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ABSTRACT Although the channel state information (CSI) is never perfect and varies in time, most studies
on spatial modulation (SM) systems assume perfectly known CSI and time-invariant channel. The spatial
correlations among multiple spatial subchannels, which have to be considered when CSI is imperfect, are
also often neglected. In this paper, we release the above assumptions and take the CSI uncertainty along
with the spatial-temporal selectivities into account. We derive the channel estimation error aware maximum
likelihood (CEEA-ML) detectors as well as several low-complexity alternatives for PSK and QAM signals.
As the CSI uncertainty depends on the channel estimator (CE) used, we consider two well-known CEs in our
study. The error rate performance of the ML and some suboptimal detectors is analyzed. Numerical results
obtained by simulations and analysis show that the CEEA-ML detectors offer clear performance gain against
conventional mismatched SM detectors and, in many cases, the proposed suboptimal detectors incur only
minor performance loss.

INDEX TERMS Imperfect channel state information, maximum likelihood, signal detection, space-time
channel correlation, spatial modulation.

I. INTRODUCTION
Spatial modulation (SM), as it allows only a subset of the
transmit antennas to be active in any transmission interval
and exploits the transmit antenna index to carry extra infor-
mation [1], is a low-complexity and spectral-efficient multi-
antenna-based transmission scheme. Besides requiring no or
smaller number of multiple radio frequency (RF) transmit
chains, its low complexity requirement is also due to the
fact that the inter-spatial channel interference (ICI) is either
nonexistent or less severe.

Most receiver performance assessments on multi-antenna
systems, coded or uncoded, assume that the channel state
information (CSI) is perfectly known by the receiver (e.g., [1],
[3], and [5]). In practice, the CSI at the receiver (CSIR)
is obtained by a pilot-assisted or decision-directed (DD)
estimator [2] and is never perfect. The impact of imperfect
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CSIR on some MIMO detectors was considered in [4], [6],
and [7] to evaluate the detectors’ performance loss. Further-
more, the channel is usually not static, especially in a mobile
environment, but the channel-aging effect, i.e., the impact of
outdated CSI, is neglected in most of these studies except
for [7]. Reference [8] discussed the effect of the channel
coefficients’ phase estimation error while [9] analyzed the
performance of the conventional detector in the presence of
white Gaussian channel estimation error that is independent
of the channel estimator (CE) used. Other earlier works on
SM detection all employ the perfect CSI and time-invariant
channel assumptions thus give suboptimal performance in
practical environments [10]. One can reduce the CSI uncer-
tainty induced performance degradation by using a better CSI
estimator or using a differential spatial modulation (DSM)
scheme [11]. Although DSM can be noncoherently detected
without the need of CSI, it is less power efficient and works
for slowly time-varying environments only. The DSM also
imposes limitations on antenna selection therefore is less
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spectral efficient and is applicable for constant modulus sig-
nals (e.g., PSK) but not for QAM or PAM signals. Moreover,
CSI acquisition is an essential part of an advanced commu-
nication receiver not only for data detection but also for link
adaptation and resource allocation purposes.

We adopt another approach by taking into account the
CSI uncertainty and the spatial/time selectivity, substantially
extending the work reported in [12]. For some regular con-
stellations, the complexity of the corresponding ML detec-
tors can be reduced [13], [14]). However, these detectors
assume perfect CSI and therefore the complexity reduction
is not attainable when the detector takes CSI uncertainty into
account. Moreover, their performance in the presence of CSI
error may degrade significantly because of the mismatched
channel statistics.

The difficulty in deriving the optimal SM detector in a
spatially- and time-selective fading channel with imperfect
CSI is due to the fact that the likelihood function depends
not only on the transmitted symbol but also on the CSI
estimator and its performance. In this paper, we remove the
perfect CSI and static channel assumptions and consider
two MIMO CEs/trackers for systems using a frame structure
which consists of a pilot block and several data blocks. The
first scheme is a decision-directed (DD) estimator (tracker)
while the second one is referred to as the model-based (MB)
estimator [15]. The frame structure and the CEs considered
are described in Section II-C.

Our major contributions are summarized as follows.
We derive a general channel estimation error-aware (CEEA)
maximum likelihood (ML) receiver structure for detecting
general MIMO signals with two known CEs in spatially- and
time-selective fading channels. The CEEA-ML detectors for
M -PSK andM -QAM based SM systems are obtained by spe-
cializing to the combined SM and PSK/QAM signal formats.
As the ML detectors require high computational complexity,
we develop two classes of low-complexity suboptimal detec-
tors. The first one detects the transmit antenna index and
symbol sequentially (resulting in two-stage detectors), and
has a detection complexity that is independent of the signal
modulation order. The second class simplifies the likelihood
functions by using lower-dimension approximations that
neglect the spatial correlation on either the receive or transmit
side. The approximations lead to zero transmit correlation
(ZTC) and zero receive correlation (ZRC) receivers. Both
simplifications–separate detections and dimension reduction
of the likelihood function–can be combined to yield even
simpler detector structures. As will be verified later, these
low-complexity detectors do not incur much performance
loss. Except for the two-stage detectors, we analyze the error
rate performance and confirm the accuracy of the analysis
by simulations. A model-based two-stage spatial correlation
estimator is developed as well. We summarize the equation
numbers of the derived detectors in Table 1 for convenience
of reference.

The rest of this paper is organized as follows. In Section II
we present a general space-time (S-T) MIMO channel model,

TABLE 1. Formulae associated with various CE-aided detectors.

review the corresponding perfect CSI based ML detector and
introduce both DD and MB based CEs. We refer to the latter
two CEs as DD-CE and MB-CE henceforth. In Section III,
we focus on MB-CE-aided systems. A general CEEA-ML
detector for general MIMO signals is first derived (cf. (24)),
followed by those for M -PSK and M -QAM SM signals
(cf. (27) and (29)). A low-complexity two-stage receiver for
M -PSK SM systems is given at the end of the section
(cf. (34)). Section IV presents similar derivations for DD-
CE-aided SM systems (cf. (35), (37), (38), and (40)).
In Section V, we develop simplified CEEA-ML and two-
stage detectors for both MB- and DD-CE-aided SM systems
by using lower-dimension approximations of the likelihood
functions. The error rate performance of various detectors
we derived is analyzed in Section VI. The analytic approach
is valid for all but the two-stage detectors. Because of space
limitation, the presentation is concise, skipping most detailed
derivations (cf. (45), (50), (53a), (56), (58), and (61a)).
The computational complexity and memory requirement of
the mentioned detectors is analyzed in Section VII. As far
as we know, materials presented in Sections III–VII are
new. Numerical performance of our detectors and conven-
tional mismatched detector is given in Section VIII. Finally,
we recapitulate our main results and findings in Section IX.
Notations: Upper and lower case bold symbols denote

matrices and vectors, respectively. IN is the N × N identity
matrix and 0N the N × 1 all-zero vector. (·)T , (·)∗, (·)H ,
(·)−1 and (·)† represent the transpose, element-wise conju-
gate, conjugate transpose, inverse, and pseudo-inverse of the
enclosed items, respectively. vec(·) is the operator that forms
one tall vector by stacking the columns of a matrix. E{·},
and ‖ · ‖F denote the expectation and Frobenius norm of
the enclosed items, respectively, ⊗ denotes the Kronecker
product and� the Hadamard product. (·)i and [·]ij denote the
ith row and (i, j)th element of the enclosed matrix, respec-
tively. Diag(·) translates the enclosed vector or elements into
a diagonal matrix with the nonzero terms being the enclosed
items, whereas DIAG(·) is defined by

DIAG(x1, x2, · · · , xM ) =


x1 0N1 · · · 0N1

0N2 x2 · · · 0N2
...

...
. . .

...

0NM 0NM · · · xM


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TABLE 2. Statistics used in MB-CE-aided detectors, where the subscript
SSK stands for space-shift keying [8].

TABLE 3. Statistics used in DD-CE-aided detectors.

with vector length of xi being Ni. Finally, the determinant of
a matrix A is denoted by det A.

The detector structures we develop need to compute a com-
mon quadratic form and involve various conditional mean
vectors and covariance matrices as a function of the data
block index k . For notational brevity and the convenience
of reference, we list the latter conditional parameters in
Tables 2 and 3 and define

G(0,χ ) def= χH0−1χ (1)

where 0 ∈ CN1×N1 is invertible and χ ∈ CN1×N2 .

II. PRELIMINARIES
A. S-T CORRELATED CHANNELS
Weconsider aMIMO systemwithNT transmit andNR receive
antennas and assume a block-faded scenario in which the
MIMO channel remains static within a block of B channel
uses but varies from block to block. The parameter B controls
the channel’s time-selectivity and should be chosen to be less
than the channel’s coherent time. For this system, the received
sample matrix of block k can be expressed as

Y(k)
def
= [y1(k), · · · , yB(k)]

def
=

[
yT
1
(k), · · · , yT

NR
(k)
]T

= H(k)X(k)+ Z(k), (2)

where yi(k) are column vectors, y
i
(k) are row vectors, and

H(k)
def
= [hij(k)] = [h1(k), · · · ,hNT (k)] (3a)

= [hT1 (k), · · · ,h
T
NR (k)]

T (3b)

is the narrowband NR × NT channel matrix and

X(k) = [x1(k), · · · , xB(k)] = [xT1 (k), · · · , x
T
NT (k)]

T (4)

is the NT ×B (B ≥ NT ) matrix containing the modulated data
and/or pilot symbols and the entries of the noise matrix Z(k)
are i.i.d. random variables with distribution CN (0, σ 2

z ).
Let 8 = E

{
vec (H(k)) vecH (H(k))

}
be the matrix

whose (NRNT )2 entries represent the correlation coefficients
amongst spatial subchannels.

vec (H(k)) = 8
1
2 vec (Hw(k)) , (5)

where Hw(k) is an NR × NT matrix with i.i.d. zero-mean,
unit-variance complex Gaussian random variables as its ele-
ments. We assume that the spatial correlation matrix 8 is
either completely or partially known to the receiver in deriv-
ing various detector structures. The numerical effect of using
an estimated 8 is studied in Section VIII.

We further assume that the spatial and temporal correla-
tions are separable [16], i.e.,

E{hij(k)h∗mn(`)} = ρS (i− m, j− n)× ρT (k − `)

with ρT (k − `)
def
= E{hij(k)h∗ij(`)} denoting the (i, j)th spatial

subchannel’s time correlation coefficient with lag k−`while

ρS (i− m, j− n; k)
def
= E{hij(k)h∗mn(k)}
=
[
8
]
(j−1)NR+i, (n−1)NR+m

(6)

is the correlation between the (i, j)th and (m, n)th spatial sub-
channels. As mentioned before, conditioned on the estimated
channel matrix, the likelihood function is a function of these
S-T correlations and so are the corresponding CEEA-ML
detectors.

B. DETECTION OF SM SIGNALS WITH PERFECT CSIR
The SM scheme can avoid ICI by imposing the single active
antenna constraint and compensates for the corresponding
data rate reduction by using the transmit antenna index to
carry extra information bits [1].

An m-bit/transmission SM system partitions the data
stream into groups of m = log2(MNT ) bits of which the first
log2 NT bits of a group are used to determine the transmit
antenna and the remaining bits of the group are mapped into
a symbol in the constellation AM of size M for the selected
antenna to transmit. Since only one transmit antenna is active
in each transmission, the jth column of X(k) is of the form

xj(k) = [0, · · · , 0, x`j (k), 0, · · · , 0]
T , (7)

where `j
def
= `j(k) is the active antenna index and x`j (k)

def
=

sj(k) ∈ AM is the modulated symbol transmitted at the
jth symbol interval of the kth block. A transmitted symbol
block X can thus be decomposed as X = LS, where S =
Diag(s), s = [s1, · · · , sB]T , sj ∈ AM and L is the NT × B
space-shift keying (SSK) matrix [9] defined as

[L]ij =

{
1, if i = `j;
0, otherwise.

(8)
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FIGURE 1. Proposed frame structure. A pilot block, shown as a shaded
area, is inserted every N blocks. The block indices for MB-CE-aided
systems (0 ≤ k ≤ 2N) and those for DD counterparts (0 ≤ k ≤ N − 1) are
labeled on the top and bottom of the blocks, respectively.

We defineX as the set of all NT ×Bmatrices whose columns
are of the type (7). The average power

εs
def
=

1
B
E
{
‖X(k)‖2F

}
=

1
B
E
{
tr
(
X(k)XH (k)

)}
(9)

is equivalent to the average power of AM . Therefore, for
j = 1, · · · ,B, the jth column vector in (2) can be written as

yj(k) = h`j (k)sj(k)+ zj(k). (10)

Assuming perfect CSIR, i.e., Ĥ(k) = H(k), and i.i.d.
source, we have the ML detector

X̂(k) = argmax
X∈X

P
(
Y(k)|H(k),X

)
(11)

where

P
(
Y(k)|H(k),X(k)

)
=

(
πσ 2

z

)−NR
exp

(
−

1
σ 2
z
‖Y(k)−H(k)X(k)‖2F

)
.

With L def
= {1, · · · ,NT }, (11) is simplified as(
ŝj(k), ˆ̀j(k)

)
= arg min

(s,`)∈AM×L
‖yj(k)− h`s‖2F (12)

for j = 1, · · · ,B.

C. TRACKING TIME-VARYING MIMO CHANNELS
The frame structure considered is depicted in Fig. 1, where

each frame consists of a pilot (shadowed) block andN−1 data
blocks with a total length of NB symbol intervals. A smaller
N implies higher pilot density and better channel tracking
capability but reduced spectral efficiency [17]. Let the pilot
block be transmitted at the kpth block and denote the NT × B
pilot matrix by X(kp) = Xp. The corresponding received
block is

Y(kp) = H(kp)Xp + Z(kp) (13)

with the average pilot symbol power given by εp
def
=

1
B‖Xp‖

2
F

and Xp a unitary matrix. In particular, for SM systems,
we assume that B = NT and Xp =

√
εpINT .

We now describe the pilot-assisted MB and DD chan-
nel trackers (estimators) to be considered in subsequent
discourse.

1) MB CHANNEL ESTIMATOR (MB-CE)
For a single link with moderate mobility and frame size,
it is reasonable to assume that the (i, j)th component of the
channel matrix H(k) is a quadratic function of the sampling
epoch, {k} [15]

hij(k) = αij(k)k2 + βij(k)k + γij(k). (14)

Define the coefficient vector ξ ij(k)
def
= [αij(k), βij(k),

γij(k)]T . By collecting the received samples at three consecu-
tive pilot locations Y(kp), Y(kp+N ), Y(kp+ 2N ), we update
the estimate for ξ ij(k) every two frames via

ξ̂ ij(kp)
def
=

 α̂ij(kp)β̂ij(kp)
γ̂ij(kp)

 = T−1(kp) ỹij(kp) (15)

where

T(k)
def
=

 k2 k 1
(k + N )2 k + N 1
(k + 2N )2 k + 2N 1

 , (16a)

ỹij(kp)
def
=

1
√
εp

 yij(kp)
yij(kp + N )
yij(kp + 2N )


=

 hij(kp)
hij(kp + N )
hij(kp + 2N )

+ 1
√
εp

z̃ij(kp), (16b)

and z̃ij(kp) ∼ CN (03,
σ 2z
εp
I3). From (14), (15) and the defini-

tion t(k) = [k2, k, 1]T , we obtain the MB-CEs

ĥij(k) = tH (k)ξ̂ ij(kp) = tH (k) T−1(kp) ỹij(kp) (17)

for the channel responses at the kp, · · · , (kp + 2N − 1)th
blocks. Performance of this MB-CE as a function of the pilot
density (N ) and signal-to-noise ratio (SNR) can be found
in [15].

2) DD CHANNEL ESTIMATOR (DD-CE)
The DD-CE uses the pilot block at the beginning of a frame to
obtain an estimate of the S-T channel say Ĥ(kp) for detecting
the data of the next data block. This newly detected data block
X̂(kp + 1) is then treated as pilots (called pseudo-pilots) to
update the CSI, e.g., for least squares (LS) CE, Ĥ(kp + 1) =
Y(kp + 1)X̂†(kp + 1), which is in turn used for detecting the
following data block X̂(kp + 2). Such a pseudo-pilot-based
channel estimation-data detection procedure repeats until the
last (N th) data block of the frame is detected and a new pilot
block arrives to keep tracking the time-varying channel. Error
propagation, if exists, is terminated when the new frame starts
and a new pilot block X(kp + N ) becomes available.
We note that only one element in each column of the kth

detected block X̂(k) is nonzero, hence it is likely that not
all vectors of CEs ĥ`(k)’s are updated at each data block.
The outdated CSI will cause a DD system’s performance
loss in a time-varying channel. We denote by Ĥ[L](k), the
submatrix containing only the columns associated with the
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set of antenna indices activated in block k , L ⊆ {1, · · · ,NT },
i.e.,

Ĥ[L̂(k)](k)← Y(k)X̄†(k),

where L̂(k)
def
= { ˆ̀1(k), · · · , ˆ̀B(k)} and X̄(k) is the truncated

X̂(k) with its all-zero rows removed. By combining the sub-
matrix which consists of those channel vectors estimated in
the previous (the (k − 1)th) block

Ĥ[L \ L̂(k)](k) = Ĥ[L \ L̂(k)](k − 1),

we obtain a full-rank estimate Ĥ(k) and, with a slight abuse
of notation, denote Y(k)X̂†(k) as Ĥ(k).
Remark 1: As the DD method uses the CE obtained in

the previous block for demodulating the current block’s data,
error propagation within a frame is inevitable. The MB
approach avoids error propagation at the cost of increased
latency and storage requirement. The DD method updates
the CSI estimate in each block while the channel’s time
variation is taken into account by the MB approach through
the model (14) which leads to the estimate (17) in an N -block
frame. �

In the remainder of this paper, we use the normalization
εp = 1 and in Section VIII, εp = εs = 1.

III. CHANNEL ESTIMATION ERROR-AWARE ML
DETECTION WITH MB CHANNEL ESTIMATES
As defined in [4], a mismatched detector is the one which
replaces H(k) in (11) by the estimated CSI Ĥ

X̂MM(k)
def
= arg min

X∈X
‖Y(k)− ĤX‖2F . (18)

In our case, Ĥ is either Ĥ(k) or Ĥ(k−1) depending onwhether
an MB or DD estimator is used.

We extend the basic approach of [4], which is similar to
that used in deriving the classic discrete-time Kalman filter
that was based on the following lemma:
Lemma 1: [18, Thm. 10.2] Let z1 and z2 be circularly

symmetric complex joint Gaussian random vectors with zero

means and full-rank covariance matrices 6ij
def
= E{zizHj }.

Then, conditioned on z2, the random vector z1 is circularly
symmetric Gaussian with mean 6126

−1
22 z2 and covariance

matrix 611 −6126
−1
22 621.

As mentioned before, we further take the CE used, the
channel aging effect and the spatial correlation into account.
We assume a spatially/temporally correlated block fading
channel and refer to the resulting detectors as channel esti-
mation error-aware (CEEA)-ML detectors.

A. GENERAL MIMO SIGNAL DETECTION WITH
IMPERFECT CSI
When the MB-CE Ĥ(k) is used, the CEEA-MLMIMO detec-
tor has to compute

arg max
X∈ANT×B

M+

P
[
vec(Y(k))

∣∣∣vec(X), vec(Ĥ(k))
]
, (19)

where AM+
def
= AM ∪ {0}. Since all the entries of Y(k) and

Ĥ(k) are zero-mean random variables, we invoke Lemma 1
with

z1 = vec(Y(k))

=

(
XT (k)⊗ INR

)
vec(H(k))+ vec(Z(k)), (20a)

z2 = vec(Ĥ(k))

=

[
vec(Y(kp)) vec(Y(kp + N )) vec(Y(kp + 2N ))

]
×

(
tH (k)T−1(kp)

)T
, (20b)

for kp < k < kp + 2N , to obtain

611 = E{z1zH1 }

=

(
XT (k)⊗ INR

)
8(X∗(k)⊗ INR )+ σ

2
z INRNT , (21a)

612 = E{z1zH2 } = E{(z2zH1 )
H
} = 6H

21

= tH (k)T−1(kp)q(k)
(
XT (k)⊗ INR

)
8, (21b)

622 = E{z2zH2 }

= ν(k)8+ σ 2
z

∥∥∥tH (k)T−1(kp)∥∥∥2
F
INRNT , (21c)

where

q(k) =
[
ρT (k − kp), ρT (k − kp − N ), ρT (k − kp − 2N )

]T
,

(22a)

ν(k) = tH (k)T−1(kp)

 1 ρT (N ) ρT (2N )
ρT (N ) 1 ρT (N )
ρT (2N ) ρT (N ) 1


×

(
tH (k)T−1(kp)

)H
. (22b)

Direct substitutions of the above covariance matrices give
the mean vectormmb(k) and covariance matrix Cmb(k)

mmb(k) =
(
XT (k)⊗ INR

)
A(k)vec(Ĥ(k)), (23a)

Cmb(k) = σ 2
z INRNT +

(
XT (k)⊗ INR

) [
INRNT − A(k)(

tH (k)T−1(kp)q(k)
)∗ ]

8
(
X∗(k)⊗ INR

)
(23b)

for the likelihood function of Y(k), where the spatial correla-
tion matrix 8 also appears in

A(k) = tH (k)T−1(kp)q(k)86−122 . (23c)

Using (1) and (19)–(23c), we obtain a more compact form of
the CEEA-ML detector

X̂ML
mb (k) = arg min

X∈ANT×B
M+

G(Cmb(k), vec(Y(k))−mmb(k))

+ log detCmb(k). (24)

An alternate derivation of 611 and 612 begins with Ĥ(k) =
H(k)+ E(k). As E{vec(E(k))} = 0NRNT and

9E (k)
def
= E

{
vec(E(k))vecH (E(k))

}
107492 VOLUME 10, 2022
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=

(
ν(k)− 2tH (k)T−1(kp)q(k)+ 1

)
8

+σ 2
z

∥∥∥tH (k)T−1(kp)∥∥∥2
F
INRNT . (25)

the received sample vector is related to E(k) via

Y(k) = Ĥ(k)X(k)+
(
Z(k)− E(k)X(k)

)
= Ĥ(k)X(k)+ Z̃(k), (26)

where vec(Z̃(k)) ∼ CN (0NRNT , σ
2
z INRNT + (XT (k) ⊗ INR )

9E (k)(X∗(k)⊗ INR )). With

z1 =
(
XT (k)⊗ INR

)
vec(Ĥ(k))+ vec(Z̃(k)),

we obtain 611 and 612 as given by (21a) and (21b).
Remark 2: A closer look at the components, (20a)–(23c),

of the CEEA-ML detector (24) reveals that the spatial
correlation 8 affects the auto-correlations of the received
signal and estimated channel, 611 and 622, and their cross-
correlations, 612 and 621. The influences of the time selec-
tivity ρT (·), frame structure (a pilot block in every N blocks)
and estimator structure (17) on the latter three correlations
can be found in (21b) and (21c) and through q(k) and ν(k).
These channel and system factors also appear in the CE error
covariance 9E (k).

In contrast, in analyzing the performance of mismatched
detectors and the effects of imperfect CSI, [9], [10] assume
a simplified CSI error model that E(k) consists only of white
Gaussian components which are independent of the S-T cor-
relations and CE used, ignoring the fact that the latter two are
critical and inseparable part of the detector structure. �
Note that (24) is general enough to describe the detec-

tor structures for arbitrary data format and/or modulation
schemes. For spatial multiplexing (SMX) signals, the search
range is modified to ANT×B

M , while a precoded MIMO sys-
tem, we replaceX byWSwithW being the precodingmatrix.
We derive specific detector structures for various SM signals
in the remaining part of this section and in Sections IV and V.

B. CEEA-ML DETECTORS FOR SM SIGNALS
1) M-PSK CONSTELLATION
With the decomposition X = LS defined in Section II-B and
AM an M -PSK constellation, the CEEA-ML detector for the
PSK-based SM system is derivable from (24) and is given by

X̂ML
mb (k) = arg m̃in

(s,L)∈AB
M×L

log det C̄psk (k)

+G(C̄psk (k), ys(k)− m̄ssk (k)) (27)

where L denotes the set of all SSK matrices of the form (8)
m̄ssk (k) and C̄psk (k), which are not exactly the conditional
mean and covariance, are obtained from (23a) and (23b) by

substituting L for X and σ 2z
εs
, εs = |sj|2, for σ 2

z . In (27),
we have defined, for an implicit function f of s and L,

arg m̃in
(s,L)

f (s,L) = L̂ Diag(ŝ), (ŝ, L̂) = argmin
(s,L)

f (s,L),

(28)

where ys(k)
def
= vec

(
Y(k)SH

)
/εs.

2) M-QAM CONSTELLATION
If AM is an M -QAM constellation, the corresponding
CEEA-ML detector is

X̂ML
mb (k) = arg m̃in

(s,L)∈AB
M×L

NR log detEs + log det C̄qam(k)

+G(C̄qam(k), ys(k)− m̄ssk (k)) (29)

with Es
def
= SSH , ys(k)

def
= vec

(
Y(k)SHE−1s

)
, and

C̄qam(k)
def
= σ 2

z (E
−1
s ⊗ INR )+ (LT ⊗ INR )

[
INRNT − A(k)

×

(
tH (k)T−1(kp)q(k)

)∗ ]
8(L∗ ⊗ INR ). (30)

C. TWO-STAGE M-PSK SM DETECTOR
The ML detector (27) calls for an exhaustive search over the
set of all candidate antenna index-modulated symbol pairs,
which has a cardinality of |L×AM |

B. As mentioned before,
low-complexity alternatives for rectangular QAM [13] and
PSK [14] with perfect CSI have been proposed but similar
reduction method is not applicable for our CEEA receivers.
Instead, we consider a two-stage approach that detects the
active antenna indices and then the transmitted symbols in
each block. A similar approachwith perfect CSIR assumption
have been suggested [1].

We first notice that

P
[
Y(k)

∣∣∣L(k), Ĥ(k)
]

=

∑
s1(k)

∑
s2(k)

· · ·

∑
sB(k)

P
[
Y(k)

∣∣∣L(k),S(k), Ĥ(k)
]
P
[
S(k)

]
where L(k) and S(k) are the kth block’s SSK and symbol
matrices. It follows that the estimate of the activated antenna
indices is

L̂(k) = argmax
L∈L

1

MB
√
det εsC̄psk (k)

∑
s∈AB

M

F(s) (31)

where

F(s)
def
= exp

[
−G(C̄psk (k), m̄ssk (k))

2
−

sT J(k)s∗

2ε2s

+
<{bH (k)s∗}

εs

]
, (32a)

J(k) = G
(
C̄psk (k),DIAG(y1(k), · · · , yB(k))

)
, (32b)

b(k) = DIAG (y1(k), · · · , yB(k))H C̄−1psk (k)m̄ssk (k).

(32c)

For each candidate SSKmatrixL, we have the approximation∑
s

F(s) ≈ F(s̄(L)), s̄(L)
def
= QAM

(
s̃(L)

)
, (33)

where QAM (·) quantizing the enclosed items to the nearest
constellation points inAM and s̃(L) = εs(J−1(k)b(k))∗ being
the solution of ∂F(s)/∂s = 0B. b(k) defined in (32c) is an
implicit function of L since as mentioned in the previous
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subsection, C̄psk (k) and m̄ssk (k) are both functions of L.
The approximation (33) thus depends on L and the associ-
ated tentative demodulation decision s̄(L). A simpler antenna
indices estimate is then given by

L̂(k) ≈ argmin
L∈L

log det(εsC̄psk (k))+ G(C̄psk (k), m̄ssk (k))

+
s̄T (L)J(k)s̄∗(L)

ε2s
−

2<
{
bH (k)s̄∗(L)

}
εs

. (34a)

Once the active SSKmatrix is determined, we output the deci-
sion s̄(L) associated with L̂(k) which has been determined in
the previous stage

ŝ(k) = s̄(L̂(k)). (34b)

(34b) will reappear later repeatedly, each with different
antenna index detection rule L̂(k). Obviously, the search
complexity of the detector (34a) is much lower than
that of (27). For systems employing QAM constellations,
the approximation (33) is not directly applicable as the
nonconstant-modulus nature of QAM implies that F(s) has
an additional amplitude-dependent term in the exponent.

IV. DD CE-AIDED CEEA-ML DETECTORS
A. GENERAL MIMO SIGNAL DETECTION WITH
IMPERFECT CSI
To derive the CEEA-ML detector for general MIMO sig-
nals using a DD LS channel estimate, we again appeal to

Lemma 1 with z1 defined by (20a) and z2
def
= vec(Ĥ(k −

1)) = vec(Y(k − 1)X̂†(k − 1)). For kp < k < kp + N ,
the signal block which maximizes the likelihood function
P
[
vec(Y(k))

∣∣∣vec(X(k)), vec(Ĥ(k − 1))
]
is given by

X̂ML
dd (k) = arg min

X∈ANT×B
M+

log detCdd

+G(Cdd , vec(Y(k))−mdd ). (35)

To have more compact expressions we use Ĥ and Ĥ(k − 1)
interchangeably for the DD CEEA-ML detectors. This is
justifiable as the conditional mean and covariance of Y(k)
given X(k) and Ĥ(k − 1) are

mdd =

(
XT (k)⊗ INR

)
Avec(Ĥ(k − 1)), (36a)

Cdd = σ
2
z IBNR +

(
XT (k)⊗ INR

)[
INRNT − ρT (1)A

]
·8
(
X∗(k)⊗ INR

)
(36b)

with A
def
= ρT (1)8 (8+ σ 2

z INRNT )
−1.

B. CEEA-ML SM SIGNAL DETECTORS
Following the derivation of Section III-B and using the
decomposition X = LS, we summarize below the resulting
DD CEEA-ML detectors using PSK or QAM signal.

1) M-PSK CONSTELLATION
For a PSK-SM MIMO system, the CEEA-ML detector is

X̂ML
dd (k) = arg m̃in

sj∈AM , `j∈L
log det C̃psk

+G(C̃psk , ys(k)− m̃ssk ) (37)

where m̃ssk = (LT ⊗ INR )Avec(Ĥ), C̃psk
def
=

σ 2z
εs
IBNR+

(LT ⊗ INR )
[
INRNT − ρT (1)A

]
8(L∗ ⊗ INR ), and ys(k) =

vec
(
Y(k)SH

)
/εs.

2) M-QAM CONSTELLATION
WhenM -QAM is used, (35) reduces to

X̂ML
dd (k) = arg m̃in

sj∈AM , `j∈L
NR log detEs + log det C̃qam

+G(C̃qam, ys(k)− m̃ssk ) (38)

where C̃qam
def
= (LT ⊗ INR )

[
INRNT − ρT (1)A

]
8(L∗ ⊗

INR ) +σ
2
z (E
−1
s ⊗ INR ), ys(k)

def
= vec

(
Y(k)SHE−1s

)
, and

Es
def
= SSH .
Remark 3: Compared with the MB-CE-aided detectors

(cf. (27) and (29)), (37) and (38) require much less storage.
The MB channel estimation is performed every two frames
and thus 2N − 2 estimated channel matrices have to be
updated and saved for subsequent signal detection. The asso-
ciated A(k)’s can be precalculated but they have to be stored
as well. The DD-CE aided detectors, on the other hand, need
to store two matrices, A and Ĥ, only. However, as shown
in Section VIII, the latter suffers from inferior performance.
More detailed memory requirement comparison is provided
in Section VII. �

C. TWO-STAGE DETECTOR FOR M-PSK SM SIGNALS
We can reduce the search range of (37) from the Bth Carte-
sian power of L × AM to LB by adopting the two-stage
approach of (34) that detects the antenna indices and then the
transmitted symbols. The associated detector is derived from
maximizing the likelihood function

P
[
Y(k)

∣∣∣X(k), Ĥ(k − 1)
]

with respect to (w.r.t.)X(k):

max
L∈L, s∈AB

M

(det εsC̃psk )−
1
2 exp

[
−G(C̃psk , m̃ssk )

2

−
sT J(k)s∗

2ε2s
+
<{bH (k)s∗}

εs

]

≈ max
L∈L

(det εsC̃psk )−
1
2 exp

[
−G(C̃psk , m̃ssk )

2

]

·max
s∈AB

M

exp
[
−

1
2ε2s

sT J(k)s∗ +
1
εs
<{bH (k)s∗}

]
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= max
L∈L

(det εsC̃psk )−
1
2 exp

[
−G(C̃psk , m̃ssk )

2

−
s̄T (L)J(k)s̄∗(L)

2ε2s
+
<{bH (k)s̄∗(L)}

εs

]
, (39)

where J(k), b(k), and s̄(L) are defined similarly to those
in (32b), (32c) and (33) except that now Ĥ = Ĥ(k − 1).
Replacing the likelihood function by its logarithm version,
we obtain a two-stage detector similar to (34)

L̂(k) = argmin
L∈L

log det(εsC̃psk )+ G(C̃psk , m̃ssk )

+
s̄T (L)J(k)s̄∗(L)

ε2s
−

2<{bH (k)s̄∗(L)}
εs

,

(40a)

ŝ(k) = s̄(L̂(k)). (40b)

V. ML DETECTION WITHOUT SPATIAL CORRELATION
INFORMATION AT EITHER SIDE
The detector structures presented so far have assumed com-
plete knowledge of the channel’s spatial correlation 8.
As pointed out in [16], when both sides of a link are richly
scattered, the corresponding spatial statistics can be assumed
separable, yielding the Kronecker spatial channel model

H(k) = 8
1
2
RHw(k)8

1
2
T (41)

with the spatial correlation matrix 8 given by [16]

8 = 8T ⊗8R, (42)

the Kronecker product of the spatial correlation matrix at the
transmit side 8T = E{HT (k)H∗(k)}/tr(8T ) and that at the
receive side 8R = E{H(k)HH (k)}/tr(8R). When the latter
is not available, we assume that 8R = INR hence H(k) =

Hw(k)8
1
2
T . The assumption of uncorrelated receive antennas

also implies

P
[
Y(k)|X(k), Ĥ(k)

]
=

NR∏
n=1

P
[
y
n
(k)|X(k), ĥn(k)

]
, (43)

where y
n
(k) is the sample (row) vector received by antenna

n at block k and ĥn(k) the estimated channel vector between
the nth receive antenna and transmit antennas. As has been
mention in Section I, we refer to a detector based on (43) as
the ZRC detector. An expression similar to (43) for the case
of uncorrelated transmit antennas can be used to derive the
ZTC detector.

A. MB-CE-AIDED ZRC AND ZTC DETECTORS
1) GENERAL ZRC/ZTC DETECTORS
Define

zH1 = y
n
(k) = hn(k)X(k)+ zn(k),

zH2 = ĥn(k) = tH (k)T−1(kp)

×
[
ỹn1(kp), ỹn2(kp), · · · , ỹnNT (kp)

]

where Z(k)
def
=

[
zT1 (k), · · · , z

T
NR (k)

]T
. We immediately

obtain the mean and covariance of y
n
(k) conditioned onX(k)

and ĥn(k) as

m̄T
n (k) = ĥn(k)Azrc(k)X(k), (44a)

C̄zrc(k) = 611 −6126
−1
22 6

H
12

= σ 2
z INT + XH (k)

[
INT − A(k)

(
tH (k)T−1

× (kp)q(k)
)∗ ]
× 8TX(k), (44b)

where Azrc(k) = tH (k)T−1(kp)q(k)8T6
−1
22 ,

611 = XH (k)8TX(k)+ σ 2
z INT ,

612 = tH (k)T−1(kp)q(k)XH (k)8T ,

622 = ν(k)8T + σ
2
z ‖t

H (k)T−1(kp)‖2F INT

with q(k) and ν(k) being defined in (22).
The resulting ZRC detector is thus given by

X̂ZRC
mb (k) = arg min

X∈X
NR log det C̄zrc(k)

+ tr
{
G
(
C̄zrc(k),

(
Y(k)− M̄zrc(k)

)H)}
, (45)

where M̄zrc(k)= [m̄1(k), · · · , m̄nR (k)]
T
= Ĥ(k)Azrc(k) X(k).

(45) can also be derived by substituting 8R = INR into the
CEEA-ML detection rule (24) and applying (42) with some
algebraic manipulations.

On the other hand, when the spatial correlation at the trans-
mit side is not available, we assume no a priori transmit spa-
tial correlation, 8T = INT whence E{H(k)HH (k)}/tr(8R) =
8R. Substituting 8T = INT into (42) we obtain the ZTC
detector for a generic MB-CE-aided MIMO system with

mmb(k) = tH (k)T−1(kp)q(k)vec [8R (ν(k)8R

+ σ 2
z

∥∥∥tH (k)T−1(kp)∥∥∥2
F
INR

)−1
Ĥ(k)X(k)

]
,

(46)

Cmb(k) = σ 2
z INRNT +

[
XT (k)X∗(k)

]
⊗8R

[
INR

− |tH (k)T−1(kp)q(k)|2
(
ν(k)INR

+ σ 2
z

∥∥∥tH (k)T−1(kp)∥∥∥2
F
8−1R

)−1]
≈ INT ⊗ C̄ztc(k), (47)

where we use X(k)XH (k) ≈ εsINT and define

C̄ztc(k)
def
= σ 2

z INR + εs8R

[
INR − |t

H (k)T−1(kp)q(k)|2

×8R

(
σ 2
z

∥∥∥tH (k)T−1(kp)∥∥∥2
F
INR + ν(k)8R

)−1]
.

(48)

to obtain (47). As a result, detCztc(k) =
(
det C̄ztc(k)

)NT and

G(Cmb(k), vec(Y(k))−mmb(k)) = tr
{
G(C̄ztc(k),Y(k)

− M̄ztc(k))
}
,
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where

M̄ztc(k) = tH (k)T−1(kp)q(k) ·8R

(
ν(k)8R

+ σ 2
z

∥∥∥tH (k)T−1(kp)∥∥∥2
F
INR
)−1

Ĥ(k)X(k). (49)

The resulting ZTC detector is given by

X̂ZTC
mb (k) = arg min

X∈ANT×B
M+

tr
{
G(C̄ztc(k),Y(k)− M̄ztc(k))

}
+NT log det C̄ztc(k) (50)

whose complexity is similar to that of (45).
In case both the transmit and receive correlations are

unavailable, the conditional covariance matrix in the detec-
tionmetric degenerates to an identitymatrix scaled by a factor
that is a function of the noise variance, channel’s temporal
correlation and block index k . Both ZRC and ZTC receivers
can be further simplified by the two-stage approach by fol-
lowing the derivation given in Section III-B, we focus on
deriving reduced complexity ZRC detectors only; the ZTC
counterparts can be similarly obtained.

2) TWO-STAGE ZRC M-PSK DETECTOR
Using the decomposition, X = LS, we express the ZRC
receiver (45) for anM -PSK SM system as

X̂ZRC
mb (k) = arg m̃in

(s,L)∈AB
M×L

NR log det(εsC̄ssk (k))

+tr
{
G
(
C̄ssk (k),

(
Ys(k)− M̄ssk (k)

)H )}
(51)

where Ys(k) = Y(k)SH/εs, M̄ssk (k) = Ĥ(k)A(k)L, and

C̄ssk (k) =
σ 2
z

εs
INT + LH

×

[
INT − A(k)tH (k)T−1(kp)q(k)

]
8TL. (52)

We can show that the decision rule for separate antenna index
and modulated symbol detection is given by

L̂(k) = argmin
L∈L

NR log det(εsC̄ssk (k))

+tr
{
G
(
C̄ssk (k), M̄ssk (k)H

)}
+
s̄H (L)J(k)s̄(L)

ε2s
−

2<{bT (k)s̄(L)}
εs

, (53a)

ŝ(k) = s̄(L̂(k)), (53b)

where the entries of b(k) are the diagonal terms of
YH (k)M̄ssk C̄−1ssk (k), s̄(L) = QAM

(
εs(bT (k)J−1(k))H

)
, and

J(k) = C̄−1ssk (k) �(Y
H (k)Y(k))∗.

B. DD-CE-AIDED ZRC AND ZTC DETECTORS
1) GENERAL ZRC/ZTC DETECTORS
Based on the ZRC assumption and the fact that in a DD
system X(k) is detected with the DD CEs obtained at block
k − 1, we follow the procedure presented in the previous

subsection with zH1 = y
n
(k) and zH2 = ĥn

def
= ĥn(k −

1) = hn(k − 1)G1(k − 1) + zn(k − 1)G2(k − 1), where

G1(k)
def
= X(k)X̂†(k) and G2(k)

def
= X†(k)G1(k), to obtain

the covariance matrices

611 = XH (k)8TX(k)+ σ 2
z IB, (54a)

612 = ρT (1)XH (k)8TG1(k − 1), (54b)

622 = GH
1 (k − 1)

[
8T + σ

2
z

(
X(k − 1)XH (k − 1)

)−1]
×G1(k − 1)

≈ GH
1 (k − 1)

(
8T +

σ 2
z

εs
IB

)
G1(k − 1). (54c)

It follows immediately that, given X(k) and ĥn(k − 1), y
n
(k)

has mean zH2 6
−1
22 6

H
12 = ρT (1)ĥn(8T + σ

2
z /εsIB)

−18TX(k)
and covariance matrix

C̃zrc
def
= 611 −6126

−1
22 6

H
12

= σ 2
z IB + XH (k)

INT − ρ2T (1)
(
INT +

σ 2
z

εs
8−1T

)−1
×8TX(k) (55)

where ρT (1) is a prediction term used to alleviate the error
propagation effect. The resulting ZRC detector is

X̂ZRC
dd (k) = arg min

X∈X
NR log det C̃zrc

+ tr
[
G
(
C̃zrc,YH (k)− M̃H

zrc

)]
, (56)

where M̃zrc = ρT (1)Ĥ
(
INT + σ

2
z /εs8

−1
T

)−1
X(k). This

ZRC detector can also be derived from theCEEA-ML detector
(35) by using 8R = INR and some algebraic manipulations.

To derive the ZTC detector for a DD-CE-aided MIMO
system, we replace 8 by INT ⊗8R in (36) and invoke

A = ρT (1)(INT ⊗8R)(INT ⊗8R + σ
2
z INRNT )

−1

= ρT (1) INT ⊗
(
8R(8R + σ

2
z INR )

−1
)

(57a)

and X(k)XH (k) ≈ εsINT to obtain

mdd = vec
(
ρT (1)

(
8R(8R + σ

2
z INR )

−1
)
ĤX(k)

)
def
= vec(M̃ztc), (57b)

Cdd ≈ INT ⊗
(
σ 2
z INR

+ εs

(
8R − ρ

2
T (1)(INR + σ

2
z 8
−1
R )−18R

) )
def
= INT ⊗ C̃ztc. (57c)

Thus, detCdd = (det INT )
NR · (det C̃ztc)NT and

G(Cdd , vec(Y(k))−mdd ) = tr
{
G(C̃ztc,Y(k)− M̃ztc)

}
.

and from (35) we have the DD-ZTC detector

X̂ZTC
dd (k) = arg min

X∈ANT×B
M+

tr
{
G(C̃ztc,Y(k)− M̃ztc)

}
+NT log det C̃ztc (58)
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2) TWO-STAGE ZRC M-PSK DETECTOR
We first define

M̃ssk = ρT (1)Ĥ

(
INT +

σ 2
z

εs
8−1T

)−1
L, (59a)

C̃ssk =
σ 2
z

εs
IB + LH

INT − ρ2T (1)
(
INT +

σ 2
z

εs
8−1T

)−1
·8TL. (59b)

Using the above definitions and the decomposition X = LS,
we obtain an alternate expression for (55) and rewrite (56) as

X̂ZRC
dd (k) = arg m̃in

(s,L)∈AB
M×L

NR log det(εsC̃ssk )

+ tr
{
G
(
C̃ssk ,

(
Ys(k)− M̃ssk

)H )}
. (60)

The corresponding two-stage ZRC detector can then be
derived as

L̂(k) = argmin
L∈L

NR log det(εsC̃ssk )+ tr
{
G
(
C̃ssk , M̃H

ssk

)}
+
s̄H (L)J(k)s̄(L)

ε2s
−

2<{bT (k)s̄(L)}
εs

, (61a)

ŝ(k) = s̄(L̂(k)) (61b)

where s̄(L) = QAM

(
εs(bT (k)J−1(k))H

)
, b(k) is the vector

consists of the diagonal elements of YH (k)M̃ssk C̃−1ssk and
J(k) = C̃−1ssk � (YH (k)Y(k))∗.
As the dimension of Azrc(k) for the ZRC detectors (45)

and (51), NT × NT , is much smaller than that for the CEEA-
ML detectors, NRNT × NRNT , the former class of detectors
needs far less memory space. The two-stage ZTC detector can
be similarly derived.

VI. PERFORMANCE ANALYSIS OF CEEA-ML AND
RELATED DETECTORS
The bit error rate (BER) performance of the SM detectors
depends on the channel estimation method used and, because
of the assumed frame structure, is a function of the data
block location index k; see Fig. 1. For the MB systems, the
performance is better when min{k, (N − k)mod N } is small
while for theDD counterparts, the performance degradeswith
increasing k . Let BER(k) be the BER of the kth block then the
average BER is

BERMB =
1

2N − 2

2N−1∑
k=1,k 6=N

BERMB(k), (62)

BERDD =
1

N − 1

N−1∑
k=1

BERDD(k). (63)

For simplicity, the subscript for the CE used shall be omitted
unless necessary. It is straightforward to show that [10], [19]

for CEEA-ML detectors

BER(k) ≤
1

2mB
1
mB

∑
(s,L)∈AB

M×L

∑
(s′,L′)∈

AB
M×L\{(s,L)}

dH
(
X,X′

)
· Pk

{
X→ X′

}
(64)

where X = L ·Diag(s), X′ = L′ ·Diag(s′), dH (X,X′) denotes
the Hamming distance between the information bits carried
by X and by X′, and Pk{X → X′} the averaged pairwise
error probability (PEP) of detecting the transmitted signal X
as X′. We derive the conditional PEP of the MB-CE-aided
CEEA-ML detectors in the followings; that for DD-CE-aided
detectors can be similarly obtained.

Pk
{
X→ X′|Ĥ(k)

}
= Pk

{
G(C′mb(k), vec(Y(k))−m′mb(k))+ log detC′mb(k)

< G(Cmb(k), vec(Y(k))−mmb(k))+ log detCmb(k)|Ĥ(k)
}

= Pk
{
(y− d)HD(y− d)− εHD−1ε

+ G
(
C′mb(k),m

′
mb(k)

)
− G (Cmb(k),mmb(k))

+ log det
(
C′mb(k)C

−1
mb(k)

)
< 0|Ĥ(k)

}
(65)

def
= Pk

{
(y− d)HD(y− d) < η(X,X′, k)|Ĥ(k)

}
,

where m′mb(k) and C′mb(k) are respectively obtained
from (23a) and (23b) with X replaced by X′ and (65) is
obtained by completing the square with D = (C′mb(k))

−1
−

C−1mb(k), y = vec(Y(k)), ε = (C′mb(k))
−1m′mb(k) − C−1mb(k)

mmb(k), and d = D−1ε. Based on (26), we have

y ∼ CN
(
vec

(
Ĥ(k)X

)
, 9̃
)
, (66)

where 9̃
def
= σ 2

z INRNT + (XT
⊗ INR )9E (k)(X∗⊗ INR ). Repre-

senting the Gaussian random vector y by 9̃
1
2 ỹ+ vec(Ĥ(k)X)

where ỹ ∼ CN (0NRNT , INRNT ), we obtain an alternate
quadratic form

(y− d)HD(y− d)

=

(
9̃

1
2 ỹ+vec(Ĥ(k)X)− d

)H
D
(
9̃

1
2 ỹ+vec(Ĥ(k)X)− d

)
=

(
ỹ+ 9̃−

1
2

(
vec(Ĥ(k)X)− d

))H
· 9̃

1
2D9̃

1
2

(
ỹ+ 9̃−

1
2

(
vec(Ĥ(k)X)− d

))
=

(
UH ỹ+ UH 9̃−

1
2

(
vec(Ĥ(k)X)− d

))H
·3

(
UH ỹ+ UH 9̃−

1
2

(
vec(Ĥ(k)X)− d

))
def
= qnc,

where U3UH is the eigenvalue decomposition of 9̃
1
2D9̃

1
2

with orthonormal matrix U and diagonal matrix 3 contain-
ing respectively the eigenvectors and corresponding eigen-
values. Since UH ỹ and ỹ have the same distribution, qnc is
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a noncentral quadratic form in Gaussian random variables
and the CDF

Pk
{
qnc < η(X,X′, k)|Ĥ(k)

}
(67)

can be evaluated by the method proposed in [20] or the series
expansion approach of [21, Ch. 29].

The average PEP is thus given by

Pk
{
X→ X̂

}
=

∫
Pk
{
qnc < η(X,X′, k)|Ĥ(k)

}
P(Ĥ(k)) dĤ

=

∫
Pk
{
qnc < η(X,X′, k)|Ĥ(k)

}
×
e−G(8̃(k),vec(Ĥ(k)))

πNRNT det(8̃(k))
dĤ (68)

where 8̃(k)
def
= E{vec(Ĥ(k))vecH (Ĥ(k))} is equal to (21c).

As the both sides of the inequality in (67) depend on Ĥ(k), the
average over Ĥ(k) (68) can only be computed by numerical
integration. The BER performance of the ZRC, ZTC and
general MIMO CEEA-ML detectors can also be analyzed by
the same approach with the corresponding PEP derived from
different spatial correlation structures.

VII. COMPUTING COMPLEXITIES AND MEMORY
REQUIREMENTS OF VARIOUS SM DETECTORS
We now compare the computational complexities and mem-
ory requirements of the detectors derived so far. The memory
space is used to store the required items involved in the detec-
tion metrics and is divided into two categories: i) fixed and
ii) dynamic. The former stores the items that are independent
of the received samples and/or updated channel estimates and
can be calculated offline. The latter specifies those that vary
with the received samples. Take the ML detector (24) for
example, to achieve fast real-time detection, we pre-calculate
and store C−1mb(k), detCmb(k) and mmb(k) for all candidate
signals (X) and all k in two consecutive frames. These items
are time-invariant, independent ofY(k) or Ĥ(k). The dynamic
part refers to the received samples (in two frames) which have
to be buffered before being used to compute the MB channel
estimate and detecting the associated signals. As (XT (k) ⊗
INR )A(k) for all candidate X can be precalculated and stored,
the complexity to compute (23a) is only O(MNTBN 2

RN
2
T )

complex multiplications per block. The remaining complex-
ity is that of computing G(Cmb(k), vec(Y(k)) − mmb(k)).
Note that the complexities of the ML detectors for PAM,
rectangular QAM and PSK signals, assuming perfect CSI,
can be reduced by taking advantage of their regular con-
stellation structure [13], [14]. The resulting performance is
equal to that of the mismatched detector in the presence of
CSI error and, as will seen in the next section, is worse than
that of our detectors. The degradation ranges from small to
very significant, depending on the CE used and the channel
condition.

As the CEEA-ML detector degenerates to the ZRC
detector by setting 8R = INR , the dimensions of the
correlation-related terms can be reduced by a factor of NR.

This reduction directly affects both computing complexity
and memory requirement. The complexity of the two-stage
detector is only 1/MB of its single-stage counterpart because
the parallel search on both transmit antenna index and data
symbol has been serialized. However, the memory required
remains unchanged.

For the mismatched detectors (18), besides the dynamic
memory to store Ĥ and Y(k), the fixed memory, which con-
sists mainly of those for storing the terms the CEs need,
is relative small and usually dominated by the memory to
store the statistics for the CEEA-ML detectors. A mini-
mal complex multiplication complexity of O(MNT BNRNT )
is called for, since without channel statistics data of each
channel use can be detected separately, i.e., X̂MM(k)

def
=

[x̂MM
1 (k), · · · , x̂MM

B (k)] with

x̂MM
j (k) = arg min

x∈ANT
M+

‖yj(k)− Ĥx‖2F .

The detectors using DD channel estimates needs signif-
icantly less memory than those using MB ones as they
do not jointly estimate the channel of several blocks and
(35) indicates that C−1dd is independent of the block index.
We summarize the computing complexities of various detec-
tors in Tables 4.
We conclude that, among all the proposed detectors, the

ZRC (or ZTC) detectors are the most desirable as they require
the minimal computation and memory to achieve satisfactory
detection performance. Although the mismatched detector is
the least complex and requires only comparable memory as
ZRC (or ZTC) detectors do, its performance, as shown in the
following section, is much worse than that of the proposed
detectors in some cases.

VIII. SIMULATION RESULTS
In this section, the BER performance of the detectors we
derived is evaulated through computer simulations. We use
the S-T channel model of [16] and assume that uniform
linear arrays (ULAs) are deployed on both sides of the link.
The spatial correlation follows the Kronecker model (41) so
that (6) can be written as ρS (i−m, j−n) = [8T ]jn · [8R]im =
ρS (0, j−n) ·ρS (i−m, 0). When the angle-of-arrivals (AoAs)
and angle-of-departures (AoDs) are uniformly distributed in
(0, 2π ], we have [16]

ρS (`− `′, 0) = ρS (0, `− `′) = J0(2π(`− `′)δ/λ), (69)

where J0(·) is the zeroth-order Bessel function of the first
kind, δ the antenna spacing for both transmitter and receiver
and λ the signal wavelength. On the other hand, if the AoAs
and AoDs have limited angle spreads [22], the spatial corre-
lation can be expressed as

[8R]ij = r |i−j|, [8T ]ij = t |i−j| (70)

with 0 ≤ r, t < 1. The above exponential model has been
widely applied for MIMO system evaluation [23] and proven
to be consistent with field measurements [24]. We use both
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TABLE 4. Computational complexity (in number of real-valued multiplications) involved to detect a data block for various detectors and modulation
schemes.

TABLE 5. Size of memory (in numbers of complex values) of various
detectors to store required items to detect a data block where
γ = MNT B, NB

T , and MBNB
T for general MIMO, PSK-SM,

and QAM-SM signals, respectively.

(70) and the isotropic model (69). As for time selectivity, we
assume that it is characterized by Jakes’ model [25]

ρT (k − `) = J0

(
2π fD

⌊
k − `
Kc

⌋
KcBTs

)
, (71)

where fD is the maximum Doppler frequency, Ts the symbol
duration, Kc the coherent time in blocks. In this section,
Kc = 1 is assumed. The remainder of this section considers
SM and SMXMIMO systems of different system parameters
and transmission rates.
Remark 4: Note that although we consider only uncoded

systems, most of the detection decision variables are pro-
portional or approximately proportional to the likelihood
function, hence for a coded SM system, one can use them
to compute the log-likelihood ratio as the soft input to the
decoder. Performance in a coded SM system can be improved
not only through coding but by performing iterative soft
message exchanges between the decoder and the data detector
(or channel estimator) [27].
Remark 5: Recall that the SM systems considered, like

most studies on SM systems [1], are narrowband ones and
are proper model of subchannels (subcarriers) of a wideband
multicarrier (e.g., OFDM) system. For an OFDM systemwith
operating frequency 2.4 GHz and subcarrier spacing 15 KHz,
Ts = 66.67 µs and fDTs = 0.01 means a modest vehicular
speed of 67.5 km/hr.
Remark 6: As the CE reliability is crucial to the system

performance, a proper power splitting between pilots and

data may bring about performance improvement. However,
the splitting ratio, which is a function of the received SNR
per transmit antenna, must be known for the transmitter to
adjust the transmit power and for the receiver to calibrate the
decision boundaries when detecting QAM or PAM signals.
This is an overhead which is often neglected. The optimal
power splitting issue is addressed only in some papers dis-
cussing MIMO CE algorithms when analytic expressions can
be derived. The information of the (varying) pilot power level
is also needed for the purpose of power control, handover, and
sometimes for coarse link distance estimation as well.

A. MB-CE-AIDED SM DETECTORS
The performance of MB-CE-aided CEEA detectors is pre-
sented in Figs. 2 and 3 where we plot the BER performance of
theCEEA-ML, (27),mismatched, (18), and suboptimal detec-
tors as a function of Ēb/N0, Ēb being the average received
bit energy per antenna. The suboptimal detectors include
the two-stage (34), ZRC (45), ZTC (50), and the two-stage
ZRC detectors, (53a) and (53b). Both the ML and suboptimal
detectors outperform the mismatched one. With N = 10, the
two-stage detector, which requires a much lower complexity,
suffers only negligible degradation w.r.t. its CEEL-ML coun-
terpart. The ZTC detector suffers slightly more performance
degradation than the ZRC one does for it is obtained by using
the extra approximation X(k)XH (k) ≈ εsINT .
The effect of spatial correlation can be found by comparing

the curves corresponding to N = 10 (frame duration 40Ts).
When the spatial correlation follows (69) with δ = 0.5
or 1λ, the correlation level is relatively low and the knowledge
of this information gives limited performance gain. But if
the correlation is high, as that described by (70) with r =
t = 0.8 or 0.5, it becomes more difficult for an SM detector
to resolve spatial channels (different hj’s) and the detector
performance degrades accordingly. This holds for detectors
with perfect CSI and those with imperfect CSI. Neglecting
CSI error and spatial correlation causemore performance loss
for channels with stronger correlations as can be found by
comparing their mismatch losses. Higher spatial correlation
also causes larger performance degradation for the ZRC and
ZTC detectors which lack one side’s spatial information. The
effect of a shorter frame (N = 5) can be found in the same
figures as well. As the CSI error is reduced, the mismatch
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FIGURE 2. Impact of the frame size and antenna spacing on the
performance of MB-CE-aided SM detectors in a Bessel correlated channel
(fDTs = 0.01): (a) δ = 0.5λ (b) δ = 1λ; M = 4, NT = NR = B = 4.

loss, which is proportional to the CSI error, becomes smaller
accordingly.

The performance of the ML detector with perfect CSI (11)
is insensitive to the time selectivity. For other detectors,
the CSI error increases with a larger fDTs and/or a sparser
pilot density and so is their performance degradations. For
example, from (71) we find that, for fDTs = 0.01, the 50%-
coherence time is approximately 24.2 Ts and thus with the
frame size N = 10, each antenna receives a pilot symbol
every other 39Ts which is too sparse to track the channel’s
temporal variation. Although knowing the associated CSI
error statistics helps reducing the performance loss, increas-
ing the pilot density to obtain a more reliable CE is much
more efficient-doubling the pilot density (N = 5) recovers
most losses.

The above results assume that perfect spatial correlation
information is available. We examine the impact of imperfect
spatial information in Figs. 4 and 5 where 8R and 8T used
by ZTC and ZRC detectors are estimated by first taking the

FIGURE 3. Impacts of frame size and spatial correlation on the
performance of MB-CE-aided SM detectors in exponentially-correlated
channels: (a) r = t = 0.8; (b) r = t = 0.5; M = 4, NT = NR = B = 4,
fDTs = 0.01.

time averages over three consecutive pilot blocks

8̄R
def
=

1
3NT

∑
k=0,N ,2N

Ĥ(k)ĤH (k), (72a)

8̄T
def
=

1
3NR

∑
k=0,N ,2N

ĤT (k)Ĥ∗(k) (72b)

These initial estimates are then improved by using the
exponentially-decay model

[8̂R]ij = r̂ |i−j|sgn(<{[8̄R]ij}), (73a)

[8̂T ]ij = t̂ |i−j|sgn(<{[8̄T ]ij}), (73b)

where

r̂ = arg min
0≤r<1

∑
i,j

∣∣∣r |i−j| − ∣∣[8̄R]ij
∣∣∣∣∣2 , (74a)

t̂ = arg min
0≤t<1

∑
i,j

∣∣∣t |i−j| − ∣∣[8̄T ]ij
∣∣∣∣∣2 . (74b)

The temporal correlation can be similarly estimated.
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FIGURE 4. Effect of imperfect spatial correlation information on the
MB-CE-aided ZRC and ZTC detectors’ performance in exponentially-
correlated channels; N = 5 or 10, M = 4, NT = NR = B = 4,
fDTs = 0.01, and (a) r = t = 0.8, (b) r = t = 0.5.

The performance of ZTC and ZRC detectors shown in
these two figures indicates that the refined spatial correla-
tion estimator (74a) and (74b) gives fairly accurate spatial
correlation estimates. Both detectors keep their performance
advantages over the mismatched counterparts when N = 10.
But with a denser pilot N = 5 (thus smaller mismatch
error), the ZTC detector (50) fails to offer noticeable gain due
perhaps to additional approximation (47) used. In Fig. 5, the
channel correlation follows (69) but the receiver still assumes
(70) and uses the estimator (74a) and (74b). In spite of the cor-
relation model discrepancy, the detectors still outperform the
mismatched one. The theoretical performance upper bound of
the CEEA-ML detector analyzed in Section VI is also shown
in Figs. 4, 5 and 8–10. Except in the lower Ēb/N0 region,
the theoretical bounds are tight and give reliable numerical
predictions. Similar accurate theoretical predictions on the
effect of N are found in Figs. 6 and 8 for several 16-QAM
SM detectors.

FIGURE 5. Effect of imperfect spatial correlation information on the
MB-CE-aided ZRC and ZTC detectors’ performance in Bessel-correlated
fading channels; N = 5, M = 4, NT = NR = B = 4, fDTs = 0.01, and
(a) δ = 0.5λ; (b) δ = 1λ.

Fig. 7 show the effects of reducing the receive antenna
number and increasing the pilot number for estimating the
modeling coefficients in (14). As expected, the performance
of the 4×2 system is much worse than that of its 4×4 coun-
terpart (cf. Fig. 3b) due to the smaller receive diversity order.
However, smaller NR also lessens the impact of CSI error and
thus reduces the mismatch loss. More pilots in the same mod-
eling period (21 blocks) improves the system performance but
the effect of a denser pilot (N = 5) is more impressive; see
also Figs. 4-6. The MB-CE’s error consists of the modeling
error and that due to noise. The latter estimation error is
reduced by having five pilots in 21 blocks but which seems
to be insufficient to compensate for the larger modeling error
introduced by increasing the modeling period from 11 blocks
(with three pilots) to 21 blocks.

B. DD-CE-AIDED SM DETECTORS
Figs. 8 and 9 present the performance of the DD-CE-aided
detectors. As expected, the proposed detectors outperform
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FIGURE 6. BER performance of MB-CE-aided 16-QAM SM systems
(5-bit/transmission) with different frame sizes and spatial correlations;
N = 10 or 20, NT = B = 2, NR = 4, fDTs = 0.01, and (left) r = t = 0.8;
(right) r = t = 0.5.

the mismatched one. The effects of the pilot density, cor-
relation level and other behaviors of these detectors are
similar to those observed in MB-CE-aided detectors. But
the DD-CE-aided detectors are more sensitive to the CSI
error. This is because the way the CE is updated makes
it quickly outdated in a fast fading environment and any
decision error will propagate until the next pilot block is
received.

In Figs. 6 and 8, we compare the effect of pilot density on
both classes of detectors. With long frame size (N = 20),
both MB- and DD-CE-aided detectors give unsatisfactory
performance although the former is slightly better. But if
we increase the pilot density to N = 10, the MB-CE-aided
detector offers more significant improvement: doubling the
pilot density gives a 3.5 dB gain at BER = 1 × 10−2

and r = t = 0.8 (or 2.9 dB at r = t = 0.5) for the
ML-MB detector, in contrast to the 2.6 dB (2.4 dB) gain
for the ML-DD detector. Obviously, the CSI accuracy is of
great importance and the CEEA-ML detectors significantly
outperform themismatched ones when CSI is unreliable. The
DD-CE is improved in a system using a smaller QAM con-
stellationAM ; see Fig. 9 whereM = 4 is assumed. The ZRC
and ZTC detectors ignore part of spatial correlation, hence,
it is only natural that their performance becomes closer to that
of the CEEA-ML detector as the spatial channel decorrelates
(when r and t become smaller).

C. CEEA-ML DETECTION OF SMX SIGNALS
In Fig. 10, we show the performance of the SMX
system in an S-T correlated fading channel using the CEEA-
ML detector (24). The SMX system’s parameter values are
B = NT = NR = 2 and M = 4 so that it yields a rate
of 4 bits/transmission. The figure reveals that both the
CEEA-ML detector and its suboptimal variations also offer
performance gain against the mismatched one. The SM
system with 4 bits/transmission and the same frame size,

FIGURE 7. Impacts of the number of pilot blocks per frame and the
receive antenna number on the performance of MB-CE-aided SM
detectors in exponentially-correlated fading channels; r = t = 0.5;
M = 4, NT = B = 4, NR = 2, fDTs = 0.01.

FIGURE 8. Performance of 5-bit/transmission DD-CE-aided SM systems
with different frame sizes and exponential spatial correlations;
16-QAM AM , N = 10 or 20, NT = B = 2, NR = 4, fDTs = 0.01, and (left)
r = t = 0.8; (right) r = t = 0.5.

as shown in Fig. 4, achieves the same BER performance
(say, at BER = 10−3) with a much lower SNR. The SMX
systems result in higher BER error floors whereas the SM
counterparts yield performance that is much closer to that
achieved with perfect CSI when the frame size is 20Ts
(N = 10). This is because in the high-SNR regime where
the ICI is the dominant deteriorating factor for an SMX
system, a high spatial correlation may result in occasionally
deep-fade across all spatial channels (all |hij|’s are small) and
a burst of erroneous symbols. Since the SM systems do not
suffer from ICI, a rare single-channel fade has less severe
impact on its BER performance. Nevertheless, using more
reliable CSI (N = 10) still helps to reduce an SMX system’s
error floor. We present the MB-CE-aided SMX detectors’
performance only as the DD-CE-aided detectors give even
worse performance.
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FIGURE 9. Performance of a 3-bit/transmission DD-CE-aided SM system
in exponentially-correlated fading channels; N = 10,M = 4, NT = B = 2,
NR = 4, fDTs = 0.01, and (left) r = t = 0.8; (right) r = t = 0.5.

FIGURE 10. Performance of the MB-CE-aided SMX systems in
exponentially-correlated fading channels; N = 10 or 20, M = 4,
NT = NR = B = 2, fDTs = 0.01, and (left) r = t = 0.8 or
(right) r = t = 0.5.

D. DIFFERENTIAL SM
The differential spatial modulation system imposes limita-
tions on antenna selection and is thus less spectral efficient.
It is applicable for constant modulus signals (e.g., PSK)
only and not suitable for QAM or PAM signals. Moreover,
a basic assumption in applying the differential SM (DSM)
scheme is that the channel remains static in at least two
(usually much more than this in practice) consecutive frames
(blocks) whence if the channel is turbulent enough to invali-
date this assumption, the DSM systemwill not work properly.
In Fig. 11, we show the performance comparison between
the DSM scheme [11] and the proposed detectors with MB
CE. Due to rate difference between DSM ( 14 log2(4!) +
2 bits/transmission) and SM (4 bits/transmission), the SNR
has been normalized for fair comparison. As can be seen, even
when the channel varies slowly (fDTs = 0.001), the DSM
system is still inferior to the 2-stage and CEEA-ML detectors

FIGURE 11. Performance of the MB-CE-aided SM and differential SM
systems in exponentially-correlated channels; N = 5 or 10, M = 4,
NT = NR = B = 4, fDTs = 0.001, and r = t = 0.8.

with sparse pilots (N = 10). For a higher pilot density
(N = 5) the performance gap even increases drastically.

IX. CONCLUSION
We have derived ML and various suboptimal detector struc-
tures for general MIMO (including SM and SMX) systems
that take into account practical design factors such as the
channel’s S-T correlations, the CE used and the correspond-
ing estimation error. We also suggest a model-based spatial
(and time) correlation estimator that yields quite accurate
results. For SM systems, we show that the derived detectors
are capable of reducing the mismatch loss and are especially
effective in fast fading channels.

The suboptimal detectors are obtained by simplifying the
ML detector’s exhaustive search effort, the spatial correlation
structure, the likelihood function, or a combination of these
approximations. The complexities and memory requirements
of the ML, suboptimal and mismatched detectors are ana-
lyzed. The effects of space and/or time selectivity and CSI
error using MB- or DD-CEs on the system performance are
studied via both analysis and computer simulations. Their
performance is compared with that of perfect CSI detectors.
It is found that the CEEA-ML and some suboptimal detec-
tors suffer only minor degradation and, moreover, the class
of two-stage detectors requires low complexities which are
independent of the signal constellation size. The numerical
results, including the performance of SMX system, enable
us to verify the usefulness of our error rate analysis and
demonstrate how the CSI uncertainty affects various detec-
tors’ BER performance, identifying the parameter ranges for
which the fading channel’s time or spatial selectivity has to
be taken into consideration. They also help finding the chan-
nel conditions and performance requirements under which
the low-complexity suboptimal detectors incur only minor
performance degradation and become viable implementation
choices.
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