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ABSTRACT This work describes a novel nonparametric identification method for estimating impulse
responses of the general two-input single-output linear system with its target application to the individ-
ualization of an empirical model of type 1 diabetes. The proposed algorithm is based on correlation
functions and the derived generalization of the Wiener-Hopf equation for systems with two inputs, while
taking the stochastic properties of the output measurements into account. Ultimately, this approach to
solving the deconvolution problem can be seen as an alternative to widely used prediction error methods.
To estimate the impulse response coefficients, the generalized least squares method was used in order to
reflect nonuniform variances and nonzero covariances of the stochastic estimate of the cross-correlation
functions, hence yielding the minimum variance estimator. Estimate regularization strategies were also
involved, while three different types of penalties were applied. The combination of smoothing, stability,
and causality regularization was proposed to improve the general validity of the estimate and also to lower
its variance. The findings of this identification method are meant to be applied within an eventual predictive
control synthesis for the artificial pancreas, so a procedure for transforming the nonparametric model into the
transfer function-based parametric model was also described. A discussion on the results of a comprehensive
simulation-based experiment concludes the paper.

INDEX TERMS Correlation function, generalized least squares method, minimum variance estimate,
multiple-input single-output systems, nonparametric model, regularization, system identification, type 1 dia-
betes mellitus, Wiener-Hopf equation.

I. INTRODUCTION
Diabetes mellitus is a chronic metabolic disorder character-
ized by the persistent state of elevated blood glucose concen-
tration, also called hyperglycemia, causing various serious
health complications for the patient. In recent decades, this
problem has attracted the growing attention of scientists, even
among control engineers. In this study, we will focus on type
1 diabetes, which is characterized by absolute insulin defi-
ciency and is therefore considered the insulin-dependent form
of this disorder. The main motivation to address the problem
of identifying empirical models of diabetes is to improve the
accuracy of the prediction of hyper and hypoglycemia states,
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as these are the major risks associated with diabetes and its
treatment.

The individualized model is also essential for cor-
rect state estimation [1], [2] and eventual synthesis of a
high-performance controller of glycemia [3], [4] that ulti-
mately heads towards implementation of the so-called arti-
ficial pancreas [5], [6]. In this field there is still a space for
substantial improvement of control performance by means
of supplying as valid and accurate model as possible. This
model personalization should ideally be performed using
only continuous glucose monitoring measurements and dia-
betic diary logs, i.e., passively acquired data without the need
for controlled clinical experiments.

Traditional identification approaches based on minimizing
the single step-ahead prediction error that are typically used
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in combination with simple autoregressive models are char-
acterized by insufficient performance in prediction-oriented
problems and even poorer physiology compliance and gen-
eral validity. Furthermore, the model structure with a sin-
gle autoregressive component cannot cover the significant
differences between the dynamics of insulin administration
and carbohydrate intake. However, there also exist identi-
fication approaches and more appropriate model structures
that address the aforementioned issues, but these usually lack
the analytical closed-form solution of the estimation problem
coming at the expense of increased computational complexity
or the need for involving the iterative optimization methods.
To address these challenges, this paper proposes an identi-
fication method that yields a model with fully independent
dynamics for both inputs, capable of long-term predicting
glycemia, while featuring the parameter estimate in closed
form obtained by evaluating the relatively cheap generalized
least squares method.

The most significant original contributions presented in
this paper can be listed as follows:

• Derivation of the generalized form of the Wiener-Hopf
equation for the system with two inputs

• Formulation of the equivalent linear regression system
• Analysis of the statistical properties of the correlation
function estimate

• Application of the generalized least squares method to
obtain the parameter estimate with minimal variance

• Algorithm for approximating the impulse responses by
the transfer function model

A. STATE OF THE ART
So far, the problem of the so-called patient tailoring or indi-
vidualizing of mathematical models of glycemia dynamics in
subjects with type 1 diabetes has been the subject of extensive
research and various in-silico and in-vivo studies, as will be
briefly reviewed in this section.

Early findings on basic parametric empirical models such
as the autoregressive exogenous (abbr. ARX), autoregressive
moving average exogenous (abbr. ARMAX), and the Box-
Jenkins (abbr. BJ) models identified using state-of-the-art
algorithms minimizing the prediction error [7], were summa-
rized within a comparative study [8] and in a comprehensive
overview [9]. As stated in the latter paper, the parameters
of the ARMAX and the BJ model had to be estimated from
iterative prediction error methods, which are susceptible to
convergence to a local minimum due to non-convexity of the
corresponding optimization problem. Moreover, most studies
have neglected the fact that the two-input ARX model is not
structurally compliant with the basic physiology of diabetes
due to its shared autoregressive dynamics for both inputs.

A similar comparison of the aforementioned stochas-
tic discrete-time models was presented in [10] where the
authors relied on online identification using the recursive
least squares method. However, as mentioned in [11],
the single step-ahead prediction error does not yield ideal

performance in prediction and control-oriented problems. For
this reason, the authors also experimented with a promising
multiple step-ahead prediction error criterion formed as a
nonlinear least squares problem requiring iterative solvers to
be involved.

Concerning the class of continuous-time models, another
research group in [12], [13], and [14] presented an identi-
fication method for a multiple-input single-output transfer
function structure that comprised integrators. The problem
considered there was to find the model parameters that min-
imize the quadratic prediction error criterion using the iter-
ative Gauss-Newton algorithm suitable for such nonlinear
optimization problems, yet it required the gradient and the
Hessian to be supplied. Although this approach is interesting,
the model with integrators fails to predict glycemia for longer
time periods than just postprandial. A similar strategy, yet
for an integrator-less model structure, hand in hand with
the derivative-free Nelder-Mead optimization method, was
reported in [15].

A different higher-order continuous-time model based on
the transfer functionwas proposed in [16], [17], [18], and [19]

The model was tailored to the patient using the proce-
dure based on minimization of the sum of squared residuals
between the measured glycemia and the glycemia obtained
by the model simulation. However, the residuals were a non-
linear function of the model parameters, so the nonlinear least
squares method had to be used.

In the widely acclaimed work [20] a nonlinear model of
glucose kinetics was used in conjunction with the Bayesian
parameter estimation adopted to adjust the time-varying
model parameters. In detail, identification was carried out by
reestimating the model parameters at each iteration employ-
ing glucose measurements from the so-called ‘‘learning
window’’.

In paper [21], a nonlinear system identification approach
was proposed based on the prediction error method applied
to the Hammerstein Box-Jenkins model structure.

Recent findings in our work [22] have led to an iden-
tification strategy that can be characterized as a numeric
minimization of the model multiple step-ahead prediction
error. The compliance of the identified model with the basic
physiology was ensured by performing the identification in
the constrained parameter space of the model poles, zeros,
and gains.

The last decade has witnessed an increased interest in
nonparametric identification methods. The application of
conservative prediction error methods for linear models was
compared to a novel black-box kernel-based nonparametric
approach in [23], [24], and [25]

Paper [26] has attracted our attention because of the
linear single-input nonparametric model identified using
a cross-correlation method with applied filtering of the
impulse-response coefficients via projection onto the
Laguerre basis.

For comparison, this study proposes a novel nonparamet-
ric approach for estimating impulse responses of the linear
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empirical model based on correlation functions and the gener-
alized least squares method. The paper has been divided into
the following sections: In section II, the structure of the two-
input single-output continuous-time nonparametric model is
defined using the convolution integrals and the corresponding
impulse functions. This is followed by section III where the
essential continuous-time integral equations and the general-
ized form of the Wiener-Hopf equation are derived. Discrete-
time equations for the finite-length experiment are presented
in section IV, where the covariance matrix of the estimated
cross-correlation functions is also derived. The equivalent
linear equation system is formed in section V, where the
coefficients of impulse responses are estimated using the
generalized least squares method with the estimate regular-
ization. The same section examines the rationale for each of
the applied regularization strategies. The auxiliary equations
for the parametric model approximation from the identified
nonparametric model can be found in section VI. The exper-
imental setup and the results of the simulation-based case
study aimed at estimating the parameters of an empirical
model of type 1 diabetes are discussed in section VII.

II. MODEL STRUCTURE AND PRELIMINARIES
The fundamental preliminary is the two-input single-output
linear nonparametric model with dynamics defined by its
impulse functions. In the context of empirical modeling
of glycemia dynamics in subjects with type 1 diabetes,
the model output y(t) [mmol/l] represents the deviation
of glycemia G(t) [mmol/l] from its basal value, i.e., the
steady-state value Gb [mmol/l]. Likewise, the first input
u(t) [U/min] denotes the deviation of the insulin administra-
tion rate from the basal insulin dosing rate ub [U/min]. The
second input d(t) [g/min] stands for the carbohydrate intake
rate. The proposed nonparametric model defines the output
y(t) as

y(t) =
∫
∞

0
gu(λ)u(t−λ)dλ

+

∫
∞

0
gd (λ)d(t−λ)dλ+ε(t) , (1)

where gu(t) is the impulse function of the insulin administra-
tion effect, gd (t) is the impulse function of the carbohydrate
intake effect, both representing the convolution kernels.

The stochastic term ε(t)∼N (0, σ 2
ε ) stands for the uncor-

related zero-mean random process, which reflects the contin-
uous glucose monitoring sensor noise [27], [28], as well as
the effects of various unmeasurable disturbances.

III. BASIC ALGORITHM
The problem of estimating the impulse functions gu(t) and
gd (t) of the model (1) is also called the deconvolution prob-
lem. To derive the correlation-based identification method,
the cross-correlation function has to be introduced. The cross-
correlation function Rxz(τ ) of two general continuous-time
infinite-length signals x(t), z(t) is, under the assumption of
signal ergodicity, defined by the following integral transform

for the lag argument τ ∈R [29]

Rxz(τ )=E {x(t+τ )z(t)}= lim
ϑ→∞

1
2ϑ

∫ ϑ

−ϑ

x(t+τ )z(t)dt . (2)

Recall that if x(t)= z(t), then Rxx(τ ) is called the autocorre-
lation function.

Actually, the cross-correlation functions of the model out-
put y(t) with the inputs u(t) and d(t) are essential ones
for our concern. The further presented equations result in
a generalization of the Wiener-Hopf equation for two-input
single-output systems, which was originally derived only for
the single-input case, as can be found in the literature [7],
[30]. According to equation (2), the cross-correlation func-
tion Ryu(τ ) can be derived as

Ryu(τ ) = lim
ϑ→∞

1
2ϑ

∫ ϑ

−ϑ

y(t + τ )u(t) dt . (3)

Substituting y(t) from (1) into (3) yields

Ryu(τ ) = lim
ϑ→∞

1
2ϑ

∫ ϑ

−ϑ

[∫
∞

0
gu(λ)u(t+τ−λ)dλ

+

∫
∞

0
gd (λ)d(t+τ−λ) dλ+ε(t+τ )

]
u(t) dt . (4)

By changing the integral order, one can rewrite (4) to

Ryu(τ ) =
∫
∞

0
gu(λ) lim

ϑ→∞

[
1
2ϑ

∫ ϑ

−ϑ

u(t+τ−λ)u(t)dt
]
dλ

+

∫
∞

0
gd (λ) lim

ϑ→∞

[
1
2ϑ

∫ ϑ

−ϑ

d(t+τ−λ)u(t)dt
]
dλ

+ lim
ϑ→∞

1
2ϑ

∫ ϑ

−ϑ

ε(t+τ )u(t)dt . (5)

Substituting the inner integrals of (5) as the autocorrela-
tion function Ruu(τ − λ) and the cross-correlation function
Rdu(τ−λ), and the last integral as the cross-correlation func-
tion Rεu(τ ), yields the generalized form of the Wiener–Hopf
equation

Ryu(τ ) =
∫
∞

0
gu(λ)Ruu(τ − λ) dλ

+

∫
∞

0
gd (λ)Rdu(τ − λ) dλ+ Rεu(τ ) . (6)

Taking analogous steps, we derived the cross-correlation
function Ryd (τ ) for the second input as

Ryd (τ ) =
∫
∞

0
gd (λ)Rdd (τ − λ) dλ

+

∫
∞

0
gu(λ)Rud (τ − λ) dλ+ Rεd (τ ) . (7)

Notice the apparent symmetry in equations (6) and (7).
Since the signal ε(t) is supposed to be the uncorrelated

noise, the cross-correlation functions Rεu(τ ), Rεd (τ ) in equa-
tions (6), (7) are simply zero, but only under the assumption of
infinite-length experiment and the noise ergodicity. However,
for a real experiment, a finite observation time ϑ 6= ∞ is
assumed instead. Consequently, all the cross-correlation and
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the autocorrelation functions in (6) and (7) have to be replaced
with their estimates R̃uu(τ ), R̃dd (τ ), R̃ud (τ ), R̃du(τ ), R̃yu(τ ),
R̃yd (τ ) respectively [29]

R̃xz(τ ) =
1

ϑ − τ

∫ ϑ−τ

0
x(t + τ )z(t) dt . (8)

Needless to say that the cross-correlation functions R̃εu(τ ),
R̃εd (τ ) are no longer zero in this case, so equations (6), (7)
will preserve their stochastic character.

IV. DISCRETE-TIME FORM
For practical data-driven identification, the input and output
signals are sampled uniformly with the sample time Ts and
therefore have a discrete-time nature. If x(t) is a general
continuous-time signal, then we introduce the notation x(k)=
x(kTs) where k ∈N represents the sample index.
Moreover, we relate the coefficients of the discrete-time

impulse function gi to the continuous-time impulse function
g (t) such that

gi = g (iTs)Ts . (9)

Accordingly, the continuous-time model (1) will be trans-
formed into the corresponding discrete-time form. The con-
volution integrals in (1) can be approximated by the finite
summations, while the infinitesimal element dλ is replaced
by Ts > 0, which is being absorbed into gn according to (9),
yielding the finite impulse response model

y(k) =
Mu∑
i=0

gui u(k−i) +
Md∑
i=0

gdi d(k−i) + ε(k) , (10)

where Mu and Md are the assumed lengths of the impulse
response coefficients vectors gu and gd , respectively.

Similarly, the integral in the correlation function (8) can be
approximated by the finite summation [29], [31]

R̃xz(nTs) ≈ R̂xz(n) =
Ts

N − n

N−n∑
k=1

x(k+n)z(k) , (11)

whereN denotes the number of samples of the processed time
series x, z and n∈Z is the integer lag argument satisfying the
condition n<N . In addition, the symmetry property

R̂xz(−n) = R̂zx(n) (12)

holds for (11) [29]. The discrete-time form of the generalized
Wiener-Hopf equations (6) and (7) can be derived as

R̂yu(n) =
Mu∑
i=0

gui R̂uu(n−i)+
Md∑
i=0

gdi R̂du(n−i)+R̂εu(n) ,

(13)

R̂yd (n) =
Md∑
i=0

gdi R̂dd (n−i)+
Mu∑
i=0

gui R̂ud (n−i)+R̂εd (n) ,

(14)

where n=0 . . .P is the lag argument. Note, that themaximum
lag number P should satisfy the condition

P� N . (15)

A. STATISTICAL PROPERTIES OF CROSS-CORRELATION
FUNCTIONS
The cross-correlation functions R̂εu(n), R̂εd (n) in equations
(13), (14) can not be directly estimated in practice because
the noise term ε is unmeasurable. However, we may at least
analyze the statistical properties of these cross-correlation
functions. To this end, we will introduce the random vectors
ζ εu ∈ RP+1×1, ζ εd ∈ RP+1×1 comprising the theoretical
R̂εu(n), R̂εd (n) for different values of the argument n as

ζ εu =
[
R̂εu(0) R̂εu(1) . . . R̂εu(P)

]T
, (16a)

ζ εd =
[
R̂εd (0) R̂εd (1) . . . R̂εd (P)

]T
. (16b)

The vectors ζ εu and ζ εd can be joint into

ζ =

[
ζ εu

ζ εd

]
. (17)

Taking the expectancy operator to R̂εu(n) in the terms of
equation (11) yields

E
{
R̂εu(n)

}
=

Ts
N − n

E

{
N−n∑
k=1

ε(k+n)u(k)

}

=
Ts

N − n

N−n∑
k=1

E
{
ε(k+n)

}
u(k) = 0 . (18)

Note, that the above property holds also for R̂εd (n). With
regard to this finding, it can be deduced that the mean of the
vector ζ defined by (17) is the zero vector, hence E {ζ }=0.
The covariance matrix Q∈R2(P+1)×2(P+1) of the vector ζ

can be divided into four block submatrices and is defined as

Q=
(
Qεεuu Qεεud

Qεεdu Qεεdd

)
=E

{(
ζ εuζ εuT ζ εuζ εd

T

ζ εdζ εuT ζ εdζ εd
T

)}
(19)

The i-th row and the j-th column element of the covariance
matrix Qεεud

∈ RP+1×P+1 can be derived according to the
correlation function estimate (11) and the definitions (16a),
(16b) of the vectors ζ εu, ζ εd as

Qεεud
ij = E

{
R̂εu(i)R̂εd (j)

}
=

Ts2

(N−i) (N−j)
E


N−i∑
k=1

ε(k+i)u(k)

N−j∑
l=1

ε(l+j)d(l)

 .

(20)

By customizing a formula that can be found in [32], the
following identity for two general random vectors X and Y
is crucial at this point.

E

{
m∑
k=1

Xk
n∑
l=1

Yl

}
=

m∑
k=1

n∑
l=1

E {XkYl} (21)

Applying the above identity, equation (20) reduces to

Qεεdu
ij =

Ts2

(N−i) (N−j)

N−i∑
k=1

N−j∑
l=1

E
{
ε(k+i)u(k)ε(l+j)d(l)

}
. (22)
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Because u and d are deterministic, equation (22) can be
rearranged as

Qεεud
ij =

Ts2

(N−i) (N−j)

N−i∑
k=1

N−j∑
l=1

E
{
ε(k+i)ε(l+j)

}
u(k)d(l) .

(23)

According to the definition (2), assuming E
{
ε(k+i)ε(l+j)

}
=

Rεε(k+i−l−j) yields

Qεεud
ij =

Ts2

(N−i) (N−j)

N−i∑
k=1

N−j∑
l=1

Rεε(k+i−l−j)u(k)d(l) .

(24)

Since ε is considered uncorrelated noise, its autocorrelation
function is the Dirac delta function

Rεε(w) =

{
σ 2
ε w = 0

0 w 6= 0
(25)

with the argument w= k+ i− l− j and the measure equal to
the noise variance σ 2

ε [29], [33]. Thanks to this property, the
double summation in (24) ∀i ≥ j simplifies to

Qεεud
ij =

Ts2

(N−i) (N−j)
σ 2
ε

N−i∑
k=1

u(k)d(k+i−j) . (26)

In the case i< j complementary to (26), the formula can be
obtained as

Qεεud
ij =

Ts2

(N−i) (N−j)
σ 2
ε

N−j∑
l=1

d(l)u(l+j−i) . (27)

One may notice that Qεεud
ji = Qεεdu

ij what implies that

Qεεdu
=
(
Qεεud

)T. The above steps can be taken to derive
the remaining submatrices Qεεuu, Qεεdd of (19) yielding the
formulas

Qεεuu
ij =

Ts2

(N − i) (N − j)
σ 2
ε

N−i∑
k=1

u(k)u(k+i−j) , (28)

Qεεdd
ij =

Ts2

(N − i) (N − j)
σ 2
ε

N−i∑
k=1

d(k)d(k+i−j) . (29)

Since the covariance matrix (19) is symmetric, the submatri-
ces Qεεuu, Qεεdd are also symmetric, implying that Qεεuu

ji =

Qεεuu
ij and Qεεdd

ji =Qεεdd
ij .

Notice that increasing the lag argument n in estimate (11)
truncates the summation interval to N − n, what yields its
higher variance, so this estimate should be considered less
accurate and confident.

V. ESTIMATE OF IMPULSE RESPONSE COEFFICIENTS
For estimating the impulse response coefficients of the non-
parametric model (10) we will utilize the generalized least
squares method [33], [34] applied to the derived discrete-
timeWiener-Hopf equations (13), (14). The parameter vector
g∈RMu+Md+2×1 can be formally noted as

g =
[
gu

gd

]
, (30)

where the subvectors gu ∈ RMu+1×1 and gd ∈ RMd+1×1 are
defined as

gu =
[
gu0 g

u
1 g

u
2 . . . g

u
Mu

]T
, (31a)

gd =
[
gd0 g

d
1 g

d
2 . . . g

d
Md

]T
. (31b)

The cross-correlation functions R̂yu(n), R̂yd (n) from the
Wiener-Hopf equations (13),(14), respectively, have to be
reshaped into the equivalent matrix form (32), as shown at
the bottom of the page, assuming the lag argument n=0 . . .P.
The symmetry property (12) was also accounted in (32). The
equation system (32) is overdetermined if condition

Mu +Md < 2P (33)

holds, while condition (15) must be satisfied as well.
The choice of the maximum lag number P should be based

primarily on the character of the obtained cross-correlation
functions R̂yu(n), R̂yd (n). If these cross-correlation functions
converge at some n, then increasingP over this value typically
does not have any positive impact on the estimate quality.
Also, the number of processed samples N should be taken
into account, since increasing the maximal lag argument P
truncates the summation interval in the estimate (11) to N−P,
thus making it less accurate and highly uncertain. It is a good
practice for P to not exceed N

2 .
Concerning the lengths Mu, Md of the estimated response

coefficients vectors, their choice should reflect the sample



R̂yu(0)
R̂yu(1)
...

R̂yu(P)
R̂yd (0)
R̂yd (1)
...

R̂yd (P)


=



R̂uu(0) R̂uu(1) . . . R̂uu(Mu) R̂du(0) R̂ud (1) . . . R̂ud (Md )
R̂uu(1) R̂uu(0) . . . R̂uu(Mu−1) R̂du(1) R̂du(0) . . . R̂ud (Md−1)
...

...
. . .

...
...

...
. . .

...

R̂uu(P) R̂uu(P−1) . . . R̂uu(P−Mu) R̂du(P) R̂du(P−1) . . . R̂du(P−Md )
R̂ud (0) R̂du(1) . . . R̂du(Mu) R̂dd (0) R̂dd (1) . . . R̂dd (Md )
R̂ud (1) R̂ud (0) . . . R̂du(Mu−1) R̂dd (1) R̂dd (0) . . . R̂dd (Md−1)
...

...
. . .

...
...

...
. . .

...

R̂ud (P) R̂ud (P−1) . . . R̂ud (P−Mu) R̂dd (P) R̂dd (P−1) . . . R̂dd (P−Md )





gu0
gu1
...

guMu

gd0
gd1
...

gdMd


+



R̂εu(0)
R̂εu(1)
...

R̂εu(P)
R̂εd (0)
R̂εd (1)
...

R̂εd (P)


(32)
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time and the anticipated dynamics of the system identified
while covering the dominant part of the impulse response.
We recommend adjusting M such that the last estimated
element ĝM is below 10% of the peak value of the estimated
impulse response.

The full equation system (32) can be written in a compact
form (

R̂yu

R̂yd

)
=

(
R̂uu R̂du

R̂ud R̂dd

)(
gu

gd

)
+

(
ζ εu

ζ εd

)
, (34)

and even more simplified as

R̂Y = R̂Ug+ ζ . (35)

The structures of submatrices R̂uu ∈ RP+1×Mu+1, R̂dd ∈

RP+1×Md+1, R̂ud ∈ RP+1×Mu+1, R̂du ∈ RP+1×Md+1 and
vectors R̂yu ∈ RP+1×1, R̂yd ∈ RP+1×1 in (34), as well as
matrix R̂U ∈R2(P+1)×Mu+Md+2 and vector R̂Y ∈R2(P+1)×1

in (35) result from the full equation system (32), while the
random vectors ζ εu, ζ εd and ζ were defined in (17).
It is necessary to say that after some detailed investi-

gation, we found some structural similarities between the
equation system (32) and the equations published in [35],
yet the authors have taken different steps within its deriva-
tion and also fully neglected the stochastic nature of the
cross-correlation functions. Moreover, the equation system
presented in the aforementioned paper was not proposed to
be solved in the least squares sense but as a regular linear
equation system, so neither the regularization strategies were
applied.

The following assumption needs to be added if one wants
to study the method presented in [35]

Mu +Md = 2P . (36)

The above assumption implies that the length of the vector
R̂Y ∈ RMu+Md+2×1 is equal to the number of estimated
parameters and R̂U ∈ RMu+Md+2×Mu+Md+2 is a square
matrix, so the parameter estimate can be obtained as the
solution of the regular linear equation system (35)

ĝ = R̂−1U R̂Y . (37)

On the other hand, in [36] a similar correlation method
was generalized for the multiple-input multiple-output sys-
tem but under the theoretical assumption of random uncor-
related input signals. Although this assumption significantly
simplified problem formulation and solution, it automatically
hampered the application of this method to identify empirical
models of diabetes, as using random sequences to excite bio-
logical systems is simply unfeasible or extremely dangerous.

For the least squares-based estimation of the impulse
response coefficients vector ĝ, the residuals vector e ∈
R2(P+1)×1 has to be introduced as

e=
[
eyu

eyd

]
=R̂Y−R̂U ĝ=

[
R̂yu−R̂uuĝu−R̂duĝd

R̂yd−R̂dd ĝd−R̂ud ĝu

]
. (38)

The cost function of the generalized least squares method
modified by adding the regularization of the estimate is
defined by the quadratic form

J (ĝ)=
1
2

[(
R̂Y−R̂U ĝ

)T
Q−1

(
R̂Y−R̂U ĝ

)
+ĝT3ĝ

]
(39)

with respect to the estimated parameter vector ĝ. In the above
equation,Q is the covariance matrix of the noise vector ζ and
3 ∈ RMu+Md+2×Mu+Md+2 is a positive-definite symmetric
regularization matrix, the design of which shall be clarified
later.

An intuitive rationale for using the generalized least
squares method is that it induces a ‘‘weighting’’ and ‘‘decor-
relating’’ effect on the residuals by the square root of the
inverse covariance matrix Q−1 of the noise vector ζ . If the
variance of the noise in the linear regression problem is not
uniform, then samples with larger variance should be less
trusted when calculating the parameter estimate than those
with lower variance.

The gradient of the cost function (39) with respect to the
estimated vector ĝ can be derived as

∇ĝJ (ĝ) = −R̂T
UQ
−1
(
R̂Y − R̂U ĝ

)
+3ĝ . (40)

According to the optimality condition ∇ĝJ (ĝ) = 0, the
optimal parameter estimate ĝ can be obtained in a closed form

ĝ =
(
R̂T

UQ
−1R̂U +3

)−1
R̂T

UQ
−1R̂Y . (41)

One of the emerging advantages of the presented method
over traditional prediction error methods is that the compu-
tational complexity and dimensions of the problem do not
depend on the number of processed samples N .

A. ESTIMATE REGULARIZATION
Regularization is applied in order to involve some prior
knowledge of the system being identified in the estimate and
also to lower the estimate variance. Ultimately, the regular-
ization term ĝT3ĝ in the cost function (39) acts as a penalty
for specific characteristics of the system [37] or can be
seen as penalizing certain parameters describing ‘‘unlikely’’
systems [38]. It should be noted that the reduction in the
variance of the parameter estimate induced by regularization
comes at the expense of an emerging bias, so a bias–variance
trade-off must always be made [39].

One way of involving the prior knowledge within the
regularization is via the covariance matrix of the system
parameters [39], yet this strategy obviously requires to ever
have this prior knowledge, which may be unfeasible in many
applications, so in this paper we will rather choose heuristic
regularization strategies.

The particular effect of regularization depends on the linear
transform operator L ∈Rn0×Mu+Md+2 and the diagonal scal-
ing matrix 0 ∈Rn0×n0 , so one can theoretically decompose
the matrix 3 as [37]

ĝT3ĝ =
(
Lĝ
)T
0Lĝ = ĝTLT0Lĝ , (42)
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where 0 is a diagonal scaling matrix

0 = diag(γ ) . (43)

If multiple types of penalty are combined, the regularization
matrix 3 results from the sum 3 = 3A

+3B
+3C . In the

framework of this paper, three penalties are assumed. In par-
ticular, the smoothing operation and regularization to provide
asymptotic stability and causality are applied to the estimated
impulse response coefficients vector ĝ.
The aforementioned smoothing effect can be achieved by

penalizing the sum of the squared differences of the esti-
mated impulse response coefficients vector ĝ. In the fre-
quency domain, this operation can be interpreted as low-pass
filtering of the impulse function ĝn [37], since the penalty
kernel h =

(
1 −1

)
represents a simple high-pass filter. The

corresponding linear transform LA ∈RMu+Md×Mu+Md+2 can
be formed as [37]

LA=
(
Ls 0
0 Ls

)
Ls=diag (h, . . . ,h) . (44)

However, the undesired side effect of this regularization
is the suppression of the typical peak of the impulse func-
tion. Since there is a general expectation of a stable impulse
response with typically larger changes at the beginning and a
relatively slow exponential decay character, the scaling vector
of the regularizationmatrix3Amay comprise the coefficients
of a geometric series

γ
(?)
i = a qi−1 for u→ ? and d → ? (45)

with q > 1 and 10−3 < a < 102. In this way, the
regularization-induced distortion of the impulse function
could be minimized while retaining the desired smoothing
effect. The parameter a proportionally affects the overall
strength of the smoothing effect, but choosing too high values
typically causes a significant deformation of the impulse
response and hence induces an unacceptable bias, so this
parameter should be adjusted carefully. The coefficient q
should be chosen with regard to the anticipated dynamics of
the identified system, while the larger q corresponds to faster
dynamics, and the smaller q is better for slower systems.
The second regularization strategy is proposed to ensure

the asymptotic stability of the identified model. In general,
the continuous-time impulse response model (1) is stable if
limt→∞ g (t) = 0. However, the discrete-time finite impulse
response model (10) is structurally stable, even if gM 6=0, but
its asymptotic stability limM→∞ gM = 0 must be guaranteed
anyway. Consequently, a quadratic penalty can be used for
this purpose, while the linear transform LB is equal to the
unit matrix LB= I , and the scaling vector γ B may comprise
elements of a geometric series (45) with q > 1 and 10−3 <
a < 102 in order to reflect the exponential decay nature of
the impulse response of a stable aperiodic system [39]. The
tuning rules for the coefficients a and q are similar to those
proposed for the smoothing regularization.

The last regularization strategy issues the causality of
the identified model (10), since for a strictly causal model

g0 = 0 is demanded. Instead of implementing it as a hard
constraint, a dedicated quadratic penalty may be applied. The
transform matrix will be simply LC = I , and the scaling
vector γ C should comprise a large value at the positions
corresponding to ĝ0.

B. PARAMETER ESTIMATE UNCERTAINTIES
In addition to the optimal parameter estimate ĝ determined
according to (41), the confidence interval that represents
the parameter uncertainties may also be useful to assess the
identification results.

The covariance matrix P ∈ RMu+Md+2×Mu+Md+2 of the
estimate ĝ can be derived starting from the definition

P=
(
Pu Pud

Pdu Pd

)
=E

{(
ĝ−E

{
ĝ
}) (

ĝ−E
{
ĝ
})T}

. (46)

Applying the expectancy operator to the estimate (41) while
substituting R̂Y from (35) results into

E
{
ĝ
}
=

(
R̂T

UQ
−1R̂U+3

)−1
R̂T

UQ
−1
(
R̂Ug+E {ζ }

)
.

(47)

As was shown in (18), the noise vector ζ is zero-mean, what
yields

E
{
ĝ
}
=

(
R̂T

UQ
−1R̂U +3

)−1
R̂T

UQ
−1R̂Ug . (48)

The above equation implies that the regularization makes
the estimate biased, so conversely, in the limit case of (48)
lim3→0 E

{
ĝ
}
=g the estimate would be unbiased.

Continuing deriving the covariance matrixP as outlined in
(46), the difference ĝ−E

{
ĝ
}
can be substituted according to

(35), (41) and (48) as

ĝ− E
{
ĝ
}
=

(
R̂T

UQ
−1R̂U +3

)−1
R̂T

UQ
−1ζ , (49)

what along with the covariance matrix Q of the noise vector
ζ from (19) yields (50), as shown at the bottom of the next
page. Thanks to the generalized least squares method, the
covariance matrix P is minimal [34], [33] and its formula
is

P =
(
R̂T

UQ
−1R̂U +3

)−1
× R̂T

UQ
−1R̂U

(
R̂T

UQ
−1R̂U +3

)−1
(51)

Concerning the confidence interval of ĝ, one may assume the
standard normally distributed random vector r

r =
(
ĝ− E

{
ĝ
})
�
√
diag(P) , (52)

where
√
diag(P) is the element-wise square root of the diag-

onal vector of the matrix P and � denotes the element-wise
division.

The 1−α probability of (52) gets

1−α=P
(
−r1− α2 ≤

(
ĝ−E

{
ĝ
})
�
√
diag(P) ≤ r1− α2

)
(53)
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SubstitutingE
{
ĝ
}
form (48) into (53) yields (54), as shown at

the bottom of the page. Multiplying the inequality in (54) by

9 = I+
(
R̂T

UQ
−1R̂U

)−1
3 one gets the confidence interval(

ĝ, ĝ
)
as

ĝ/ĝ = 9
(
ĝ±

√
diag(P)r1− α2

)
, (55)

whence the quantile r1− α2 satisfies P
(
r1− α2

)
= 1− α

2 of
the cumulative distribution function P of the standard normal
distribution.

VI. PARAMETRIC MODEL APPROXIMATION
The nonparametric discrete-time model (10) with the coeffi-
cients of impulse responses identified as ĝu, ĝd can be approx-
imated by the parametric transfer function-based model

y(k) =
Bu(z)
Au(z)

u(k) +
Bd (z)
Ad (z)

d(k) + ε(k) , (56)

where the input and output signals are equivalent to those of
the nonparametric model (1).

We may unwind the polynomials of the model (56) as

A?(z) = 1+ a?1z
−1
+ . . . a?nA? z

−nA? (57a)

B?(z) = b?1z
−1
+ b?2z

−2
+ . . . b?nB? z

−nB? , (57b)

where nAu , nBu denote the orders of the insulin administration
effect submodel and nAd , nBd are the orders of the carbohy-
drate intake effect submodel.

The strategy to be presented can be seen as the second
phase of the full-featured two-step identification procedure
for the transfer function-based model (56). The traditional
direct approaches to identify the parametric model (56)
include the instrumental variables method [7] or the numeri-
cal minimization of the prediction error [22].

The rationale for choosing the empirical model of glycemia
dynamics (56) having different feedback (poles) for both
inputs is based on the physiology of type 1 diabetes, since
the administered insulin and the consumed carbohydrates
are metabolized mostly in different body compartments
[28], [40], so this assumption automatically excludes the
ARX model.

To separately estimate the parameter vector θ? ∈

RnB?+nA?×1 for each partial transfer function of the parametric
model (56), the generalized least squares method can conve-
niently be adopted also in this case.

θ? =
[
b?1 . . . b

?
nB?

a?1 . . . a
?
nA?
]T

(58)

One can derive the linear regression system

H?θ̂? = ĝ? + χ? for u→ ? and d → ? , (59)

where χ? ∈ RM?+1×1 is the uncertainty of the impulse
response estimate and the regression matrix H?

∈

RM?+1×nB?+nA? is defined as

H?
=


1 0 . . . 0 −ĝ?0 0 . . . 0
0 1 . . . 0 −ĝ?1 −ĝ?0 . . . 0
...
...
. . .

...
...

...
. . .

...

0 0 . . . 0 −ĝ?M?−1 −ĝ
?
M?−2

. . . −ĝ?M?−nA?

 (60)

The cost function of the generalized least squares method for
this problem gets [33], [34]

J
(
θ̂?
)
=

1
2

(
ĝ? − H?θ̂?

)T
P?−1

(
ĝ? − H?θ̂?

)
. (61)

The optimal parameter estimate can be obtained as

θ̂? =
(
H?TP?−1H?

)−1
H?TP?−1ĝ? , (62)

where the covariance submatrices Pu, Pd were defined in
(46) and (51). The estimate (62) has to be evaluated separately
for both vectors ĝu, ĝd estimated from the first step and both
submodels of (56).

The flow diagram summarizing the important steps and
equations of the proposed complex identification algorithm
is depicted in Fig. 1.

By a holistic comparison of the proposed method with
other approaches, we summarized the following remarks.
Concerning the prediction error methods for discrete-time
models, the commonly used single step-ahead prediction
error criterion basically cannot provide a valid model with
good prediction performance, whereas the improved mul-
tiple step-ahead prediction error criterion requires iterative
numeric optimization algorithms to be involved. Moreover,
the compliance of the thus identified model with the basic

P = E

{[(
R̂T

UQ
−1R̂U+3

)−1
R̂T

UQ
−1ζ

] [(
R̂T

UQ
−1R̂U+3

)−1
R̂T

UQ
−1ζ

]T}

=

[(
R̂T

UQ
−1R̂U+3

)−1
R̂T

UQ
−1
]
E
{
ζ ζT

} [(
R̂T

UQ
−1R̂U+3

)−1
R̂T

UQ
−1
]T

=

(
R̂T

UQ
−1R̂U+3

)−1
R̂T

UQ
−1QQ−1R̂U

(
R̂T

UQ
−1R̂U+3

)−1
(50)

1− α = P
(
ĝ−

√
diag(P)r1− α2 ≤

(
R̂T

UQ
−1R̂U+3

)−1
R̂T

UQ
−1R̂Ug ≤ ĝ+

√
diag(P)r1− α2

)
(54)
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FIGURE 1. Flow diagram of the proposed identification algorithm.

physiology usually cannot be ensured under all circum-
stances. On the other hand, identification strategies for
continuous-time models that are mostly based on minimizing
the long-term model prediction error criterion lead to the for-
mulation of nonlinear optimization problems that require spe-
cial iterative solvers. Due to the correlation-based approach,
the model identified using the proposed method should theo-
retically perform accurate long-term prediction of glycemia,
while compliance with physiology can be ensured by apply-
ing a wide variety of regularization techniques. It is essential
to mention the existence of an analytical closed-form solution
of the parameter estimation problem that arose from the gen-
eralized least squares method formulation of the identifica-
tion problem. Speaking of computational complexity, one of
the nonparametric identification methods discussed in the lit-
erature review was based on a solution of the Tikhonov-type
variational problem, so there was a lack of analytical solution

also in this case. Comparing the proposed nonparametric
method for estimating impulse responses to the full individ-
ualization of a complex physiology-based simulation model,
it can be concluded that the proposed method requires only
basic input-output data in the form of diabetic diary and
continuous glucose measurements, whereas to identify a rel-
atively large set of parameters of the simulation model, spe-
cialized clinical experiments involving radioactive tracers or
even invasive measurements have to be used.

VII. CASE STUDY
As outlined in the title, the target application domain of the
proposed identification algorithm is the empirical model of
glycemia dynamics in patients with type 1 diabetes. Empirical
models provide a very simplified description of actually com-
plex physiological phenomena that involve glucose kinetics,
insulin-glucose interaction, insulin absorption, or carbohy-
drate ingestion. However, the main advantage of empirical
models is that they can be individualized using only passive
experiment diabetic data available from free-living condi-
tions, namely the continuous glucose monitoring readings
and the basic diabetic diary. In this section, virtual diabetic
data generated by a complex physiology-based simulation
model will be used for the validation of the proposed iden-
tification algorithm.

A. DIABETIC DATA
A typical diabetic dataset comprising information on admin-
istered insulin boluses and carbohydrate intake in the form
of a diabetic diary poses a specific challenge concerning
the identifiability of empirical models. During conventional
insulin therapy, the insulin dose is determined according to a
simple rule called the bolus calculator. The bolus calculator
utilizes the information on the current finger-stick glycemia
measurementG [mmol/l] and the expected carbohydrate con-
tent of the meal CHO [g] to advise the compensating insulin
bolus size B [U] according to the following formula [41], [42]

B =
G− Gw
IS

+
CHO
ICR

, (63)

where IS [mmol/l/U] is the insulin sensitivity parame-
ter, ICR [g/U] is the insulin-carbohydrate ratio parameter
and Gw [mmol/l] is the target glycemia, usually chosen as
Gw = 5.5 mmol/l.
Since the premeal bolus strategy is generally recommended

by physicians [43], insulin is typically administered tB min-
utes before the corresponding meal intake [42]. The adverse
characteristics of the traditional bolus calculator (63) is that
the first input signal u(t) is defined as a linear combination of
the second input d(t) and the output y(t). Unfortunately, this
linear dependence and the fixed meal-insulin timing cause
both inputs u(t) and d(t) to be highly correlated and result
in poor excitation quality and ultimately in an ill-conditioned
identification problem [9]. A solution to this problem is to
add a normally distributed random component η∼N

(
0, σ 2

B

)
to the insulin bolus. Consequently, the bolus calculator (63)
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can be reshaped as

u(t)=

{
y(t)+Gb−Gw

IS +
d(t+tB)
ICR +η(t) d(t+tB) 6=0

0 else
, (64)

defining the insulin administration rate signal u(t) using the
signals d(t), y(t) featured in section II.
The glycemia response for this experiment was obtained

in-silico, using the complex physiology-based nonlinear sim-
ulation model, discussed in [44] and [45]. The available mean
population parameters reported in [44] were adopted, while
some adjustments had to be made in order to simulate the
metabolic specifics of type 1 diabetes [46]. The basal state
of the model was calculated according to the basal glycemia
Gb=6 mmol/l and the corresponding basal insulin adminis-
tration rate ub=0.01U/min. It is worth noting that this model
was accepted by the Food and Drug Administration agency
as a substitute to animal trials for the preclinical testing of
control strategies in artificial pancreas studies [47], so the
results can be considered quite realistic and credible.

The data acquisition experiment was designed to mimic the
regular insulin treatment of a type 1 diabetic subject during
the 6-day period with an overall number of 25 meals and a
total carbohydrate amount of 433 g. The virtual continuous
glucose monitoring readings were sampled with the sample
time Ts= 20 min and the total length of the experiment was
6×60×24 min resulting in the number of samples N =433.
The glycemia measurements were distorted by the additive
white noise with the standard deviation σε=0.1 mmol/l.

The insulin treatment was executed according to the mod-
ified bolus calculator (64) with the parameters adjusted as
IS=15 mmol/l/U, ICR=8.0 g/U and tB=20 min. The not
less important parameter σ 2

B , representing the variance of the
random bolus component, was chosen as σ 2

B = 0.05 U since
this value turned out to be a reasonable trade-off between
system excitation and patient safety.

The resulting input-output identification diabetic dataset
is depicted in Fig. 2 where one can see the noisy nature of
the glycemia measurements as well as the time advance of
insulin administrations before the corresponding meal intake
impulses. It can also be observed that the ratio of the input
impulse signals u(t)/d(t) is variable, as this is highly desired
and vital for ensuring the identifiability of multiple-input
systems.

B. RESULTS
Concerning the tuning of the identification algorithm, the
assumed number of lags P in the equation system (32) was
chosen as P= 170 to satisfy condition (15). Based on rough
expectations about physiological responses of the human
body, the lengths of the identified impulse responses were
chosen asMu=50,Md=50, while satisfying condition (33).
The scaling vector γ A figuring in the regularization matrix
3A will be formed by two geometric series (45) as defined in
(65). The scaling vector γ B for the regularization matrix 3B

will also comprise the geometric series (45) as documented

in (66).

γ A = 0.5
[
1 1.05 . . . 1.05Mu−2 1 1.06 . . . 1.06Md−2

]T
(65)

γ B = 0.1
[
1 1.02 . . . 1.02Mu−2 1 1.07 . . . 1.07Md−2

]T
(66)

The vector γ C for the regularization matrix 3C was chosen
as

γ C =
[
5 0 . . . 0 5 0 . . . 0

]T
. (67)

The resulting combined regularization matrix 3 was calcu-
lated as the sum of partial regularization matrices, and its
entries can be seen in Fig. 3 where one can notice the diagonal
entries increasing with the index number, the presence of
small negative off-diagonal entries induced by the smoothing
regularization, and also a dominant value of the first diagonal
element due to the causality regularization.

The inverse Q−1 of the covariance matrix of the noise
vector ζ was determined from the available input signals u(k),
d(k) of the identification dataset and its entries are visualized
as a colormap in Fig. 4. In Fig. 4 one can see the matrixQ−1
having a quasi-diagonal structure implying that the effect of
residuals weighting in the generalized least squares method
is more prominent than the decorrelating effect. Moreover,
the block submatrices corresponding to both submodels have
significantly different magnitudes of the elements, and it can
also be as that the diagonal entries are decreasing with the
index number, what can be interpreted as that the estimates
of the correlation functions with the higher argument are less
trusted when estimating the impulse functions.

The impulse response coefficients vectors of the model
(10) were estimated in terms of equation (41). In addition
to the optimal solution ĝ, the confidence interval ĝ, ĝ for
α = 0.05 was determined according to equation (55) while
the obtained results are summarized in a graphical form in
Fig. 5. The presented results show that both estimated impulse
responses represent a stable system with the aperiodic nature,
as well as that the coefficients keep their sign uniform, what
overally makes the estimate physiology compliant. There can
also be observed a slower and longer-lasting effect of insulin
administration with a peak at approximately 300 minutes
compared to a faster and shorter-lasting effect of carbohydrate
intake, which peaked at approximately 200 minutes.

We decided to compare the performance of the proposed
strategy that is based on solving the overdetermined equation
system (32) as the linear regression problem in the least
squares sense (39) to the approach based on direct solution
(37) of regular linear equation system under the assumption
(36). The estimate of impulse responses obtained according
to the latter strategy adopted from the referred paper [35] is
depicted in Fig. 6. There can be observed apparent distortion
and noise in the estimated impulse responses, concluding that
this relatively straightforward method cannot ensure general
validity of estimate making it insufficient for our concern.
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FIGURE 2. Input-output diabetic dataset used for identification.

FIGURE 3. Entries of matrix 3.

In the context of assessing the qualitative benefits of the
generalized least squares method, the impulse response coef-
ficients estimated assuming Q−1 = I are plotted in Fig. 7
to demonstrate the deterioration of estimate quality if the
ordinary least squares method is applied. It can be concluded
that the estimated impulse responses were less organized and
showed poor compliance with the physiology despite applied
regularization.

The next comparison is focused on the importance of
regularization as one can observe significant qualitative dif-
ferences between the regularized estimate in Fig. 5 and the
non-regularized estimate in Fig. 8. In detail, the smoothness
of the non-regularized estimate was not satisfactory, so the
impulse responses did not have a realistic shape that would

correspond to the physiology-based expectations. Due to the
lack of regularization and the consequent increased variances
of the estimate, the confidence intervals were significantly
wider.

The orders of the empirical parametric model (56) were
chosen as nBu=4, nBd =3, nAu=4, nAd =3 for the parametric
approximation (59) and its solution (62). The obtained results
are documented in Fig. 9 in a graphical form via plotting
the impulse responses of the parametric model (56) and the
source impulse responses from Fig. 5.

Wewill continue the comparisons by identifying the param-
eters of the two-input ARX model according to the straight-
forward prediction error approach based on the ordinary
least squares method. For more details on this conservative
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FIGURE 4. Elements of matrix Q−1.

FIGURE 5. Estimated impulse response coefficients of the insulin administration effect submodel ĝu and the carbohydrate intake effect submodel ĝd

together with the corresponding confidence interval ĝ,ĝ.

approach, we refer the interested reader to [7]. Note that
the ARX model can be considered a special case of the
parametric model (56) under the assumption of common
denominator Au(z) = Ad (z) = A(z) for both submodels. The
orders of the ARX model were chosen as nBu = 4, nBd = 3,
nA = 4 for this experiment. The impulse responses of the
identified ARXmodel are plotted in Fig. 9. Although the pre-
sented impulse responses appear to be smooth and relatively
compliant with the physiology at first sight, the main problem
is that both suggest for the presence of same time constants
and the autoregressive dynamics that cause the peak time of
insulin administration effect and carbohydrate intake effect
to be almost identical. This experience is in conflict with the
physiology and with the previously presented results.

The comparison will be concluded by performing the iden-
tification of transfer function-based empirical model pursu-
ing the predictive identification strategy proposed in [22].
We recall that the referred strategy was based on numeric
minimization of the model multiple step-ahead prediction
error formulated as a constrained nonlinear least squares
problem. The impulse responses of thus identified model can
be seen in Fig. 11 where one can notice that contrary to the
impulse responses of the ARX model presented in Fig. 10,
the structure with independent denominators is capable of
accurately modelling the systems with significantly different
time constants of both submodels.

The experiment will be concluded by validating the chosen
identified models in a direct comparison of the predicted
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FIGURE 6. Estimated impulse response coefficients of the insulin administration effect submodel ĝu and the carbohydrate intake effect submodel ĝd

obtained by solving the regular system of linear equations as ĝ=R̂−1
U R̂Y .

FIGURE 7. Estimated impulse response coefficients of the insulin administration effect submodel ĝu and the carbohydrate intake effect submodel ĝd

under the assumption of unitary variance Q−1= I .

FIGURE 8. Estimated impulse response coefficients of the insulin administration effect submodel ĝu and the carbohydrate intake effect submodel
ĝd together with the corresponding confidence interval ĝ, ĝ under the assumption of no regularization 3 = 0.

output to the virtually measured glycemia. These long-term
predictions will be performed for the nonparametric model

(10) with the impulse responses from Fig. 5 and also for
its parametric approximation with the corresponding impulse
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FIGURE 9. Comparison of the estimated impulse response coefficients of the insulin administration effect submodel ĝu and the carbohydrate

intake effect submodel ĝd to the impulse responses Z−1
{

Bu(z)
Au(z)

}
, Z−1

{
Bd (z)
Ad (z)

}
of the approximate parametric model (56).

FIGURE 10. Impulse response of the insulin administration effect submodel Z−1
{

Bu(z)
A(z)

}
and the carbohydrate intake effect submodel

Z−1
{

Bd (z)
A(z)

}
of the estimated two-input ARX model.

FIGURE 11. Impulse response of the insulin administration effect submodel Z−1
{

Bu(z)
Au(z)

}
and the carbohydrate intake effect submodel

Z−1
{

Bd (z)
Ad (z)

}
estimated using the predictive identification approach adopted from [22].

responses from Fig. 9. For both models, the scenario repre-
senting the predictions based on the validation dataset, which

is different from the identification dataset from Fig. 2, can
be seen in Fig. 12. Finally, the performance of the identified
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FIGURE 12. Prediction of the glycemia response for the validation dataset using the nonparametric model and the approximate parametric model.

TABLE 1. Performance metric of the identified models evaluated for the
identification and the validation dataset.

models can be quantified by the metric

Q =
1
N

N∑
k=1

[
ŷ(k) − y(k)

]2
, (68)

where ŷ(k) is the predicted model output and y(k) is the
measured output. Evaluating the metric (68) for the identi-
fied nonparametric model and the approximated parametric
model yields the results summarized in Table 1. The results
demonstrated that both models are capable to accurately pre-
dict glycemia in the long-term sense, while the parametric
model performed slightly worse in both scenarios.

VIII. CONCLUSION
This work presented a correlation-based identification algo-
rithm to estimate impulse response coefficients of the
two-input linear nonparametric empirical model of type 1 dia-
betes. This algorithm deals with the deconvolution problem
and represents an alternative to the traditional identification
techniques based on the least squares minimization of the
model single step-ahead prediction error.

The most significant original contributions of this paper
include the derivation of the generalized form of the
Wiener-Hopf equation for the continuous-time model with
two inputs. Based on the discrete-time equivalent of the
Wiener-Hopf equation, the paper featured the linear equation
system that resulted in formulation of the equivalent regres-
sion system. By solving this regression system in the least

squares sense, the coefficients of impulse responses were
estimated. In contrast to the state-of-the-art correlation-based
identification methods available in the literature, we rigor-
ously investigated the statistical properties of the correlation
function estimate, concluding that it needs to be treated as
uncertain and correlated in the formulation of the identifi-
cation problem in order to ensure the optimal performance.
The generalized least squares method was employed to
obtain the parameter estimate with minimal variance instead
of using the ordinary least squares method, which can typ-
ically be found in the literature. We also highlight that the
covariance matrix of the random vector in the regression
system was derived, as this matrix was vital to evaluate
the generalized least squares method. As an extension to
the proposed method, we designed an auxiliary algorithm
for approximating the estimated impulse responses by the
parametric transfer function model, again conveniently using
the generalized least squares method while exploiting the
covariance matrix of estimated impulse responses. The com-
bination of the initial nonparametric model identification
with the subsequent parametric model approximation can
be seen as a full-featured two-step identification procedure
for multiple-input transfer function-based models that have
different feedback dynamics for each of the inputs. We stress
that the aforementioned combination is especially suitable
for identifying empirical models of type 1 diabetes due to
its ability to capture distinct dynamics of the insulin admin-
istration effect and the carbohydrate intake effect, but also
because of the existence of analytical solutions for both esti-
mation steps, what significantly simplifies the possible real-
time implementation. Moreover, three types of regularization
were applied to obtain a smoother impulse response and also
to provide causality and asymptotic stability of the identified
model.
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The results of the simulation-based experiment confirmed
that a properly tuned identification algorithm can yield satis-
factory and valid estimates of impulse functions even under
demanding conditions caused by noisy glycemia measure-
ments and highly correlated input signals typical for conven-
tional insulin therapy.

By studying the obtained inverse Q−1 of the covariance
matrix, we concluded that it had a quasi-diagonal structure,
while the diagonal entries were decreasing with an increasing
lag number. This structure participated in significant weight-
ing of residuals in the generalized least squares method, but
the decorrelating effect was not so prominent.

The presented comparison between the regularized and the
non-regularized estimates of the impulse functions clearly
indicated the qualitative superiority of the proposed com-
bined triple regularization over the non-regularized estimate.
In particular, the estimated impulse responses were smoother
and appeared to be more organized if regularization was
applied, making the estimate more valid and physiology-
compliant. Concerning the character of the identified impulse
responses, they were both stable and aperiodic, and each had
a uniform sign that was compatible with the basic physiol-
ogy. There was also observed a delayed and longer-lasting
action of insulin administration compared to a faster and
shorter-lasting effect of carbohydrate intake. We also demon-
strated the importance of using the generalized least squares
method, which was compared to the ordinary least squares
method, concluding that the proposed strategy of minimizing
the estimate variance outperforms the traditional approach.
Moreover, the identified nonparametric and the approxi-
mated parametric models were both capable of accurately
predicting glycemia over a long time period. As expected,
the approximated parametric model exhibited slightly worse
performance.

The key findings presented in this paper can be found
useful within further studies focused on the predictive
control-based artificial pancreas in patients with type 1 dia-
betes where model individualization is the essential prereq-
uisite to achieve high control performance. Possible future
improvements of this work may involve adding more sophis-
ticated regularization kernels or even robustyfying the iden-
tification algorithm by penalizing deviations of the estimate
from the expected mean-population impulse responses. It is
also potentially feasible to design a recursive version of the
proposed identification algorithm.
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