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ABSTRACT In automobile manufacturing, the quality assessment of resistance spot welding (RSW) plays
a decisive role in the quality and safety of products. Recently, it has become very popular to use machine
learning to evaluate the quality of welding nuggets. However, there are two obstacles: data imbalance caused
by limited defective samples, and data shortage due to expensive time and labor costs. This paper proposes a
novel method. On one hand, the self-paced ensemble (SPE) algorithm for binary classification is improved to
handle imbalancedmulti-class classification of quality levels. On the other hand, an instance-based ensemble
transfer learning approach is proposed to predict the tensile-shear strength of RSW for precise control of
the weld quality. In detail, a quality level identification model is formulated with the process and material
parameters as the input at first. Secondly, an explainable algorithm SHapley Additive exPlanations (SHAP)
was introduced to anatomize the impacts of welding parameters on the welding quality predictions. Finally,
a hybrid dataset including actual historic production data and 454 spot-welding cases is constructed, and
then the eXtreme Gradient Boosting (XGBoost) is introduced as the base learner of TrAdaBoost.R2 to train
the prediction model. Compared with conventional methods, the SPE provides the greatest macro geometric-
mean score of 0.923, and the proposed regression model yields superior accuracy R2 of 0.952, which shows
the potential of assisting welding process design.

INDEX TERMS Resistance spot welding, class-imbalanced classification, transfer learning.

I. INTRODUCTION
Resistance spot welding(RSW) is a material connection tech-
nology widely used in the automotive industry. The welding
quality is very important to the overall safety of the body-in-
white, which directly affects the reliability, performance, and
manufacturing cost of the vehicle, and is closely related to
the owner’s safety [1]. RSW process for automotive welding,
traditional manual quality inspection of welding nuggets can
not cover all welding points, so it is necessary to increase the
spot welding density on the car body to make up for poten-
tial safety hazards, which leads to low production efficiency
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and high error rates. Meanwhile, facing the requirements of
lightweight car bodies [2], more and more new material com-
binations are applied to car design, and correspondingly more
weldability tests are needed, resulting in increased production
costs. The process parameters obtained by the destructive test
are very reliable, but the empirical formula(e.g., response
surface methodology [3]) cannot be directly transferred to
the new welding design. Therefore, it is of interest to the
resistance spot welding industry to reduce the number of tests
on the premise of ensuring quality.

To deal with the above difficulties, numerical simulation
and data-driven modeling are two widely used methods.
The finite element analysis model based on the knowledge
of welding experts can simulate the resistance spot
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welding process, but the numerical simulation is obstructed
by multiple physical factors of the industrial production
environment [4]. The data-driven model is independent of
the physical model, and it is suitable for the research object
with complex structure, so it has attracted extensive attention.
The applied data-driven methods mainly include two types:
image recognition and monitoring the signals or parameters
of the welding machine. The first type is spot welding
quality inspection based on machine vision. Xiao et al. [5]
take the welding spot image as the input of a convolutional
neural network(CNN) to identify the appearance of the
nugget. Dai et al. [6] mark different quality spot welds on the
body-in-white according to the size of the nugget diameter,
to detect the quality of spot welding based on the You
Only Look Once(YOLO) algorithm. However, the training of
deep neural networks depends on a large number of labeled
images.

The second type is to collect physical signals in thewelding
process, to obtain the key information that affects the welding
quality. Or take welding process parameters as input features.
Dai et al. [7] use the preprocessed dynamic resistance signals
to train the convolutional neural network to achieve quality
assessment of spot welding. Zhou et al. [8] use principal com-
ponent analysis to reduce the dimensionality of the original
dynamic resistance signals to obtain input features, and use
machine learning algorithms to train the model for spatter
prediction during resistance spot welding. Dejans et al. [9]
use the acoustic signal waveform collected from the welding
process, the frequency components related to the welding
physical process are extracted from it, and these amplitudes
at a specific frequency are used to further build a prediction
model of the nugget diameter of resistance spot welding.
Although the nugget diameter can be predicted nondestruc-
tively, the prediction accuracy of this method is lower than
that based on machine learning methods. Ghafarallahi et al.
[10] compare the performance of the three methods, i.e., Arti-
ficial Neural Network (ANN), Multilayer Perceptron (MLP),
and mathematical formula calculation in diameter prediction
of three-sheet spot welds, among which ANN achieves the
highest accuracy. Kim et al. [11] propose that the thickness,
tensile strength, and yield strength of the material should
be combined with the features extracted from the electrode
displacement curve and dynamic resistance curve, and a poly-
nomial relationship should be established with the tensile
shear strength and indentation depth, respectively, and then
the logistic regression algorithm can be used to predict the
weld quality. To eliminate redundant information in data,
Dang et al. [12] propose a smart framework based onmachine
learning algorithms. Collected from different welding envi-
ronments, the inconsistency of the characteristics and dis-
tribution of the data does not affect the performance of the
model.

Although the data-driven modeling can achieve satisfac-
tory results, there are still some limitations:

1) Imbalance of data. With continuous production, the
factory will quickly accumulate qualified welding data,

but the proportion of defective data and unqualified
data is still low, resulting in an imbalanced data set.

2) Shortage of data. It is time-consuming and difficult to
construct a large annotation data set, and environmental
noise results in different responses to the same welding
process design parameters.

On one hand, to avoid data imbalance, previous works [13],
[14] tend to use data with relatively balanced classes to
train models. After some time, as more and more welding
failure data are discarded, effective information in weld-
ing quality prediction may be lost. However, traditional
machine learning-based methods (such as support vector
machine) have difficulty distinguishing minority classes
when the dataset classes are imbalanced [15]. To overcome
the problem, this article introduces the Self-paced ensemble
(SPE) [16] method for the imbalanced multi-class classi-
fication prediction of nugget quality in the RSW process.
A classification algorithm based on SPE can improve the
recognition rate of rare minority classes such as Pseudo sol-
dering. These minority classes need to be accurately identi-
fied to avoid failed welds in the future.

On the other hand, nugget diameter, an important indicator
to measure the quality of the weld, can be assessed using
non-destructive testing techniques after welding. However,
when the size and distribution of the defects inside and
outside the nugget are different, the nugget diameter can’t
accurately represent the nugget quality. Tensile shear strength
is a robust indicator, but requires destructive tear testing to
measure. To reduce the amount of training data and improve
the generalization ability of the model, many efforts have
been made to develop a transfer learning prediction model.
Pan et al. [17] show that transfer learning only needs a cer-
tain relationship between the source domain and the target
domain, so the knowledge and features learned in the source
domain can help train the model in the target domain, to real-
ize the knowledge transfer between different domains. This
brings new inspiration to RSW quality assessment. To solve
these problems, a transfer learning (TR) method based on
TrAdaBoost.R2 [18] and XGBoost is proposed to predict the
tensile shear strength of nuggets in RSW. Bymaking effective
use of historical data, the TR solves the modeling problem
of different welding material combinations and enhances the
generalization ability of the model. Through the TR, the
prediction ability of RSW quality is improved to cope with
different production environments and few-shot datasets, thus
ensuring the accuracy of the prediction. The contributions of
this paper are summarized as follows:

1) A novel imbalanced multi-class classification algo-
rithm, self-paced ensemble (SPE), is proposed to iden-
tify the quality level of nuggets in resistance spot
welding (RSW). During the resampling process, a self-
paced factor is introduced to optimize the sampling
strategy considering the classification hardness dis-
tribution on the dataset. Experimental results show
that the SPE achieves the highest macro G − mean
of 0.923 and macro-average AUC of 0.976. Welding
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process parameters and material parameters are input
into the model, which is convenient for adjusting these
key parameters in the future, realizing accurate welding
quality control, and reducing welding faults.

2) For the assessment of tensile shear strength of nuggets
in RSW, an instance-based algorithm TrAdaBoost.R2
is introduced. Compared with existing data-driven
methods, TrAdaBoost.R2 achieves better evaluation
performance. It achieves the highest R2 value of
0.952 and the lowest RMSE fitting error of 2.692 KN
using a small amount of data in the target domain. From
the application point of view, the proposed method
helps to reduce the number of weldability tests, assists
the design of welding process parameters, and reduces
the cost of labeling data.

The rest organization of this paper is as follows: Section II
introduces the experimental data and the proposed methods.
In Section III, the performance of the proposed methods is
verified. Section IV is the discussion and future research.
Section V is the conclusion of this paper.

II. METHODOLOGY
The purpose of this study is to effectively evaluate the qual-
ity of RSW. To achieve the study objective, this research
is divided into three parts, including data preprocessing,
welding quality levels identification based on an imbalanced
multi-class classification algorithm, and tensile shear strength
prediction based on transfer learning.

The overall analysis framework is shown in Figure 1. First,
the original data collected from the RSW process and the data

FIGURE 1. Workflow of the proposed research methodology.

collected from the public database are preprocessed. Then the
SPE is combined with SHAP [19] to build an interpretable
model, and SHAP is used to further explain the importance
and impact of input features on model predictions. A consis-
tent feature dimension in the source domain and the target
domain is constructed manually. The labels of the source and
target domains are nugget diameter and tensile shear strength,
respectively. Finally, a tensile shear strength predictionmodel
is constructed based on TrAdaBoost.R2 to assess the quality
of nuggets.

A. DATA DESCRIPTION AND PREPROCESSING
In this paper, two groups of data are constructed. The first
dataset 1 consists of the historical experiment welding data
samples, while the second dataset 2 is collected from existing
literature [3], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37]. Dataset
1 contains a large number of different models of material,
the welding materials are mainly hot-dip galvanized steel
(e.g., DC56+D et al.). Dataset 1 contains 4848 RSW sam-
ples (Table 1.), including 4362 suitable welding samples,
204 pseudo soldering samples, and 282 welding expulsion
samples. Each sample corresponds to a nugget diameter.
The process parameters in dataset 1 include the number of

TABLE 1. Welding parameters of dataset 1.

TABLE 2. Welding parameters of dataset 2.
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welding materials, total thickness of all welding materials,
tensile properties of weldingmaterials, welding time, current,
electrode force, electrode diameter, pre-pulse, squeeze time,
and hold time.

Dataset 2 contains a series of metals including stainless
steel [3], [20], [21], [22], [23], [24], [25], low carbon steel
[20], [26], [27], [28], [29], [30], [31], [32], galvanized steel
sheet [33], [34], [35], high strength steel [36], [37]. Dataset 2
contains 454 two-layer sheet RSW samples (Table 2.), these
samples were obtained by resistance spot welding of two lay-
ers of sheet metal. The input feature parameters in dataset 2
include the total thickness of all welding materials, welding
time, current, electrode force, electrode diameter, hold time,
and the output tensile shear strength.

Due to defects or contamination on the surface of the
weldment, the electrode is bonded to the material during the
welding process. This type of data in dataset 1 is filtered out.
In order to eliminate the influence of dimension, all features
in dataset 1 and dataset 2 are transformed with standard Min-
Max normalization.

B. IMPROVED IMBALANCED MULTI-CLASS
CLASSIFICATION ALGORITHM BASED
SELF-PACED ENSEMBLE
Classical machine learning algorithms assume that the num-
bers of samples in different categories are similar, so when
the number of samples in different categories in the data set
is imbalanced, these algorithms will give priority to a class
with more samples. In the manufacturing process, defective
welding nuggets should be avoided, so we pay more attention
to the ability of the model to correctly distinguish samples
belonging to a few categories.

Cost-sensitive methods and resampling techniques are
designed to deal with class imbalance problems. Cost-
sensitive methods need to incorporate domain-specific expert
knowledge, which is difficult to achieve in many tasks [38].
Resampling techniques include oversampling, undersam-
pling, and a hybrid of both. These methods seldom take into
account the influence of data distribution on classification
performance. It is necessary to pay full attention to the sample
distribution of all classes when the minority class and the
majority class are equally important.

SPE imbalanced classification algorithm introduces the
concept of ‘‘classification hardness’’ to portray the diffi-
culty for a trained classifier to classify a specific sample.
For samples belonging to the majority class, SPE iteratively
adjusts the hardness value of the samples to mark samples
with different classification difficulties. Then, the distribution
of hardness values contains additional information, such as
possible noise in samples with too high hardness values.
Suppose F is a trained classifier, F(xi) is used to denote the
classifier’s output probability of xi. We use the symbol H to
represent the classification hardness function, where H is the
Mean Absolute Error, which is less sensitive to outliers than

the Mean Squared Error. The hardness function is given as:

H (x, y,F) =
1
n

n∑
i=1

|fi (xi)− yi| (1)

The distribution of hardnessH reflects the fitting of F to data
set (x, y).

According to hardness values, data samples are divided
into three categories: trivial samples, noise samples, and bor-
derline samples. SPE holds an under-sampling mechanism
to reduce the influence of trivial samples and noisy samples,
but to expand the importance of boundary samples. For this
reason, the majority samples are split into k bins, and then
we resample the majority samples into a balanced subset,
each bin keeping the same hardness. In order to improve
the diversity of the classifier and prevent the model from
overfitting, we introduce the self-paced factor α:

α = tan
iπ
2n

(2)

where, i represents the current iteration, n is the total number
of iteration and set α = 0 in the first iteration.

The idea of self-paced involves simple samples, and then
gradually adds hard samples to train the model [39]. In the
first few iterations, the informative borderline samples are
focused, as α becomes larger the model gradually focuses
more on harder samples. In another word, self-paced factor
α is to reduce the sampling weight of bins with too many
samples.

In Algorithm 1, the self-paced ensemble applied to imbal-
anced multi-class classification is described, and the minority
dataset is represented as P, the majority dataset is represented
as N , and another dataset is represented asM . SPE randomly
undersamples datasetM ,N , generates datasetM0,N0, |M0| =

|N0| = |P|, and then trains the base classifier f0 on S0 =
M0 ∪ N0 ∪ P. Denoting Bl the l − th bin, Bl is defined as:

Bl =
{
(x, y)|

l − 1
k
≤ H (x, y,F) <

l
k

}
, H ∈ [0, 1] (3)

C. DESIGN OF PREDICTION ALGORITHM OF TENSILE
SHEAR STRENGTH BASED ON TRANSFER LEARNING
The expensive data acquisition in carmanufacturing limits the
predictive accuracy of data-driven algorithms. To address this
shortcoming, this study employs an instances-based domain
adaptation transfer learning algorithm. Transfer learning
methods do not need to retrain a model for each task, and
its idea is that the knowledge learned from the source domain
can be used to solve problems in the target domain.

The TrAdaBoost.R2 algorithm trains a base learner in each
iteration, and dynamically adjusts the weights of instances.
The weights of source domain instances with poor prediction
performance will be reduced, while the weights of the tar-
get domain instances will be gradually increased. The base
learners trained in iterative rounds are based on the results
of the previous iteration, and the final prediction output is the
weighted median of base learners. Therefore, if the prediction
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Algorithm 1 Self-Paced Ensemble
1: Inputs:Number of base classifiers n,base classifier f ,

dataset P, M , N , where |P| < |M |,|P| < |N |, number
of bins k , hardness function H

2: Initialize:Train classifier f0 using dataset S0
3: for i = 1 to n do
4: Ensemble base classifiers Fi (x) = 1

i

∑i−1
j=0 fj (x)

5: Divide dataset M into k bins based on HM (x, y,Fi),
divide dataset N into k bins based on HN (x, y,Fi),
obtaining B1M ,B

2
M , . . . ,B

k
M and B1N ,B

2
N , . . . ,B

k
N

6: Average hardness contribution in l-th bin:

hlM =
∑
s∈BlM

HM (xs, ys,Fi)/|BlM |,

hlN =
∑
s∈BlN

HN (xs, ys,Fi)/|BlN |, l = 1, . . . , k

7: Update α = tan(iπ/2n).
8: Unnormalized sampling weight of lth bin: wlM =

1
α+hlM

, wlN =
1

α+hlN
, l = 1, . . . , k .

9: For all l = 1 → k , under-sample from BlM with
wlM∑k
j=1 w

j
M

|P| samples and obtains Mi, under-sample

from BlN with
wlN∑k
j=1 w

j
N

|P| samples and obtains Ni

10: Train fi using dataset si = P ∪Mi ∪ Ni
11: end for
12: Outputs:Ensemble classifier F (x) = 1

n

∑n
j=1 fj (x)

accuracy of the base learner is higher, the ensemble may
perform better, XGBoost is selected as the base learner of
TrAdaBoost.R2 to model interactions between input weld-
ing process parameters and nugget quality. XGBoost is an
improved algorithm based on a gradient boosting decision
tree (GBDT), which can flexibly handle various types of
data such as discrete variables and continuous variables, and
has strong nonlinear fitting ability and over-fitting prevention
mechanisms [40].

Suppose there is a training set T = Ts ∪ Tt , where Ts
denotes the dataset 1 with the size of n and Tt denotes the
dataset 2 with the size ofm. In the case of containing a limited
number of samples that reflect the distribution of the test set
data, Tt can assist Ts in building a transfer learning model.
Ts is the unknown data domain, where some samples may be
beneficial to transfer and some samples may be harmful to
transfer. The algorithm details of TrAdaBoost.R2 are shown
in Algorithm 2.

D. SELECTION OF EVALUATION METRICS
From the perspective of cost and safety, incorrectly identified
(false positives) and incorrectly rejected (false negatives)
have different effects in different industrial application sce-
narios [41]. The receiver operating characteristic (ROC) and

Algorithm 2 TrAdaBoost.R2
1: Inputs:Base learning algorithm learner g, the maximum

number of iterations N , dataset T = Ts ∪ Tt =
{(xi, yi) |i = 1, . . . , n+ m},n is the size of Ts, m is the
size of Tt .

2: Initialize:Set the initial weight distribution of dataset
T as: h1 =

{
h11, . . . , h

1
i , . . . , h

1
n+m

}
, h1i =

1
n+m ,i =

1, . . . , n+ m.
3: for i = 1 to N do
4: Train learner gt (x) with weight distribution ht .
5: Calculate the average error on Tt , if et ≥ 0.5, stop and

set N = t − 1;else et =
∑n+m

i=n+1
hti |yi−gt (xi)|∑n+m

i=n+1 h
t
i
.

6: Calculate the weight coefficients of Ts and Tt . for Ts,
βt = 1/

√
1+ 2ln (n/N ), for Tt , βt = et/(1− et ).

7: Update weight distribution of dataset T :

ht+1i =

{
htiβ
|yi−gt (xi)|
t , i = 1, . . . , n

htiβ
−|yi−gt (xi)|
t , i = n+ 1, . . . , n+ m

8: end for
9: Outputs:GN (x) is the weighted median of the last
dN/2e, using ln (1/βt) as the weight.

the area under the ROC curve (AUC) are chosen as evaluation
metrics.

In previous studies, precision and accuracywere evaluation
metrics used for classification tasks [15], [42], but due to
extreme sensitivity to data distribution, precision and accu-
racy were not suitable for evaluating class imbalance prob-
lems. The geometric-mean score is the most reliable metric
for imbalanced classification, which can reflect the com-
prehensive performance of models in all classes. Expulsion,
Pseudo soldering, and qualified nugget are equally important
for automobile manufacturing. The classification experiment
uses macro G− mean as the performance evaluation metric.
Define ni as the total number of samples belonging to classCi,
mc(i, j) is the number of samples of class Ci judged as class
Cj, and the recall and precision of class Ci can be defined:

Pi =
mc (i, i)∑k
j=1mc (j, i)

Ri =
mc(i, i)
ni

(4)

Then G− mean is defined as:

G− mean =

(
k∏
i=1

Ri

) 1
k

(5)

The correlation of determination (R2) and root mean square
error (RMSE) are used to evaluate the predictive performance
of the transfer learning model and baseline models. The
formulas for these metrics are as follows:

R2 = 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳ)

2
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RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(6)

where yi is the i-th observed value, ŷi is the i-th predicted
value, and ȳ is the mean of all observed values.

III. EXPERIMENT AND ANALYSIS
In this section, we compared the SPE proposed in this paper
with resampling, ensemble learning, and traditional classi-
fication methods to verify the performance. The SHAP is
applied to identify the influence of input feature parameters
on the predictions. The effectiveness of the TR model is
demonstrated through a series of experiments. Python is used
to implement the algorithms. The property of dataset 1 and
dataset 2 are described in Table 3. and Table 4. including
the minimum, maximum, mean, and standard deviation of
parameters.

TABLE 3. Parameters with Min, Max, Mean and Standard deviation (Std)
of dataset 1.

TABLE 4. Parameters with Min, Max, Mean and Standard deviation (Std)
of dataset 2.

A. IMBALANCED CLASSIFICATION
We randomly select 30% of the complete dataset 1 as the test
set, consisting of 1309 qualified nugget samples, 85 expulsion
samples, and 61 pseudo-soldering samples. The remaining
70% of dataset 1 is used as the training set.

To verify the resampling performance of SPE, four resam-
pling methods are evaluated on the training set, namely,

SMOTE [43], ADASYN [44], RU (Random Under Sam-
pling), and Clean (Neighborhood Cleaning Rule based under-
sampling) [45]. After resampling, to compare with previous
work, we compared 10 machine learning algorithms com-
monly used for RSW quality assessment [8], [41], [46],
[47]. Namely, K-Nearest Neighbors (KNN), support vec-
tor machine (SVM), multi-layer perceptron (MLP), Logistic
Regression, decision tree, random forest, AdaBoost, GBDT,
XGBoost, and LightGBM. Resample on the training set and
test on the test set.

Moreover, we compared the performance of SPE with
other 6 ensemble learning methods widely used in imbalance
classification, namely, SMOTE Boost [48], SMOTE Bag-
ging, Easy Ensemble [49], Balanced Random Forest [50],
RUSBoost [51], andDuple-Balanced Ensemble(DUBE) [52].
We used 10-fold cross-validation on the training set and test
on the test set. Default hyper-parameters are set for all mod-
els, and the number of base estimators of ensemble learning
methods is uniformly set to 50 by default. To reduce random-
ness for all experiments in this work, we compared the aver-
age values of 100 independent experiments. The results of
individual classifiers and resampling algorithms are reported
in Table 5. The results of ensemble learning algorithms are
reported in Table 6.

The analysis based on the experimental results is as
follows:

1) As shown in Table 5., after under-sampling based
on the Clean algorithm, individual classifiers perform
worse, and the potential data samples which might
be important to the training process are discarded.
After resampling such as SMOTE, ADASYN, or RU,
individual classifiers perform better. SVM performs
best after SMOTE oversampling, KNN and MLP per-
form best after ADASYN oversampling, while other
tree-based algorithms perform best after SPE under-
sampling. SMOTE depends on the distance among
local samples, but the distance among data samples
collected from welding production workshops is dif-
ficult to define. Compared with the original samples,
the generated samples may still have noise, because
ADASYN is sensitive to outliers.

2) As shown in Table 6., except SPE, the Balanced Ran-
dom Forest is superior to resampling methods and
other ensemble learning models. Easy Ensemble and
Balanced Random Forest are hybrid algorithms that
combine under-sampling and ensemble. Easy Ensem-
ble only randomly selects the majority class samples,
which will result in the loss of information, while
Balanced Random Forest randomly selects all class
samples. SMOTE Bagging and SMOTE Boost both
integrate SMOTE and ensemble, while SMOTE Boost
performs worse than conventional methods such as
Random Forest, indicating that SMOTE has nega-
tive effects on the ensemble. RUSBoost is a hybrid
approach of undersampling and ensemble learning.
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TABLE 5. Multi-class classification performance (macro G − mean and macro-average AUC) of individual classifier and resampling algorithms.

TABLE 6. Multi-class classification performance (macro G − mean and
macro-average AUC) of ensemble algorithms.

However, RUSBoost performs poorly due to the loss
of potentially high-quality samples.

3) Comparing the experimental results in Table 5. and
Table 6. SPE using XGBoost as base learner shows the
highest macroG−mean and macro-average AUC . This
shows the good generalization ability of SPE, as well
as the potential to deal with imbalanced multi-class
classification problems.

The number of base classifiers is crucial to the overall
performance of the ensemble learning model. Based on the
above experiments, the number of bins is set to 5 (according
to [16]) to compare the effects of different base classifiers on
the final model. The comparison of the number of base clas-
sifiers is shown in Figure 2, taking the average of 100 inde-
pendent experiments for each iteration. With the increase in
the number of base classifiers increases, the macro G−mean
of MLP, AdaBoost, Decision Tree, Random Forest, GBDT,
LightGBM, and XGBoost generally increases, and the macro
G − mean of SVM, KNN, and Logistic Regression does not
change significantly. When the number of base classifiers

FIGURE 2. Performance on the test set of different base classifiers
ranging from 1 to 100.

exceeds 20, the macro G − mean of XGBoost, LightGBM,
GBDT, Decision Tree, and Random Forest remains stable.
After the models converges, SPE using XGBoost as the base
classifier has the best performance.

The testing performance of the SPE algorithm is depicted
in Figure 3. The results show that the RSW quality detected
by themodel has high classification performance, where 57 of
the 61 pseudo soldering nuggets were correctly identified,
1086 of 1309 suitable welding nuggets were correctly iden-
tified, 82 of 85 expulsion nuggets were correctly identified,
and the value of macro G − mean is 0.923 and the value of
macro-average AUC is 0.976.

B. FEATURE IMPORTANCE
To analyze themainwelding parameters that affect the quality
of the weld nugget, SHAP [19] is introduced in this paper.
Combining the trained classifier f and an explanation model
g, SHAP could calculate importance scores of each feature of
every sample, as formulation:

g
(
z′
)
= ϕ0 +

M∑
i=1

ϕiz′i (7)
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FIGURE 3. Testing performance of quality level identification
(a) Confusion matrix. (b) ROC curve.

where M is the number of simplified input features, each
feature with a weight ϕi, z′ε {0, 1}M , the linear sum of the
features is equal to the approximation of f according to local
accuracy.

The impacts of each input feature on the nugget quality
levels identification are depicted in Figure 4, from a global
perspective. The vertical axis of Figure. 4 is the features input
to the classification model, sorted from top to bottom accord-
ing to the degree of influence on the model. The horizontal
axis represents the mean value of the absolute SHAP values
and the SHAP values. If the SHAP value is a positive number,
which means that this feature has a positive impact on the
outputs, and conversely, this means that this feature hurts the
outputs. Red and blue represent the high and low values of
the features, respectively. Each point represents a welding
instance.

The results show that the welding current, electrode force,
and welding time are the main factors influencing the model.
When the current increases, its SHAP value increases, indi-
cating that the larger the current, the greater the positive

FIGURE 4. Impact on model output.

TABLE 7. Accuracy and error for the models on the dataset 2.

influence on the model. Therefore, the current is an important
parameter to determine the quality of the welding nugget.
In contrast, when the electrode pressure takes a higher value,
it negatively affects the model. In this case, the welding
area increases, so the current density and total resistance are
reduced, resulting in heat loss, so the size of the nugget will
decrease, and in severe cases pseudo soldering will occur.

C. TENSILE SHEAR STRENGTH PREDICTION
In this subsection, to evaluate the proposed approach, TrAd-
aBoost.R2 use XGBoost as base learner, we compared the
algorithms applied in previous researchs, which include
Lasso [4], MLP [4], [10], [53], SVR [4], [53], AdaBoost
[4], Decision Tree [4], [12], [53], Random Forest [4], [12],
[53], KNN [4], [53], GBDT, LightGBM, and NGBoost [54].
We performed a 10-fold cross-validation on dataset 2, and
set default hyperparameters for all models. We repeated the
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TABLE 8. Accuracy and error for the models on the dataset 2.

experiment 100 times respectively, and the average results of
R2 and RMSE are reported in Table 7.
To check how the model learns the rules and extends to

unknown data sets, we randomly divide the welding dataset
2 into two parts in the ratio of 90:10. 90% of the data samples
are randomly selected to train the model, and the remaining
10% of the data is used for model validation. Furthermore,
gradually reduce the amount of data in the training set and
increase the number of samples in the test set, 80: 20, 70:
30, 60: 40, 50: 50, 40: 60, 30: 70, and 20: 80 are used as
the ratio between the training set and the test set to divide
the data set. All models use the default parameters, fit the
training set 100 times independently, and take the average
value of the testing results, which is summarized in Table 8.
The visualization of evaluation index comparison on the test
set is shown in Figure 5.

As shown in the cross-validation results in Table 7, the
R2 values of the three models of Lasso, MLP, and SVR are
less than 0.5, and the RMSE values of these three models
are more than 11 KN . Such precision is unacceptable in the
automotive industry. The TrAdaBoost.R2(XGBoost) model
performed best with an R2 value of 0.991 and an RMSE value
of 1.054 KN .

As shown in Table 8, regardless of the data ratio used
for training the model, the R2 values of Lasso, SVR, and
MLP are always lower than 0.5, and the prediction error is
large, which indicates that these three models are not suitable
for predicting the tensile shear strength of RSW. When the

proportion of the training set is 60% or more, the KNN,
LightGBM, DecisionTree, NGBoost, RandomForest, GBDT,
and AdaBoost can maintain high accuracy, When the data
used for training is further reduced, the accuracy of these
models decreases gradually and the generalization ability
weakens.

Regardless of the proportion of data used for training,
the TrAdaBoost.R2 (XGBoost) model consistently performs
best. In the case of less training data, the TrAdaBoost.R2
(XGBoost) model still maintains high accuracy. When
90 pieces of data (accounting for 20% of the total data set) are
used to train the model and 364 pieces of data (accounting for
80% of the total data set) are used for the test, TR performs
best among all models, with an R2 value of 0.952 and an
RMSE value of 2.692 KN . Generally, the above other models
perform better on unknown data when the amount of training
data is larger. In contrast, the TR model performs well on
small samples because enough knowledge is learned from the
source domain.

IV. DISCUSSION
This work reports our investigation of the assessment of
the quality of resistance spot welding using the data-driven
approach.

Since the classification hardness distribution describes the
classification difficulty of samples, the sampling weights for
the majority class (such as suitable welding, expulsion) can
be updated dynamically and potentially useful information
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FIGURE 5. Comparison of R2 and RMSE in test dataset for the models
(a) R2 on test set. (b) RMSE on test set.

can be maintained. There is inevitably noise in the process
of RSW, while the samples generated by over-sampling may
be noisy to the dataset. The self-paced factor can reduce
the impact of noise samples on the training by reducing the
sampling weight of bins with too many samples.

The process parameters required for resistance spot weld-
ing using different materials vary widely, and the data used
in this study included a large number of dissimilar metal
sheets. The inconsistency in the production environment and
differences in materials did not influence the performance
of the transfer learning model. The proposed tensile shear
strength prediction model relies on the availability of histor-
ically labeled samples, where a portion of the source domain
data is not helpful for the target domain. We will try to handle
this problem from the perspective of optimizing the sample
weight update strategy.

In the future, we will add more material properties to
enrich the feature space. More material properties (such as
chemical composition, mechanical properties, and material
coating.) may be fused with process parameters as input
features of the model to improve the accuracy of quality level

identification. Furthermore, the transfer learning method pro-
posed in this paper could be combined with the swarm intel-
ligence method, which in turn further optimizes the welding
process parameters, such as reducing the welding current on
the premise of ensuring the welding quality.

V. CONCLUSION
Although data-driven machine learning algorithms can be
widely used in welding quality prediction, the imbalance of
data categories makes it difficult for ML models to distin-
guish rare welding defects, and limited training data may
lead to over-fitting of ML models, which may mislead fur-
ther process parameter design in the future. To solve these
problems, a classification algorithm based on under-sampling
technology and ensemble learning is proposed to predict the
quality level of RSW. Combining machine learning with the
SHAP exPlanations to evaluate the global and local feature
contributions, and then using the transfer learning algorithm
(TrAdaboost.R2) to learn a model, to predict the tensile shear
strength of nugget with a small number of samples. For the
application of the proposed methods, the experimental results
show that:

1) The SPE identified 95% of pseudo soldering sam-
ples, 95% of expulsion samples, and 83% of suitable
welding samples on the test set, proving SPE has the
best performance among all methods and is suitable
for identifying nugget quality levels. This method can
assist in quality monitoring during RSW.

2) The result of the SHAP technique indicated that weld-
ing current, electrode force, and welding time are the
three most important process parameters affecting the
welding quality of RSW, which is consistent with pre-
vious research.

3) Conventional ML models (such as the random forest)
need more training data to keep high accuracy. Due
to knowledge extracted from the source domain, the
TrAdaBoost.R2 can generalize the knowledge learned
from a small number of training samples to unseen sam-
ples, and there is no underfitting or overfitting observed
in the experiments.

4) The TrAdaBoost.R2model can assist the design of pro-
cess parameters without a lot of expensive destructive
experiments to verify the weldability.
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