
the linear scale. The experiments were executed on a system
with Intel(R) Core(TM) i5-7200U CPU@ 2.5 GHz and 8 GB
of RAM, with MATLAB implementation of all methods.
The solution of the method of moments was provided as an
initial guess for the LS and ML methods which minimize the
objective function using the iterative optimization procedure.
The optimization was performed using the native MATLAB
fminunc solver without specified analytical gradients. The
maximum number of iterations was set to 50, while the
optimality tolerance and the current point tolerance were set
to 10−7.

As a measure of accuracy, the total modeling error was
calculated according to the following formula,

etotal = 10 log10

(∑
∀i∈eval

(
f (x(i), β̂)− f (x(i),β)

)2
∑
∀i∈eval f (x(i),β)2

)
,

(33)

where x(i) represents the position of the ith sample on the
arbitrary evaluation grid eval, f (x(i), β̂) represents the esti-
mated model value and f (x(i),β) represents the given actual
model value for the same sample position. The total modeling
error represents the sum of the squared residuals between
the estimated and given model over the same evaluation grid
and therefore, indirectly aggregates the accuracy of all model
parameters.

For experimental purposes, to obtain the synthetic noisy
measurements, the profile with the given parameters was
firstly synthesized and then the additive noise with the appro-
priate STD σn was added to the profile to ensure the desired
SNR within the ROI. In this case, the SNR was defined as
PSNR according to the following formula

SNRdB = 20 log10
A/
√
(2π )n|6|
σn

. (34)

Fig. 2 illustrates the estimation of the given 3D Gaussian
profile using the proposed method. Its actual parameters in
the uncorrelated form are

[A, λ1, λ2, λ3, θ1, θ2, θ3] = [1000, 3, 2, 1, π/3, π/4, π/6],

FIGURE 2. Examples of 3D Gaussian fitting results in 3D and 2D views
using the proposed method for a given centroid. Estimation was done
from m = 70 input samples with noise level of SNRdB = 30. Estimated
profile parameters are: the linear scale Â, the semiaxes widths
(λ̂1, λ̂2, λ̂3), and the rotation angles (θ̂1, θ̂2, θ̂3). The fitted 3-D surfaces
represent the points where the estimated model is equal to the given
model value at k = 1, which is f = A exp(−1/2). The blue dots represent
only the input samples’ positions but not their values (due to the
limitation of the 3D example visualization).

where λ1, λ2 and λ3 denote the semiaxes widths, θ1, θ2, θ3
denote the Euler rotation angles and A is the linear scale
factor. The centroid position was fixed to µ = [0, 0, 0] and
passed as input to all estimation methods. The actual profile’s
parameters yield the following rotation matrix R

R = Rz(θ1)Ry(θ2)Rx(θ3) =

 0.3536 −0.5732 0.7392
0.6124 0.7392 0.2803
−0.7071 0.3536 0.6124

 ,
and the corresponding covariance matrix 6

6 = R

λ21 0 0
0 λ22 0
0 0 λ23

R′ =

 2.9858 0.4609 −2.6080
0.4609 5.6392 −2.6801
−2.6080 −2.6801 5.3750

 .
Finally, the vector of the actual profile’s parameters can be
expressed as

β = [A, 611, 612, 613, 622, 623, 633] = [1000, 2.9858,

0.4609,−2.6080, 5.6392,−2.6801, 5.3750].

The proposed method estimated the unique terms of the
covariance matrix by solving the system of linear equa-
tions (14) and inverting the obtained solution, while the linear
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scale factor was calculated from the estimated additional
unknown z0 as Â = exp (ẑ0)

√
(2π )3|6̂|, thus avoiding the

need for initialization. In the noiseless case, the unit estima-
tion weights were used, while for the estimation from the
noisy data, the estimation weights were fixed to input sample
values.

To compare the estimation results, the parameters of
the given profile were estimated for different numbers of
input samples (m = {7, 70, 7000}) and different SNRs
(SNRdB = {20, 30, 40, 50, 60, 70, 80}). The Monte Carlo
simulation with 1000 trials was performed for each com-
bination of those parameters, including the noiseless case.
In each trial, the input samples were randomly picked within
convex ROI determined with maximal Mahalanobis distance
k = 2 from the actual centroid position. The evaluation region
was selected as uniformly sampled ROI enclosed within
Mahalanobis distance k = 3 with the step size of 0.1 in
each direction and is defined by the givenmodel’s parameters.
For the same 3D example, for SNRdB = 40, the estimated
parameters from 70 random input samples using the proposed
method in one trial were

β̂ = [Â, 6̂11, 6̂12, 6̂13, 6̂22, 6̂23, 6̂33] = [1004.5, 3.0018,

0.4664,−2.6003, 5.6972,−2.6807, 5.3330]

with the total modeling error etotal = −42.8741dB.
The solution of the method of moments was provided as an

initial guess for LS and ML methods. Since the objective of
the ML method assumes the presence of stochastic additive
Gaussian noise, in the noiseless case, σn = 10−4 was passed
as an input to the optimization procedure to mimic the almost
ideal measurements (SNRdB = 100). In the case of noisy
measurements, the considered numbers of input sampleswere
only 70 and 7000 since, in that case, the minimum number of
input samples which corresponds to the number of unknowns
was insufficient for a valid solution (for the 3D Gaussian
with the given centroid position, the number of unknowns is
7). The mean execution times and total modeling errors for
different numbers of input samples for the noiseless case and
for SNRdB = 40 are given in Table 1. The trends of mean
total modeling errors and execution times for different SNRs
and numbers of input samples are shown in Fig. 3.
In the noiseless case, the proposed method finds the opti-

mal (ideal) solution of all seven unknowns from only seven
randomly positioned input samples with average modeling
error of −255dB for 1000 trials (etotal = −255.58dB,m =
7)). For such a small number of input samples, the LS and
ML estimates are inaccurate due to the bad initial guess
obtained by themethod ofmoments. The LS andMLmethods
also converge to the optimal solution in the noiseless case
for a larger number of input samples (m = 70 and m =
7000), but their speed and accuracy highly depend on the
initial guess. The method of moments has poor accuracy
(etotal = −15.31dB,m = 7000) since it underestimates
all parameters. In the estimation from noisy measurements,
the LS and the ML methods behave similarly considering

FIGURE 3. Comparison of the speed and the accuracy of the following
methods: proposed method, method of moments, LS method, and ML
method.

the accuracy since they yield the same optimal solution for
the case of additive Gaussian noise contamination, as can
be seen in Fig. 3c and Fig. 3d. The 100-fold increase in the
number of input samples from 70 to 7000 caused the 20dB
increase in the accuracy of the LS and ML methods due to
averaging, as expected. The proposed method follows the
trends of LS and ML methods concerning accuracy, except
for very low SNRs (20dB) where the approximation of the
exponential functionwith the first term of the Taylor series for
estimation weights determination in the argument domain is
insufficient. However, the proposed method requires at least
10 times less time for calculation of the covariance matrix
and linear amplitude scale than LS and ML methods yielding
comparable estimates without prior knowledge. Fig.3a and
Fig.3b show that the mean execution time of the proposed
method is comparable with the mean execution time of the
method of moments since both methods do not use the iter-
ative procedure and find solution analytically. Both methods
are almost up to 100 times faster than the LS method for the
smaller number of input samples (70) and up to 10 times for
the larger number of input samples according to Table 1. The
LS and ML methods have a similar mean execution time for
the small number of input samples, but with the increasing
number of samples, the ML method becomes slower than the
LS method, as shown in Fig. 3b.

To sum up, the proposed method is much faster than
the commonly used LS and ML methods and has a mean
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TABLE 1. The mean total modeling errors in dB and the mean execution times in seconds for the estimation of the 3D Gaussian profile given the actual
centroid position.

execution time comparable with the fastest method of
moments. Thereby, it yields the estimate of almost the same
accuracy as the LS and ML methods except for very low
SNRs.

B. ITERATIVE METHOD ACCURACY
In the second experiment, the parameters of the rotationally
symmetric 2D Gaussian profile were estimated from noisy
data using the proposedmethod to verify its accuracy. In addi-
tion, the results are compared with those previously published
in [11], where the same 2D Gaussian profile was estimated in
the value domain using the numerical LS method. Although
wefitted the 2DGaussian profile, the proposedmethod can be
applied to estimate the Gaussian profile of arbitrary dimen-
sions and arbitrary shapes, as was demonstrated in the 3D
experiment.

In [11], it was shown that the accuracy of the LS method
in the estimation of the 2D Gaussian parameters from data
corrupted with additive noise varies for different ROI widths
as the consequence of the difference in the informativeness of
the input data, i.e., the difference in the differential entropy of
the input data. The maximal differential entropy is obtained
when the Gaussian profile is truncated at Mahalanobis dis-
tance k = 2. For other non-optimal ROI widths, the reduction
of differential entropy compared to the optimal case for k = 2
was compensated by the proportional reduction of the given
noise level. The difference in differential entropy of the input
data precisely predicts a decrease in the LS method accuracy
for different ROI widths in the value domain. We performed
the same experiments in this paper and re-applied the data
entropy compensation.

In addition to differential entropy, we also analyzed the
influence of negative samples on the method’s accuracy since
it is necessary to handle negative input sample values before
the log transformation. Therefore, the probability of nega-
tive samples when a Gaussian profile is contaminated with
additive noise was derived and given in Appendix B. The
total number of input samples was increased in proportion
to the predicted percentage of negative samples for the given
ROI width and SNR to eliminate the loss of method accuracy
due to the occurrence of negative samples that alone cannot
participate in the estimation in the log domain. Negative
samples were either set to eps = 2−52 and logarithmized or
simply removed from the input data and the estimation pro-
cess. However, the compensation of negative samples did not

significantly improve the accuracy of the proposed method
for the ROI widths considered in this paper.

Furthermore, two types of estimation weights were con-
sidered and compared. In the first case, the weights in the
objective function (10) were the values of the input sam-
ples, while, in the second case, the weights were selected as
the initial moment-based model values for the same sample
positions.

Two experiments were made considering circular ROI
sampling: random sampling with a fixed number of input
samples or uniform sampling with a fixed density of input
samples. In each experiment, the total number of performed
test cases was 16, depending on the input parameters given in
Table 2. In each test case, the Monte Carlo simulation with
50 trials was performed for all Mahalanobis distances k from
the set k = {0.5, 1, 1.5, 2, 2.5, 3} and for all given SNRs
from the set SNRdB = {20, 40, 60, 80}. As an evaluation grid,
we used a uniformly sampled circular region of fixed width
r = 3σ , where σ = σ1 = σ2 is the profile’s STD with equal
x and y spacing of σ/10.

In both experiments, the same six parameters of the speci-
fied 2DGaussian profile were estimated from noisy measure-
ments: profile’s STDs σ1, σ2, the correlation coefficient ρ12,
the profile’s peak positionµ = [µx1 , µx2 ], and the linear pro-
file’s scale A. The given profile parameters in the correlated
form were [A, σ1, σ2, ρ12, µx1 , µx2 ] = [100, 1, 1, 0, 0, 0],
i.e., β = [A, 611, 612, 622, µx1 , µx2 ] = [100, 1, 0, 1, 0, 0].
In the case of compensation of differential entropy reduction
compared to the nominal case for k = 2, the noise STD cal-
culated from (34) was reduced according to the formula [11]

σnreduced = σn · 10
(1hzdB/20), (35)

where 1hzdB denotes the reduction of differential entropy in
dB for the chosen factor k .

TABLE 2. Input parameters combined in experiments.
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1) THE FIXED NUMBER OF INPUT SAMPLES
In the first experiment, the estimation input samples were
randomly picked within circular ROIs, and their number was
fixed for all ROI widths. The number of input samples was
chosen as m1 = 10000 or m2 = 100. Thus, the total number
of test cases in this experiment was 32, considering all combi-
nations of input parameters in Table 2. The comparison of the
mean total modeling errors averaged over 50 trials of the LS
method in the domain of values and the proposed method in
the argument domain are shown in Fig. 4. As shown in [11],
by compensating the differential entropy reduction, compared
to the nominal optimal case for k = 2, the efficiency of the
LS method in the domain of values became invariable of ROI
widths for each given SNR (flat dashed lines). Additionally,
as expected, the 100-fold increase in the number of ran-
dom input samples increases the accuracy of the LS method
by 20 dB (10 log10(m1/m2)) due to averaging, which effec-
tively reduces the noise level and, therefore, improves model
accuracy.

The accuracy of the proposed argument domain method
depends on the selected combination of input parameters
used in each test case. The results of a few represen-
tative test cases are shown in Fig. 4 where differential
entropy reduction was compensated, and the compensa-
tion of the predicted number of negative samples was not
applied.

As shown in Fig. 4, the accuracy of the proposed method is
smaller than the LS method in the value domain only for very
low SNR ratios and extensive ROI widths. For sufficiently
high SNR ratios and narrower ROIs, the efficiency of the pro-
posed method is practically identical to the efficiency of the
LS method in the value domain. In Figs. 4a and 4b, the input
sample values are used as estimation weights in the objective
function (10), while in Figs. 4c- 4f the initial model values
are used as estimation weights. When input sample values
are utilized as estimation weights, both methods’ mean total
modeling errors are almost the same whether negative sam-
ples are removed before estimation or set to eps. However, for
the case of using initial model values as weights, the results of
the proposedmethod are closer to the results of the LSmethod
in the value domain, but only if negative samples are removed
from the estimation process (Figs. 4c and 4d). The largest
deviation in the accuracy of the proposed method compared
to the LS method in the value domain is observed in the case
of replacing negative samples with epswhen the initial model
values were used as weights, especially for low SNR andwide
ROI (SNR = 20dB, k = 3) as Figs. 4e and 4f show.Addition-
ally, in Figs. 4a, 4c and 4e is shown that a 100-fold increase in
the number of input samples does not increase the estimation
accuracy by 20 dB on wide ROIs and low SNRs. The causes
of such behavior are inappropriate handling of negative sam-
ples and inappropriate weight selection since the assump-
tion that the exponential function can be approximated with
the first term of the Taylor series holds only for small
errors.

In Fig. 4 can be seen that the relative degradation for low
SNRs (20 dB) and wide ROIs is not the same for m1 =

10000 as for m2 = 100 but increases more for the larger
m and less for the small m. However, it is simply a conse-
quence of direct bias in the input data which are falsified,
so no averaging can help. The averaging can only attenuate a
stochastic error and not a consistent one, so the error is almost
the same in absolute terms for both cases (m1 = 10000 and
m2 = 100 when SNR = 20 dB and ROI = 3). It can
be concluded that increasing the number of input samples
reduces the model error only for very narrow ROIs when the
percentage of such negative samples is tiny, so in fact, the
contribution of stochastic noise is effectively attenuated.With
very low SNRs, the initial moment-basedmodelmight also be
inaccurate. Using such amodel for weights and even throwing
out negative samples results in a model denoted with the red
line that is not parallel to green, blue, and black but instead
increases incrementally (SNR = 20 dB).

2) THE FIXED DENSITY OF INPUT SAMPLES
The circular ROI was uniformly sampled in the second
experiment, so the number of input samples was variable
for different ROI widths depending on the ratio between
the profile’s STD and the pixel size. Since the STD of the
given 2D Gaussian profile was σ1 = σ2 = 1, the selected
pixel width was chosen as δx1 = δx2 = 0.25 to ensure
the sufficient number of input samples for estimation of
all given profile’s parameters even for the narrowest ROI
(k = 0.5), as it was described in [11]. From the ratio of
the ROI size and individual pixel size, it can be concluded
that the number of input samples increases quadratically with
the factor of Mahalanobis distance k (m = PROI/Ppix =
k2σ1σ2π/(δx1δx2) so m1/m2 = k21/k

2
2 ) so it is expected

that the total modeling error decreases with the increase of
ROI width as 10 log10(m1/m2) = 10 log10(k

2
1/k

2
2 ). Since

the minimal ROI width considered in this experiment is for
k = 0.5 while the maximal for k = 3, the number of input
samples increases 36-fold, and consequently, the expected
reduction of the total modeling error as a result of ROI size
increase should be 15.56 dB. The mean total modeling errors
are shown in Fig. 5. Again, only some of the 16 test cases
are shown considering all input parameters in Table 2, while
the number of input samples is directly determined by k . The
results show that the proposed method’s accuracy follows the
LS method’s accuracy trend in the value domain when using
initial model values as weights and by removing negative
samples. The results are worse for the case when input sample
values are used as weights for low SNRs (20 dB) and wide
ROIs. However, both methods achieve the same accuracy in
cases of high SNRs.

C. DISCUSSION
This subsection analyses the influence of each input param-
eter given in Table 2 on the estimation accuracy of the pro-
posed method. In the case of using input sample values as
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FIGURE 4. Comparison of the mean total modeling errors in dB of the LS
method in the value domain (dashed lines) and the proposed method in
the argument domain (solid lines) in the case of random sampling with
fixed number of input samples for different ROI widths determined by the
factor k and different SNRs: 20 dB (red), 40 dB (green), 60 dB (blue), and
80 dB (black). f1 denotes a vector of initial model values, while zn
denotes input sample values.

estimation weights, the weighted squared residual error is
the same whether the negative samples are removed or set
to eps. Since the squared residual error between the log of
eps and the log of model value is further weighted with eps2,
it does not contribute to the total error sum, thus achieving the
same effect as the negative sample removal. However, when
the model values are used as estimation weights in the log
domain, setting negative samples to eps or removing them
yields different estimation results. Namely, the log transform
of such a small value (eps) yields a significantly negative
value. The initial moment-based model is sensitive to noise
and imprecise at wide ROIs where negative samples typi-
cally occur and yields falsely and potentially more enormous

FIGURE 5. Comparison of the mean total modeling errors in dB of the LS
method in the value domain (dashed lines) and the proposed method in
the argument domain (solid lines) in the case of uniform sampling and a
variable number of input samples for different ROI widths determined by
the factor k and different SNRs: 20 dB (red), 40 dB (green), 60 dB (blue),
and 80 dB (black).

model values at those positions than eps. When such a model
value is used as a weight at a place of negative input sample
set to eps, it can significantly degrade the estimation since
such weight is false and arbitrary. This can be observed only
for the lowest SNR ratio of 20dBwhen such negative samples
predominantly occur and, of course, only for the widest ROIs.
For narrower ROIs, the probability of negative samples is
lower, even for such low SNRs, so it is much better to remove
negative samples from the estimation process and avoid the
problems of weight selection. Therefore, using the initial
model values as weights yields better results only if negative
samples are removed, and SNR is sufficiently high.

In addition, the experimental results show that the contri-
bution of differential entropy compensation is not ideal. For
example, in the case of a fixed number of input samples,
an alignment of the error curves similar to the estimation in
the value domain is achieved, but these curves are still not
wholly flat across all ROI widths.

Noise level compensation performed by predicting the
expected number of negative samples for a given width and
SNR also does not significantly improve the estimation accu-
racy in the log domain since these negative samples occur
mainly for very low SNRs and wide ROIs. In these cases, the
problem is not a lack of valid positive samples but rather a
poor approximation of quadratic error in the value domain
by the weighted quadratic error in the argument domain by
using the weights that describe only the first term of Tay-
lor’s series of that approximation. Such simplified weights
are insufficient for considerable errors when measurements
significantly deviate from the given model.

D. ITERATIVE METHOD COMPLEXITY
The complexity of the proposed two-step method in the
argument domain is comparable to the complexity of only
a single iteration of the LS method in the domain of values
that simultaneously estimates all profile parameters using
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Newton’s optimization technique that requires the calculation
of analytical derivatives and Hessian matrix concerning all
profile parameters.

The complexity of both methods is parameterized with
the dimension of the Gaussian profile n and the number of
estimation input samples m. The number of input samples m
must be at least equal to the number of unknowns, which is
of order n2. When the number of input samples is of order
n2, the complexity of both methods in a big O notation is
O(n6). For the number of input samples of order n3 or higher,
the complexity of both methods in a big O notation equals
O(mn4).
Although the complexity of a single iteration is compa-

rable, we have experimentally determined that the proposed
method converges in at most four such iterations since most
of the optimalmodel parameters are found analytically, which
explains the significant advantage of our method.

E. CONVERGENCE OF THE ITERATIVE METHOD
This subsection explains the iterative method convergence
where the centroid and the covariance matrix are updated
alternately. If the given initial centroid is close enough to
the actual solution and if the estimation weights are fixed,
the proposed method’s first step finds a unique solution that
minimizes the objective function by solving a system of linear
equations. The proof of this statement with the description
of exceptions is given in subsection IV-C. In the second step
of the method, we search for a better centroid that gives a
smaller weighted squared error than the centroid from the
previous iteration for the calculated covariance matrix by
solving the system of coupled nonlinear equations. Due to the
minimization criterion itself and the fixed estimation weights,
an iterative optimization procedure such as Newton’s method
returns, in the worst case, the current centroid, and the iter-
ative procedure terminates. In all other situations, the new
centroid will yield a better fit (smaller value of the objective
function), and a new estimation of the covariance matrix and
scale can be performed for the new centroid position that will
further improve the model fit. The method can get stuck in
a local minimum if the initial centroid is very far from the
real solution or if SNR is low but the method’s first step with
the analytical solution and fixed estimation weights ensure
convergence, at least according to the local minimum.

VI. FUTURE WORK
In the case of low SNRs, the initial model can significantly
deviate from the specified model, and using the initial model
weights yields even worse parameter estimates than using
the input data-driven weights. This issue can be approached
by iterating the estimation procedure where the weights in
each iteration are selected as estimated model values from
the previous step. Under the assumption of getting a better
model in each iteration and consequently more appropriate
weights, the updated estimates in each iteration will be closer
to the given model. Such a procedure with adaptive weights
should converge for high SNRs. As noise gradually grows

and SNR reduces, the estimation should still converge and
get a usable solution due to robustness; if the noise does
not become so high, the estimation diverges and becomes
unfeasible. However, the guarantee of convergence is much
more difficult to prove in the case of an iterative procedure
with adaptive weights since in each iteration, in addition to
the model, the optimization criterion also changes. However,
this approach is undoubtedly worth future work.

VII. CONCLUSION
The experimental results show that in the case of high SNRs,
both the WLS method in the log domain and the LS method
in the domain of Gaussian profile values achieve the same
accuracy. Still, the proposed method in the log domain con-
verges faster, especially for the Gaussian profiles of higher
dimensions.

The main advantage of the proposed method is a one-step
solution for the covariance matrix and linear scale for a given
centroid position, thus avoiding the nonlinear optimization
for the estimation of those parameters. For many practi-
cal applications where the initial centroid is already suffi-
ciently accurately determined, only one single iteration of
the proposed algorithm is sufficient to determine all remain-
ing model parameters using the analytical procedure without
the need for further iteration. Experiments showed that in
the case of the 3D Gaussian profile estimation from data
contaminated with additive Gaussian noise, the covariance
matrix and the linear scale were estimated one or even two
orders of magnitude faster using the analytical solution of
the proposed method than using the iterative LS method
in the domain of values. At the same time, for high SNRs
(≥40dB) the proposed method achieved almost the same
total modeling error (with suboptimality of less than 3dB)
without prior knowledge except for the assumed position of
the peek’s center in comparison to the iterative LS method
in the domain of values, which yields an optimal solution for
the case of Gaussian noise contamination. Moreover, experi-
ments showed that such a model could be further improved
by the described correction of the initial centroid through
a maximum of four iterations of this two-step method. For
comparison, numerical optimization procedures in the value
domain require a significantly larger number of iterations
than the proposedmethod to find all model parameters, which
explains the significant advantage of our method. Due to
its rapid convergence, the method can be used in real-time
applications.

The LS method in the domain of values is more accurate
than the proposed WLS method in the case of low SNRs
(≤20 dB) and wide ROIs. The loss of precision of the pro-
posed method is dominantly caused by small profile values
on such wide ROIs that can introduce significant errors in
the log domain when the approximation of the exponential
function with the first term of the Taylor series does not
hold. The proposed method achieves higher accuracy in the
case of model-driven estimation weights, which are selected
as values of the initial, moment-based model. Such selected
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estimation weights are fixed for all iterations of the proposed
method, thus guaranteeing the method’s convergence.

APPENDIX A ESTIMATION WEIGHTS
In this section, we derive the estimation weights that relate the
error of the Gaussian profile argument with the error of the
Gaussian profile value. Let us start with the simplified rela-
tion of the 1D Gaussian profile value y and the corresponding
argument x of the exponential function

y = K exp(x), (36)

where K equals the product of the linear scale A and the nor-
malization term. Let us assume that the argument x equals the
sum of the ideal argument value x0 and added argument error
dx. The question is how this argument error is transmitted to
the domain of values.

The argument error adds the perturbation dy to the ideal
profile value y0, which equals y0 = K exp(x0), so the total
sample value can be expressed as

y = y0 + dy = K exp(x0 + dx) = y0 exp(dx). (37)

The perturbation in the domain of values dy from the above
expression then equals

dy = y0(exp(dx)− 1). (38)

For minor errors dx, the exponential function can be approx-
imated by the first term of Taylor’s series as

exp(dx) ' 1+ dx, (39)

and the final expression for the relation of the exponential
function’s argument error dx and the error of the exponential
function’s value dy equals

dy = y0 dx. (40)

This proves that the optimal sample weight equals the ideal
sample value y0.

APPENDIX B PROBABILITY OF NEGATIVE SAMPLES
Estimating the Gaussian profile parameters in the log domain
assumes that the input estimation samples are positive. This
is because the parameters are estimated from the profile’s val-
ues, usually contaminated with noise. In the case of additive
Gaussian noise of the zero mean and the variance of σ 2

n , the
noise samples can have positive and negative values, and con-
sequently, the sum of signal and noise values can be negative
thus preventing the estimation of the Gaussian parameters
in the log domain. This is the motivation for calculating the
probability that the sum of these random variables, Gaussian
profile value, and additive noise is less than zero. The total
input signal can be written as

Z = Y + X , (41)

where Y is Gaussian profile value as the function of uniform
random variables and X is additive noise. Y is the random
variable that follows a log-normal distribution, as shown

in [11], while X is the random noise of normal distribution.
We are interested in the probability that the sum of these
variables is less than zero, i.e., P(Z < 0). For Z to be less
than z, X must be less than z−Y . The cumulative distribution
function (CDF) of Z can be calculated as

FZ (z) =
∫
∞

−∞

∫ z−y

−∞

fXY (x, y)dxdy. (42)

If X and Y are independent, the CDF of Z can be calculated
as

FZ (z) =
∫
∞

−∞

fY (y)
( ∫ z−y

−∞

fx(x)dx
)
dy. (43)

In our case, z = 0 and the PDF of variables X and Y are

fY (y) =
2
k2y

,A exp(−k2/2) ≤ y ≤ A, (44)

fX (x) =
1

σn
√
2π

exp
−1
2
x2

σ 2
n
, µ = 0 (zero-mean noise),

(45)

while the CDF of normal noise and of total signal Z are

FX (x) =
1
2

(
1+ erf

( x

σn
√
2

))
, (46)

FZ (z) =
∫ A

A exp(−k2/2)
fy(y)

(∫
−y

−∞

fX (x)dx
)
dy (47)

=

∫ A

A exp(−k2/2)
fy(y)Fx(−y)dy (48)

=

∫ A

A exp(−k2/2)
fy(y)

(
1
2

(
1+ erf

(
−y

σn
√
2

)))
dy

(49)

=
1
2
−

1
(2k2σn

√
π )

×

(
2
√
2A 2F2

([1
2
,
1
2

]
,
[3
2
,
3
2

]
,
−A2

2σ 2
n

)
(50)

− 2
√
2A exp

(
−k2

2

)
2F2

×

([1
2
,
1
2

]
,
[3
2
,
3
2

]
,
−A2 exp(−k2)

2σ 2
n

))
(51)

where 2F2 is hypergeometric function. The derived expres-
sion for the CDF of total signal FZ (z) can be used for pre-
dicting the percentage of negative samples depending on the
linear scale A and the maximal Mahalanobis distance k .
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