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ABSTRACT A Cloudlet federation can be beneficial to overcome the latency and resource scarcity
challenges in a cloudlet deployment altogether, as a task can run on a cloudlet within the federation, sharing
resources of member cloudlets. Nonetheless, the cloudlet federation is not context-aware in terms of latency,
so to perform federated learning in cloudlet federation, the selection of a resource-efficient deep learning
model is challenging. Additionally, the accuracy of a deep learning model can be affected if end-user devices
are unreliable and provide incorrect data for training deep learning models at the cloudlets. Thus, resource
and context-aware federated learning solutions are required for accurate and latency-critical applications
such as COVID-19 detection using X-ray images. This paper presents a novel context-aware cloudlet
federated learning solution for COVID-19 detection that monitors the resources of a cloudlet using a broker
thereby minimizing latency without any impact on the accuracy of the deep learning model. Results show
that the proposed model reduces the latency by 5% and increases the accuracy by 5% as compared to the
state-of-the-art conventional federated learning approach.

INDEX TERMS Cloudlet federation, federated learning, edge computing, cloud computing.

I. INTRODUCTION
Cloud computing facilitates resource-limited devices such
as mobile and Internet of Things (IoT) to carry out
resource-intensive tasks on high-end remote servers. Irre-
spective of the numerous benefits provided by cloud com-
puting, the distant cloud has latency limitations for systems
such as smart vehicles and healthcare [1]. To overcome
these limitations, edge computing (EC) based solutions are
proposed that bring computation to closer proximity to the
user thereby eliminating latency and resource scarcity chal-
lenges. Three types of edge architectures are proposed in
the literature namely, mobile edge computing (MEC) [2],

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

cloudlet computing [3], [4], [5], and fog computing. Edge
resources are frequently used to perform Federated Learning
(FL). FL is a decentralized machine learning (ML) approach
that trains centralized deep learning (DL) models locally
from datasets, distributed across multiple user devices [6].
However, cloudlet-based solutions exhibit storage and com-
munication resource scarcity challenges for the training of
DL models [7]. These challenges are inherently resolved
by cloudlet federation [8]. MEC was introduced to resolve
latency limitations, as FL in MEC provides the advantage of
localized model training and uploading the locally updated
model rules to a centralized cloud and fetching aggregated
ML model parameters from the cloud [9]. Using cloud ser-
vices to store, process, and analyze data proves to be advan-
tageous as ample resources are available, however, as the
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size of the ML model grows, specifically for DL models,
provisioning of computational resources becomes difficult.

The problem of latency associated with cloud computing
limits its use for certain applications such as smart vehi-
cles and smart homes. Such scenarios require less than a
few microseconds of response time for real-time communi-
cation [10]. Moreover, provisioning of high bandwidth for
uploading a large amount of data to a cloud is also chal-
lenging [1], [7]. So, cloud computing-based state-of-the-art
conventional federated learning approach (CONFLA) cannot
be used for model training due to these constraints. Hence,
in this work, a Context-Aware Cloudlet Federated Learning
Approach (CACFLA) is presented that addresses the chal-
lenges of latency to run DL models on edge nodes. A shared
DL model is trained at each edge node and upon resource
scarcity issue at any edge node during training, the task is
offloaded to another node in the federation. The training
process is handled using a localized server that keeps track
of clients’ data for neural networks (NN) training. Moreover,
the server keeps track of previously trained models to handle
the bias in the results. The method decreases the latency and
reduces the model convergence time.

A. MOTIVATION AND CONTRIBUTIONS
One of the major reasons for the spread of COVID-19 was
initially the lack or absence of detection kits, their affordabil-
ity, and their sensitivity to hot and humid weather causing
the wrong detection of COVID-19 cases [11]. Most research
studies either focused on the analysis and prediction of
the spread, recovery, and death caused by this novel virus
based on statistics across countries around the world [12]
or its social and emotional effects based on data obtained
from social media [13], [14]. Hence, accurate detection of
COVID-19 was challenging in absence of an automated
mechanism addressing the shortcomings. So, it is imperative
to design a system that could accurately detect a COVID-19
infected person using NN models on X-ray images using FL,
for timely control of the disease [15], [16], [17], [18], [19].
This requires a large number of patient records including eth-
ical and legal considerations around patient confidentiality,
as a centralized server is used to aggregate the patient records.
Moreover, latency is also a major challenge in centralized FL,
therefore, the proposed CACFLA scheme also implements
the same use case. To the best of our knowledge, the use of
cloudlet federation for resolving machine learning problems
has not been reported in the literature so far. The detailed
contributions of this research work are as follows:

• A context-aware cloudlet-based federated learn-
ing approach (CACFLA) is proposed that resolves
compute-intensive DL models.

• CACFLA yields better results in terms of latency as
compared to state-of-the-art CONFLA.

• The best DL model selection method is presented that
yields better results in terms of accuracy and loss,
achieving less convergence time.

This paper is structured as follows. Section II presents
state-of-the-art approaches used for FL and their comparative
analysis. Section III provides the details about implemented
solution and its mathematical model. Section IV elaborates
on the experimental setup and the discussion on the results
followed by Section V which concludes this paper.

II. RELATED WORK
FL at edge proved beneficial in handling challenges faced by
traditional centralized ML solutions. This section classifies
some state-of-the-art solutions for the implementation of FL
at the edge. The objective of this study is to identify FL
solutions that use DL to perform context-aware computing
for classification, prediction, and decision-making on the
user’s datasets. Training is performed either by deep NN
(DNN)model partitioning or by offloading the model to other
resourcefully rich edge nodes in the federation.

A. EXISTING DETECTION APPROACHES FOR COVID-19
BASED ON EDGE COMPUTING
An analysis of COVID-19 detection techniques provided
in [20] shows that radiography-based detection methods
using edge architecture are more effective and give better
accuracy, especially with CT-scan images. In [19], authors
used posteroanterior chest X-ray view (i.e., radiography). The
dataset is passed to the convolutional neural network (CNN)
based DL models for training and COVID-19 detection using
edge architecture. However, in [17] authors have used FL
architecture to identify COVID-19 using CNN models. The
evaluation of edge and FL-based approaches show that FL
performs better than EC for model training and prediction
accuracy. Both approaches used have focused on the reduc-
tion of communication costs during the training process. Pang
et al. [21] propose an FL framework to study the effectiveness
of various prevention city plans to help prevent COVID-19
outbreaks using FL and maintaining data privacy.

1) DATA COMPRESSION AND PROCESSING BASED
FL SOLUTIONS
The authors in [22] discuss the security-related problems and
their solutions when performing ML tasks at the edge of
the network. Moreover, the challenges of storing big data
at a centralized location are also addressed in this work.
This study resolves energy consumption, data integrity, and
confidentiality issues. The proposed architecture consists of
data sampling and compression techniques for low energy
consumption and data privacy as well as security issues. This
reduces transmission requirements and data dimensionality.

The problem of learning bias due to a generalized ML
model training is addressed in [23]. A context-aware local
machine learning approach is proposed for prediction and
decision-making. Regression and evolutional NN are used for
prediction and decision-making, respectively. This approach
is context-aware in terms of input data based on which the
ML model is selected for processing. The system architec-
ture consists of regression-based NN for prediction and a
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control module to configure and monitor context changes.
The data size of the local node and network parameters are
also considered to identify the context. The context-aware
best model is selected based on absolute mean error and cor-
relation function and is later used for decision-making. After
the validation model, maximum accuracy is stored with the
context information. Results indicate that the context-aware
approach outperforms the generic approach even if general
model training rounds are increased. However, this approach
is not proposed for FL.

The authors in [24] discuss the problem of efficient
management of sensor data in a heterogeneous network to
perform ML inference tasks. The paper proposed a local
general hierarchy-aware ML inference model for a heteroge-
neous network without affecting the prediction accuracy of
IoT applications. The proposed hierarchy-aware approach is
implemented on the decision tree and NN ML models. The
architecture consists of offline and online phases, wherein a
pre-trained ML model is used for the extraction of features
and the calculation of split points of feature space. The feature
space extracted from the locally available data model is split
into a small, specialized model. These models can be trained
using data available on each node. In the second phase, the
process sends only a single optimal scalar value for each
partition to sum it up in the cloud. As local nodes send
only a single value to the cloud instead of multiple from
each node, latency, and communication efficiency are main-
tained. Results indicate that energy consumption and network
latency can be reduced to 67% and 63% even with less
available bandwidth. The solution to providing cost-effective
services for smart healthcare using EC is discussed in [25].
The proposed architecture consists of two components: a data
compression module and an edge-based feature extraction
module to adapt to a dynamic environment. By taking the
data from hybrid sensing sources, data is aggregated and
sent to nearby mobile edge nodes. Mobile edge nodes extract
features from the multi-model data using DL techniques.
The second step is the extraction of events from processed
data using a frequency feature classifier (FFC). After feature
extraction and classification, adaptive compression is per-
formed using stacked autoencoders (SAE) for analysis and
prediction. Results show that the proposed solution does not
perform well for very low and high values of classification
threshold (CT). For the middle region of CT, the accuracy is
98.3 percent.

Authors in [26] handle the challenges of scarcity of com-
munication and computation resources at the edge. The sys-
tem named filter pruning tensor train (FPTT) is proposed
which consists of two layers. The first layer is filtered pruning
and the second is tensor train decomposition. At first average
kernel weight of each filter is selected, results are sorted and
filters with smaller values are dropped out. In the second
phase tensor train, decomposition is performed. Tensor train
decomposition stores dimensional data in the form of amatrix
based on low-rank matrix values. The calculated matrix is
stored in a tensor train format. The model is tested with

three varying settings. The first approach worked better for
medium-scale DNN models. However, the second and third
approaches showed the highest accuracy and better perfor-
mance respectively in less dense networks. The author in [27]
handles the statistical and systematic issues in FL. Challenges
addressed in this paper are non-IID data, communication
cost, dropout parties during the learning process, and fault
handling to improve accuracy. A multitask learning-based
framework MOCHA, an extension of the CoCoA optimiza-
tion method, is proposed for the optimization of the learning
process. The model is designed as multi-task learning (MTL)
problem to handle data distribution. Simulations are per-
formed on Google glass, vehicle sensors, and human activity
recognition systems. Results show that MTL performs better
than global and local model learning frameworks. With small
data set global model performs better but for a large dataset
error rate of Multi-Task Learning (MTL) seems better than
other frameworks. Moreover, communication and statistical
challenges are better addressed with MOCHA than by using
CoCaA directly.

Network heterogeneity is a major issue that affects com-
munication efficiency in FL which is addressed in [28]. The
proposed model consists of one module each for compression
and federated dropout. The compression phase reduces the
number of features by using basis transform, subsampling,
and quantization. The compression of the model reduces
bandwidth demand for the transfer model. The second phase
eliminates the unnecessary features of themodel and transfers
a specialized model to the local device for training. It reduces
the number of iterations, and the model converges faster. The
results show that in terms of the number of communication
rounds, the downloaded model’s size, corresponding updates
size, and required local computations are reduced up to 14,
28, and 1.7 times, respectively, without degrading themodel’s
accuracy. The authors in [29] resolve the resource-intensive
live and archived data collection from distributed edge nodes.
The proposed system is distributed into Eureka and front-end
running components. User queries the Eureka system after
which the query is processed to classify data at edge cloudlets
in parallel. Eureka is divided into three main components; a
filter container for software generality, an itemizer to generate
a stream of data, and an item processor for the selection
of items based on the query. Iterative refinement makes the
training data selection process efficient. The cloudlets are
selected based on the processing time for one item. Results
show that early iteration gives low accuracy but as the number
of iterations increases, the accuracy and efficiency of the
model enhance.

2) DATA CLASSIFICATION USING CNN
The authors worked on adaptive decision-making based on
context-based predictions in a smart home [30]. Reinforce-
ment learning is applied to the raw sensor data for the extrac-
tion of context to update the decision-making process. The
data captured from sensors is presented graphically in a 2D
map in the form of an annotated and raw data corpus for
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data extraction. Afterward, CNN is applied for context extrac-
tion and image processing. For the decision model (agent)
reinforcement learning is used. Results show that the anno-
tated corpus provides a higher F-measure in comparison with
annotated data representation. Authors quantify the effect of
resource and data heterogeneity on training time in [31]. Mul-
tiparty TensorFlow is used to emulate the FL environment.
ACNNmodel is trained on non-IID data. Results indicate that
as the resource allocation to each party and data size increase,
model training time also increases. The problem of model
training in a decentralized environment is investigated in [32].
The proposed model calculates the convergence bound of
the ML model using gradient descent-based approaches in
a federated environment. The proposed system uses SVM,
regression, K-means, and CNN for training. Results show
that the proposed control algorithm gives a near-optimum
performancewith differentMLmodels and data distributions.
Moreover, with synchronous updates, model convergence is
fast as compared to asynchronous updates. Zhong et al. [33]
propose an approach based on behavioral and content-based
features incorporation to improve the prediction accuracy by
adopting multiple DL models in a hierarchical tree structure.

The problem addressed in [34] is training the ML model
during FL when available communication bandwidth is low.
The proposed solution has two variations, structured updates,
and sketched updates. After performing either of the tech-
niques, results are compressed using quantization, subsam-
pling, or random rotations. Results are calculated by either
using a uniform and a varying number of clients or sketched
and structured updates for fixed rounds.Without quantization
sketched updates perform efficiently and use less bandwidth
and converge in fewer iterations. Using quantization and
only selected nodes for training, the subsampling rate can
be decreased while having a minimal effect on accuracy. The
authors optimized the FL process in [35] to improve the accu-
racy of the model and to efficiently utilize network resources.
They present a FedAvg-based algorithm that optimizes the
local and global model iterations to reduce network load.
To improve the model accuracy online monitoring of clients
and adjustment to global model parameters is made. Adjust-
ment in parameters is made based on the priority assigned
to each client at the start of each iteration. Moreover, the
selection of clients at the start of each round reduces bias
in the training process. CNN is used for the classification
of nodes based on priority defined as low, medium, and
high. The proposed model validates the test set with better
performance.

3) MODEL OFFLOADING BASED SOLUTIONS
In [36], the authors focus on resource-constrained mobile
devices. The study solves two challenges; computation
offloading of DNN applications to an edge server and band-
width limitation for offloading the task. The authors propose
a 2-step pruning process for DNN model partition, a selec-
tion phase, and a deployment stage. The first step reduces
the computation workload, and the second step reduces the

transmission workload. A part of the model is kept on a local
node for training and the other part is sent to the edge server.
Accuracy and loss threshold values are 4%. After a two-step
pruning process, transmission and computation costs are
reduced by 25.6 and 6.01 times respectively. Results show
better utilization of limited bandwidth and improved end-
to-end latency. The authors present intelligent edge devices
in [37] and used ML in mobile edge systems. The proposed
solution consists of the integration of the FL framework in
ME systems with deep reinforcement learning (DRL) tech-
niques. The decision process is divided into three steps an
information collection step, a cognitive computing step, and a
request handling step. For computation and offloading DRL,
an agent makes the decision based on the wireless channel,
energy consumption, and inference results. Two use cases
are implemented, (i) edge caching, and (ii) edge offloading
usingDRL. Results show that FL does not perform better than
centralized learning but shows near-best performance.

The problem of optimization of DNN portioning and
DNN right-sizing is addressed in [38]. The authors focus
on the optimization of decision-making based on predefined
latency and accuracy requirements. DNNmodels require rich
resources and offloading of ML tasks to the cloud, this results
in performance and latency overheads. The proposed frame-
work Edgent is used for edge devices synergy for collabora-
tive and on-demand ML co-inference tasks. Each client has a
local agent Edgent which performs three tasks: training, opti-
mization, and co-inference. Results show that the accuracy
of the model increases as latency requirements become less
important. The solution presented in [39] deals with the capa-
bility and connectivity challenges in IoT devices. The pro-
posed solution offloads computation to edge nodes. It consists
of a combination of FL and DRL agents for model training.
DRL agent is deployed on IoT devices for decision-making
and resource allocation in a dynamic environment. Results
indicate that the DRL agent is slow and have low accuracy as
compared to centralized model training.

Authors in [40] addressed the problem of computation
offloading in a contention-based multiuser multi-channel
wireless environment. The proposed solution consists of a
fully distributed computation offloading (FDCO) algorithm.
To handle communication overhead time division multiple
access (TDMA) is used with carrier sense multiple access
(CSMA) to avoid collisions in the channel. Results indi-
cate that cloudlet computing gives optimal performance and
lower system-wide execution costs by balancing transmis-
sion and computation costs. The authors in [41] studied
the heterogeneity in network resources and high accuracy
requirements for edge servers and industrial IoT (IIoT)
nodes. The proposed framework focuses on the accuracy
and heterogeneity constraints. Results show that the accu-
racy of the model increases as the number of local data
increases. The model performs well with less congestion in
the network but as the network becomes crowded the perfor-
mance decreases. Authors in [42] addressed the constraint
of high latency requirements for computation-intensive
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TABLE 1. Summary of the literature review.

tasks in IoT devices. The proposed solution Boomerang is
tested with two variations of the DL model: DRL-based
Boomerang and regression-based Boomerang. Results show
that regression-based Boomerang performs better but using
DRL and DQL for decision making gives high accuracy.
Zhang et. al [43] propose FL based prediction model sensing
the ability of users under different contexts. The proposed
scheme addresses the key issues in the data quality control
of mobile crowd sensing.

4) MODEL AGGREGATION USING FedAvg ALGORITHM
The problem presented in [44] handles the issues associ-
ated with non-IID data during FL to increase accuracy.
The proposed solution consists of a FedAvg algorithm. This
algorithm gives higher accuracy with lower earth movers
distance (EMD). To reduce the value of EMD authors pro-
posed an algorithm to select a subset of data that is uniformly
distributed in classes in comparison to cloud global data.
By using this method EMD values are decreased, and the
model converges with higher accuracy in fewer iterations.
The results show that the accuracy of the model decreases by
55%when trained directly from non-IID data. On the contrary
accuracy of the model increases by 30% for neural networks
when 5% of global data is shared with the warm-up model.
The study [45] works on reducing the number of iterations

during FL. A communication-efficient CE-FedAvg algorithm
is proposed to reduce the number of iterations by considering
network parameters. It focuses on collecting data from edge
devices and storing them on a nearby edge server to perform
FL. The clients are randomly selected to perform model
training on MNIST and CIFAR-10 datasets. To achieve the
desired accuracy communication rounds are reduced 6 times
and the model converged with three times fewer iterations per
client. The problem of communication overhead during FL
is addressed in [46]. A hierarchical FL model is proposed
with the HierFAVG algorithm for aggregation at the edge
server using MEC. Results show that performing aggregation
at the edge server before sending data to the cloud can reduce
communication overhead. Statistical challenges during FL
are addressed by [8] by devising a technique for non-convex
models trained on non-IID data. MTL learning framework
is used to handle convex models. The authors introduced
an extension of the FedAvg algorithm named VIRTUAL
for non-convex problems for federated multi-task learning.
Results show that the model shows optimal performance for
non-convex and non-IID data.

Table 1 represents the summary of the literature review
for FL. The literature review is divided into five sections.
The first section presents the existing COVID-19 detection
approaches based on EC. The second section shows that using
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data compression techniques before model training signif-
icantly reduces the training time and number of iterations.
The third section shows the significance of using the CNN
model in classification for increased classification accuracy.
CNN is frequently used for classification purposes due to its
high accuracy. Regression-based NN models are commonly
used for prediction While the fourth selection shows that
offloading a resource-intensiveDNNmodel to a resource-rich
device i.e., bandwidth, storage DNN increases the training
performance. In the last section, different modifications of the
FedAvg algorithm are discussed to increase communication
efficiency and decrease of usage of computation resources.
Moreover, training models in existing studies are classified
into NN, tree, ML, and AI models. All the approaches
use edge resources for classification, decision-making, and
optimization of the learning process. For decision-making,
DL models are widely used. A 2-step pruning algorithm is
also proposed in the literature to extract a context-aware
model that will be used in our solution as a reference to
make our ML model context-aware. The proposed approach
will save the resources required to transmit large NN models
as well as reduce latency during data transmission. We use
Google-developed TensorFlowwhich is a widely used frame-
work for the implementation of FL scenarios. Moreover, the
literature review also presents that no FL-based or ME-based
COVID-19 solutions based on X-ray or CT-scan images are
discussed in the literature.

III. PROPOSED SOLUTION
The Cloudlet Federation for Resource Optimization Model
(CFRO) architecture [3] is shown in Figure 1. It consists of a
broker at a remote cloud and a federation of cloudlets in closer
proximity to the users. The broker consists of a cloudlet reg-
istration module (CRM), information management module
(IMM), and a decision support system (DSM), whereas each
cloudlet in federation consists of a task management module
(TMM), a device registration module (DRM), and a resource
management module (RMM) and a broker agent acting on
behalf of the broker.

The FL proposed solution extends the federated cloudlet
architecture, as presented in Figure 2. The system consists of
five novel modules to perform FL tasks. Three of them reside
in the broker and two are inside cloudlet. Broker consists of a
connectionmodule, weight scalingmodule, andmodel aggre-
gation module. Cloudlet contains a model training module
and an aggregation Module.

The connection module inside the broker manages incom-
ing clients, connecting them to take part in the learning
process. It selects clients for training, assigns an ID to them,
and creates a separate socket for communication. The weight
scaling module finds client data cardinality to calculate the
scaling factor. It assigns aggregated weights to each layer
based on the calculated scaling factor and assigns those
weights to the global model. To perform the aggregation task
broker contains an aggregation module. This module keeps
track of ML models from all clients using a local model

FIGURE 1. CFRO: Cloudlet federation for resource optimization.

management service and offloads the aggregation task to
a client within the federation with maximum resources to
update the generic model. Optimized model selection service
selects ML model with maximum accuracy. Each client tak-
ing part in the learning process within the federation consists
of a model training module and a model aggregation module.
The model training module gets the global model for each
training round and selects a model with maximum accuracy.
The model aggregation module handles the offloaded model
aggregation task. It consists of a model processing service,
layer aggregation service, and an optimized model selection
service to select the optimized ML model.

A. BROKER
The broker in FL has the responsibility to accept client con-
nections, assign them unique IDs based on their IP addresses,
and create a separate socket connection for communication.
After that, it calculates a scaling factor based on the data
cardinality of each client and assigns weights to each layer
of the ML model. Based on the scaling factor calculated each
client is assigned a learning rate, local epochs, and weights.
To perform these tasks broker contains three modules named
a connection module, a weight scaling module, and a model
aggregation module.

1) CONNECTION MODULE
The connection module accepts connections from clients
within the federation and assigns them individual IDs based
on their Internet protocol (IP) addresses and connection infor-
mation. It further communicates with the client to get data
cardinality to find weights scaling factor and assign aggre-
gated model weight to the global model. The client selection
service accepts a connection from a client if it is a part of
the federation. To ensure it, the server communicates with
Information Management Module and matches the client
parameters i.e., IP address. The server then generates a unique
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FIGURE 2. Federated cloudlet architecture based on CFRO.

ID for each client using its connection information and its
IP address and sends the data to the socket creation service.
The socket creation service creates a socket for each client
and adds it to the client’s list and informs the client about
successful connectivity and sends data cardinality to start the
training process.

2) WEIGHT SCALING MODULE
After getting data cardinality from the client, the value is
sent to the weight scaling module to update the scaling value
based on data cardinality and the number of total clients.
As each client connects with the server its scaling factor is
also updated based on the client and local training dataset.
The weight scaling factor is used to scale model weights and
is calculated using Equation 1.

WSF =
Total data of a client*Batch_size
sum of training data across clients

(1)

The model is scaled for each client based on the respective
total amount of data set multiplied by the batch size used
for each iteration to train the model. After that, the result is
divided by the sum of the training dataset across all clients in
the federation. This formula gives the updated scaling factor
which is used to update the model weights in the model
aggregation module.

Weight Aggregation service performs the aggregation task
in two steps. Firstly, it scales local model weights using the
weight scaling factor. Then, the mean of all local scaled
weights is calculated to generate the global model.

3) MODEL AGGREGATION MODULE
The weight scaling factor is further used to scale a model
weight for each client. After scaling the weight of each client,
all models are used to get the mean value of each layer of the
neural network and those weights are used as global weights.
A local model management service is used to get local models
from all clients in the federation. It ensures that the local
model from all clients is received at the client-side, and it
requests the respective client to send the local model again
if it gets lost in the network due to issues of connectivity, etc.
After receiving the model from all clients, the task offloading
service communicates with IMM to get updated resource
parameters and selects the client with optimized resources to
offload the aggregation task. The client sends the aggregated
model back to the server for evaluation. The model is evalu-
ated based on its accuracy, it keeps track of the global model
from the last iteration and if the accuracy of the previous
global model is greater than the new model; the old model
weights are assigned to the generic model for the next training
epoch. The generic model service module defines a CNN
model that consists of six CNN layers for the classification of
images. The model is initialized with activation functions of
rectified linear unit (ReLU) and hyperbolic tangent activation
(tanh) at the start of the training process. These activation
functions are used as they give higher accuracy and manage
the output to pass it as input to the next layer. After initial-
ization, it sends a global model for scaling and the model is
sent to clients for training. This process is performed only
once when the first client connects to the server to perform
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the training. For each new round, this service sends updated
weights from the last round to all clients to start the next
epoch.

B. CLIENT CLOUDLET
Each client performs model training by getting updated
global model weights from the server and training the model
to get a local updated model of each client. These models are
sent to the server to send themodels to a client with maximum
resources for aggregation tasks. This aggregation generates
a model that is further evaluated based on its accuracy and
based on the evaluation results weights are assigned to the
global model.

1) MODEL TRAINING MODULE
This module is subdivided into two services; the local model
service trains the local model and selects the local model
with maximum accuracy and minimum loss value. Further
validation is performed on the local dataset to check the
model accuracy and loss on the test dataset. A model with
the highest accuracy is selected as a local model to send to
the server for global aggregation of models. The local model
service gets the global model to start the training process
based on updated weights, local training steps are performed
with early stopping and checkpoint conditions. At the end of
the training process, the NN model with maximum accuracy
and minimum loss value is saved. The model trained on
the local training set is evaluated on the validation dataset
through the model evaluation service. If model accuracy
is less than the global model it is sent back to the server
without updating model weights to perform the aggregation
task.

2) MODEL AGGREGATION MODULE
The model aggregation module activates when the broker
offloads the aggregation task to a specific client. The client
then splits the aggregation process into three steps. At first,
it gets the model from the server and loads it into memory.
In the next step, it scales the weight of each model using
the global scaling factor and takes the mean of each layer
across all clients. In the last step, the model is evaluated for
an optimized model selection. The model processing service
gets a model from all clients and loads it into memory to start
the aggregation process. It also gets the latest scaling factor
from the server to update NN weights. The layer aggregation
service updates each model weight based on the scaling
factor and then takes the mean of all local models. Updated
weights are then assigned to the global model. The federated
averaging algorithm, presented as Algorithm 2, is used for
layer aggregation. The global model with updated weights is
evaluated on the testing dataset. If model accuracy is greater
than the last global model, the new model is sent to the
server to start the next epoch. Root mean square proportional
(RMSProp) is used as a global optimizer function. The global
loss function used is mean squared error (MSE).

TABLE 2. Notations used for the model.

C. MATHEMATICAL MODEL
TheMLproblem is designed as a convex problem having only
one globally optimal CNN model for prediction. Suppose
that a federation of cloudlets C has n cloudlets described as
C = c1, c2, c3, . . . , cn and different set of resources available
for each cloudlet are S = s1, s2, s3, . . . , sn. Moreover, the
workers are represented as C ′ = c′1, c

′

2, c
′

3, . . . , c
′
n where

C ′ ⊆ C and the number of end-user devices connected to
each cloudlet ci are U = u1, u2, . . . , un. The set of patient
records on each cloudlet ci is given byD = d1, d2, d3, . . . , dn
where n ∈ N . Table 2 represents some commonly used
notations and their explanation.

A relationship between a user and workers U → W is
defined as many-to-one as many users can be connected to
one worker at a time t . Moreover, a worker can store multiple
data records of a single user, henceW → D. Some cloudlets
frommultiple cloudlets in the federation are selected as work-
ers for a single training round such that ∀ci ∈ C∃C ′j where
ci = c′j for i, j = 1, 2, 3, . . . , n. The goal of the training is
to optimize the learning process while maximizing the global
accuracy which is given by

Acc(wtG) = argmax(A(wti )) (2)

wherewtG is global weight averaging function andA(wti ) is the
local accuracy optimization function. Similarly, L(wti ) =
argmin(L(wti )) is a local loss optimization function. The num-
ber of data records at the worker c′j∈N can be written as D ∈
Rd , whereDi represents the ith data element. The Data matrix
at each cloudlet is given by Di ∈ Rdxd ,Di(mn) designates the
entry in m row and nth column. Input at each worker c′i is
in the form of n × m matrix where anm ∈ 0, 1, 2, . . . , 255
represents image pixel value at position n× m and n = m =
128. Y ′i = y′1, y

′

2, y
′

3, . . . , y
′
n are corresponding data labels.

Each element of the matrix D′i is divided by 255 for one-hot
encoding of the matrix to change categorical data with binary
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data.

d ′i =
D′i
255

such that amxn ∈ {0, 1} (3)

The training process starts after preprocessing the local
input images dataset. Each local training round consists of
a training step and a local aggregation step. After locally
training the CNN model, the server in the federation receives
the CNN model for global aggregation.

In the training step, a batch of n images is selected from
input data such that T is the batch for training round iwhich is
given by Ti = {t1, t2, t3, . . . , tn} such that Ti ⊆ D. The batch
for training round i is split into training and testing datasets
with a ratio of 0.8 to 0.2, respectively such that

Ti =
10∑
i=1

(T ′i + V
′
i ) (4)

where T ′i is the training dataset and V ′i represents the testing
dataset for the ith round. Training rounds consist of 10 global
epochs and the number of epochs for each local training
round, for each client, is determined using Equation 5.

I ′ =
Length(T ′i )

Batchsize
where I ′ = Steps_per_epoch > 0 (5)

Here I ′ describes the local training steps and Length(T ′i )
describes the length of training data set for training round
i. The Batch size represents the total batch size for training
round i. Training data set T ′i for iteration i is further divided
into mini-batches each of size n = 8 such that (xi, yi) ∈
(xtrain, ytrain).
Constraint 1: The purpose of using mini-batch is to reduce

memory consumption during model training such thatMTi ≤

M k , where MTi is the memory required to load training data
for iteration i andM k is memory capacity of worker k . CNN
will be used for classification with filter size 64, kernel size 3,
and input dataset T ′i .

cov[m, n]= (x ∗ h)[m, n]=
∑
j=0

∑
k=0

h[j, k]x[m− j, n− k] (6)

where m and n represent indexes of the output matrix, x rep-
resents the input image and h represents a filter matrix. The
proposed Feedforward neural network consists of two steps.
In the first step, convolution is performed, and input data
is convolved with previous layers’ learnable weights W [l],
and then bias b[l] is added. In the second step, the activation
function g[l] is applied to the updated weights Z [l]. ReLU and
tanh are activation functions (g) used for convolution layers.

Z [l]
= W [l].A[l−1] + b[l] (7)

A[l] = b[l](Z [l]) (8)

where l represents the number of layers and activation func-
tion g(x) determines the values of output features.

ReLU (x) =

{
0 ifx < 0
x ifx ≥ 0

(9)

tanh(x) =
2

1+ e−2x
− 1 (10)

The output of convolution layers is passed to an average
pooling layer to calculate an aggregated value of extracted
features using Equation 11.

hlj(x, y) =
1
k

k∑
x̄∈N(x),ȳ∈N(y)

hl−1j (x̄, ȳ) (11)

where hl−1j (x̄, ȳ) is output matrix from the previous layer
and j = 0, 1, 2, . . . , k, (x̄, ȳ) are mean of input features and k
is kernel size.

RMSProp is used as an optimization function for each
training round. Derivation, as follows, represents the gradient
descent methods, where β1, β2 are decay rates and gt is the
gradient at time t .

Mean = mt+1w = β1mtw + (1− β1)Owgt (12)

Variance = vt+1w = β2mtw + ((1− β2)g2t )
2 (13)

m̂w =
mt+1w

1− β t+11

(14)

v̂w =
(vt+1w

1− β t+12

(15)

wt+1 = wt − η
m̂w
√
v̂w + t

(16)

To find loss(W ) of the local model on worker C ′i mean
squared error is used using the formula

Loss = L =
1
n

n∑
i

(yi, ŷi) (17)

where n is the number of devices yi = labels, ŷi = predicted
labels. The locally trained model is evaluated on validation of
dataset Vi = xi, yi where x=input image and y=image label.
The algorithm of local training shows the input parameters
required to train the model. Moreover, the cost value of each
training round is sent to the broker to start the aggregation
process.

Algorithm 1 Local Training
Inputs:
N number of data samples
I max number of local iterations
η learning rate
Output:Minimum cost value L
1: B←− split the local dataset into the batches of size N
2: for each local iteration i = 1 −→ E do
3: Shuffle training set randomly
4: for batch B ∈ D do
5: W ←− W − η(L(W ; x(i), y(i)))
6: end for
7: end for

Each training round ends with a cost value L(i)and an
accuracy value acci, which is sent to the aggregation server
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along with a locally trained modelMi. Next, global training is
performed based on the loss value received from each worker
such that the aggregation server has n loss values given by
the set L ′i = {l

′

1, l
′

2, . . . , l
′
i} where i = length(C ′) ∈ N .

Model Mi has the highest accuracy l ′i , the value is selected
as a global model and the respective model is selected as a
global model to be sent to each worker for iteration i+1. The
global optimization function is given by the formula:

Accuracy = max(accuracy′i) (18)

where i = {1, 2, 3, . . . , n} and accuracy′i represents the
accuracy obtained from cloudlet i after running each local
iteration. A confusion matrix is used to determine model
accuracy using the equation:

Accuracy =
TP+ TN
Total

(19)

Algorithms 2 (CONFLA) and 3 (CACFLA) are the two
global aggregation methods used in this research work.
CONFLA aggregates each layer of client NN and sends
the aggregated model for the next training round. However,
CACFLA checks the validation accuracy of all local models
and selects the model with the highest accuracy as the global
model.

Algorithm 2 Federated Averaging
Inputs:
N of cloudlets in Federation
K number of clients
B local data size
E number of local iterations
η learning rate
Output: Federated weightsW
1: Broker averaging
2: Initialize w0 with random values
3: for iteration t = 1, . . . , 10 do
4: m←− a random subset of max(C .K , 1 users
5: St ←− select subset of clients K such that §t ⊆ K
6: for each client K ∈ St do
7: WK

t+1←− ClientUpdate(K ,Wt )
8: WK

t+1←−
∑K

t=1
nk
n W .t + 1

9: end for
10: end for
11: ClientUpdate(K,W)
12: B←− split the local dataset into batches of size B
13: for each local iteration i = 1 −→ E do
14: for batch b ∈ B do
15: W ←− W − η.l(W , b)
16: end for
17: end for

ReturnW to broker

IV. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETUP
For experimentation, the setup of CONFLA and CACFLA
are established and the CNN model training is performed

Algorithm 3 Global Averaging
Inputs:
N of Cloudlets in federation
E number of global iterations
η Learning rate
Local accuracy values acc′

Output: Feature weightsW

1: Initialize w0 with random values
2: for iteration t = 1, . . . , 10 do
3: m←− a random subset of max (C ′) users
4: for each client K do
5: WK

t+1←− Getmodel(Ki)
6: end for
7: end for
8: Accuracy′i←− max(K ,L ′)
9: Ki←− GetClient(Li)

10: WK
t+1←− Getmodel(Ki)

11: for each client K do
12: SendUpdate(K ,WK

t+1)
13: end for
14: Max Accuracy(k,L)
15: for all accuracy values do
16: acc′i←− index of max accuracy value from K ′

17: end for
18: GetClient(K ,Li)
19: for all Client K do
20: Ki←− client address at index L ′i
21: end forReturnW to server

TABLE 3. Specifications of testbed devices.

on the COVID-19 dataset [48]. All experiments are repeated
five times, for both CONFLA and CACFLA, and the best
results are reported in this paper. For both setups, three
cloudlets are used. For CONFLA setup, all cloudlets are
directly connected to the remote cloud virtual machine for
which Amazon cloud services are used. For CACFLA, all
cloudlets reside in close proximity to the user. All cloudlets
are connected to the broker which is connected to the remote
cloud virtual machine. Each cloudlet is configured with
4 cores, 8GB of RAM, 40GBof storage space, and theUbuntu
14.04 LTS operating system. The virtualization environment
is set up using VMware on client devices and EXS 6.0 in
the data center. The detailed hardware specifications of all
the cloudlets are given in Table 3. Metropolitan Area Net-
work (MAN) is set up and all the cloudlets are connected to
different ISPs.
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FIGURE 3. Architecture of the proposed deep learning model.

B. DEEP LEARNING MODEL
Figure 3 shows the architecture of our proposed DL model.
Input X-ray images of size 224 × 224 × 3 are fed to the
model. The first two values represent the width and height
of the X-ray respectively and the third value represents the
color channels (red, green, and blue) used, also known as
the depth. Hence, a single neuron in the hidden layer has
224 × 224 × 3 = 150,528 weights. Two CNN layers of size
224× 224 are used. The filter size of the two CNN layers is
64 and 32 respectively. The average Pooling layer performs
the downsampling, reducing the dimensions to 56× 56× 32,
after which the flattened layer converts the matrix into a
single one-dimensional array. This vector is fed to a hidden
layer that classifies the image and gives the final output.

Themodel predicts COVID-19 differentiating it from other
types of pneumonia. The learning rate of the CNN model is
initially defined as 0.005 which changes based on weights for
each epoch. Local training epochs are decided dynamically
based on the dataset of each client. However, the number of
global training rounds is 10. RMSprop is used as a global and
local optimizer and MSE is used as a local and global loss
function. In the first step, a client opens a socket connection
with the server. The server then assigns a unique id to the
client and starts a new thread. After the client is successfully
connected to the broker, X-ray images are resized into 128×
128 images. In the next step cardinality of each dataset is
sent to a broker to figure out the scaling factor based on that
scaling factor weights are assigned to each CNN model and
the model is sent to the client for training. At the end of the
training round, each client sends its trained model back to the
broker. The broker then selects a client within the federation
with optimized resources to send the trained models from
all clients to aggregate them and generate the global model
for the next iteration. The global model is sent back to the
broker for evaluation based on accuracy. If model accuracy
increases from the last round, then the new model is selected
otherwise the old model is again sent to all clients for the
next local training round. At the end of the global epochs,
each client is sent the updated model and the connection is
terminated.

FIGURE 4. Accuracy and loss comparison of CONFLA and CACFLA.

C. RESULTS
The CNN model is initially trained for 50 epochs using
CONFLA and CACFLA. The accuracy and loss for both
approaches are shown in Figure 4. As observed in Figure 4a,
it takes less than 10 epochs for model convergence for both
approaches. So, for the rest of the experiments, the training
rounds consist of 10 global epochs.

It is also observed that CACFLA has a slightly less con-
vergence time than CONFLA. This is because it takes the
CNN model from all clients in the federation and aggregates
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FIGURE 5. Comparison of time taken per training between CONFLA and
CACFLA.

FIGURE 6. Clients’ communication statistics with broker.

all the models to obtain a generic CNN model for the next
epoch. The validation accuracy of CACFLA is 5% more as
compared to CONFLA. This shows that choosing the best
selection model in CACFLA gives better accuracy with a
comparatively similar loss value as compared to CONFLA.

The model is further evaluated based on the time taken to
complete ten training rounds in the FL setup. Figure 5 shows
a comparison of the time taken by CONFLA and CACFLA
to complete a single training round. The red dot represents
the mean value while the end of the whiskers shows the
maximum and minimum values of time taken per training
round. In CONFLA, the server is placed at a distant Amazon
cloud and each client in the federation sends its trained model
to a distant cloud for aggregation. Since the server is placed
at a greater distance, CONFLA takes more time to complete a
training round. Therefore, as observed from Figure 5, having
the server in the local vicinity of the user, as is the case with
CACFLA, reduces the time to complete a training round.
CONFLA takes 304.64 minutes to complete the ten training
rounds while CACFLA takes 289.03 minutes, showing a 5%
decrease in latency.

Figure 6 shows the statistics of data transmission between
the broker and the three clients in the federation in terms of the

total number of packets transmitted per second. It is observed
that most of the communication of the broker is with the client
192.168.229.132. This is because it has the minimum number
of COVID-19 X-ray images and due to this, its resources are
mostly free for aggregation tasks as it requires less time to
complete a single training round.

V. CONCLUSION
This research work addresses the challenges of computa-
tional and communication resources faced by federated learn-
ing using context-aware cloudlet federation. The challenges
include latency, loss, accuracy, training time, and data bias
that are present in the conventional cloud-based federated
learning environment. CACFLA, a context-aware federated
learning approach is proposed that offloads aggregated tasks
to nearby clients based on the availability of computational
resources. CACFLA is compared with CONFLA which is
a state-of-the-art conventional federated learning approach.
In both approaches, the number of local iterations and learn-
ing rate is decided dynamically, based upon the data each
client possesses. CACFLA is evaluated based on latency,
accuracy, and convergence time. Results show that CACFLA
reduces the latency by 5% and yields 5% better accuracy as
compared to CONFLA. Additionally, the convergence time
of the CACFLA is also reduced as compared to CONFLA.

In future work, the system will be extensively tested on
some other datasets, including the KEEL dataset [49]. More-
over, the time taken by the model to converge will also
be improved using model compression techniques based on
the analysis of different datasets. We also aim to improve
the model aggregation method to increase the local training
accuracy.
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