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ABSTRACT The heavy hitters q-tail latencies problem has been introduced recently. This problem, framed
in the context of data stream monitoring, requires approximating the quantiles of the heavy hitters items
of an input stream whose elements are pairs (item, latency). The underlying rationale is that heavy hitters
are obviously among the most important items to be monitored, and their associated latency quantiles are
of extreme interest in several network monitoring applications. Currently, two randomized (SQUARE and
SQUAD) and one deterministic (QUASI) algorithms are available to solve the problem. In this paper,
we present a novel deterministic algorithm and empirically show that it outperforms QUASI, the current
state of the art deterministic algorithm for the problem, with regard to accuracy and speed.

INDEX TERMS Data stream mining, heavy hitters, quantiles, sketches.

I. INTRODUCTION
One of the key problems related to stream monitoring deals
with measuring the latency quantiles. Indeed, latency is
strictly related to the health of network connections. As an
example, when a web server exhibits high tail latency then
its users experience a low quality of service. It is worth
to recall here that this may happen even though both the
average andmedian latencies are low. Owing to the streaming
setting, determining the exact latencies is not feasible using
a limited amount of space. Therefore, we are interested in
approximating the latency quantiles. In particular, we deal
with the per item quantiles. However, the number of distinct
items belonging to the input stream may be huge, requiring
again too much space. As a consequence, the heavy hitters
q-tail latencies problem has been introduced recently [1], [2].
Solving this problem requires, instead, approximating only
the quantiles of the heavy hitters items of an input stream,
therefore lowering the space requirement. The heavy hitters,
i.e. the items with the highest number of occurrences, are
indeed commonly associated to events of interest from a
monitoring perspective and are a subset of significant items
of the stream.
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Since the heavy hitters q-tail latencies problem is brand
new, to the best of our knowledge, there are only three
algorithms published in the literature. Two of them are
randomized (SQUARE, Sampled QUAntile REconstruction
and SQUAD, Sketching/sampling QUAntiles Duo), the other
is deterministic (QUASI, QUAntile Sketches for heavy
Items) [1], [2].

In this paper, we present QUHIS, QUantile Heavy Items
Sketch, a novel deterministic algorithm.We empirically show
that it is much more accurate and fast than QUASI, which
is the current state of the art deterministic algorithm for the
problem.

In practice, we are concerned with the simultaneous solu-
tion of two well known and studied problems, i.e., given an
input data stream determining its heavy hitters (also known
in the literature as frequent items) and, for each of them,
determining its latency distribution. It is worth pointing out
here that we aim for an approximate solution, owing to the
fact that solving exactly this problem requires a huge amount
of space (tracking the heavy hitters alone exactly requires
at least �(n) space for a stream of length n). Additional
difficulties are tied to the data stream model, in which items
can only be accessed in their arrival order (i.e., random access
to the data is not allowed). Moreover, in the common case
of high-speed data streams each item must be processed
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quickly, ideally in constant O(1) time, and then immediately
discarded. Finally, the stream may not be necessarily finite,
most of the streams are continuous and unbounded sequences
of items. Therefore, the stream can not even be stored in its
entirety. Anyway it is possible, without loosing generality,
setting a priori the stream’s length: for an infinite stream σ =
σ1, σ2, · · · , σi, σi+1, · · · , setting its length to n is equivalent
to consider the initial prefix σ = σ1, σ2, · · · , σn. To recap,
any algorithm processing a data stream must do so with
limited space, ideally constant time for stream update, and
with jus a single pass on the stream.

The data streaming problem we are interested in should
not be confused with a time series, in which the stream items
σ1, σ2, · · · , σi, σi+1, · · · are related to un underlying signal
X , i.e., a univariate function over R. In the time series model,
an item σi represents the i-th value of the signal: σi = X [i].
Instead, we deal with a stream model, called cash register,
in which an item σi represents an update of the underlying
signal. In this case the signal X consists of the vector of
frequencies of the items appearing in the stream: letting σi =
j, in this model the arrival of σi from the input stream means
that the j-th value of the signal must be updated as follows:
Xi[j] = Xi−1[j] + 1. This can be easily generalized to pairs
(σi,wi) in which there is a weightwi > 0 associated to σi, and
the update becomes Xi[j] = Xi−1[j] + wi. Finally, when the
weight wi can also be negative, the corresponding streaming
model is called turnstile.

Regarding heavy hitters, they are defined with regard
to their frequency: considering a stream of length n con-
sisting of tuples (item, weight) the frequency of a given
item is simply the sum of its weights. However, in many
applications the items are not associated to a corresponding
weight, in which case the weight is implicitly assumed to be
unitary.

In this work, the input stream to be processed contains
elements which are pairs (item, latency), and the heavy hitters
are computed with reference to the number of occurrences
of the first component of each pair, the item. Heavy hit-
ter are defined taking into account a user’s defined support
threshold φ, as the items whose frequency exceeds φn. In the
literature, the problem of determining the heavy hitters has
been referred to with different names, such as market basket
analysis [3], hot list analysis [4] and iceberg query [5], [6].
Determining frequent items in a stream is a problem impor-

tant both from a theoretical perspective and for its many
practical applications; a few examples follows: (i) popular
products - the stream may be the page views of products on
the web site of an online retailer; frequent items are then the
most frequently viewed products; (ii) popular search queries
- the stream may consist of all of the searches on a search
engine; frequent items are then the searches made most often;
(iii) TCP flows - the stream may consist of the data pack-
ets passing through a network switch, each annotated with
a source-destination pair of IP addresses, and the frequent
items are then the flows that are sending the most traffic.
Additional applications include, for instance, analysis of web

logs [7], Computational and theoretical Linguistics [8] and
the analysis of network traffic [9], [10], [11].

In order to determine the quantiles of the latencies associ-
ated to the heavy hitters, we also need to accurately track the
input stream latencies. Of course, tracking the latencies for
each incoming item would require a huge amount of space,
therefore an algorithm must be clever enough to maintain,
by using an appropriate data structure, only the latencies that
are deemed important, being associated to potential heavy
hitters candidate items. Again, solving this problem exactly
is quite expensive, computing exact quantiles is impossible
without storing all of the data [12]

Quantiles can be used to characterize the distributions
of real datasets much better than simpler alternatives, i.e,
by using the mean and the variance. Therefore quantiles
are important from a practical perspective to both database
implementers and users: as an example, they are necessary
for query optimization, to split the data in parallel database
systems, and are fundamental for statistical data analysis.

Among the possible applications, we recall here
Internet-scale network monitoring. For instance, given a
client-server application, the overall performance of the ser-
vice (web site, database etc) is characterized by the latency
encountered by the users’ requests. Since the distribution
of the latency values is usually skewed, tracking some spe-
cific quantiles (e.g., the 95th percentile) is commonly done.
The Gigascope streaming database [13] relies on quantiles
for monitoring network applications and systems. More-
over, as already discussed, quantiles are extensively used
in database query optimizers in order to estimate how large
intermediate results are; the estimates are then used to deter-
mine the overall best execution plan [14].

As discussed, tracking heavy hitters and latencies quan-
tile are important problems per se; however, one may won-
der why coupling these two problems deserves attention.
As stated in [1]:
There are two complementary reasons why focusing on

heavy hitters makes sense in the context of tail latency mon-
itoring. First, since each heavy-hitter accounts for a signif-
icant fraction of the overall system load, it is important to
ensure good quality of service for them. Second, when there
are only a few elements associated with a given item, e.g., the
item only appears in one or two transactions, it is enough that
a single transaction suffers from a longer than usual delay in
order for the tail-latency of that item to be very large. Such
one-time events can be caused by, e.g., caching initialization,
storage warm-up, route discovery overheads, and ‘‘bad luck’’
in terms of temporal overloads on intermediate components
and devices. On the other hand, a large tail latency for a
heavy hitter points to a repetitive problem, which hopefully is
easier to discover and fix, and one that is also very important
to resolve.

The rest of this manuscript is organized as fol-
lows. Section II introduces preliminary definition and nota-
tion. Section III recalls related work. QUASI is introduced
in Section IV. We present QUHIS in Section V and analyze
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the computational and space complexity of QUASI and
QUHIS in Section VI. Experimental results are discussed in
Section VII. We draw our conclusions in Section VIII.

II. PRELIMINARY DEFINITIONS AND NOTATION
In this Section we briefly recall preliminary definitions and
the notation that shall be used throughout the paper. We begin
with the heavy hitters.
Definition 1 (Frequency of Items): Given a stream σ =

{si}i=1,2,...,n of n items drawn from the universe [m] =
{1, 2, . . . ,m} the frequency of an item s is fσ (s) =

∑
i∈[n]
si=s

1.

Next, we define the frequency vector.
Definition 2 (Frequency Vector): A stream σ =

{si}i=1,2,...,n, whose items are drawn from the universe [m]
implicitly defines a frequency vector, f = (f1, f2, . . . , fm),
where fi = fσ (i) is the frequency of item i.
We can interpret a stream σ as a sequence of updates to

the frequency vector f: initially f is the null vector, then, for
each item i in the stream, the entry in f corresponding to the
frequency of the item i is incremented. We are now ready to
define the ε-approximate frequency estimation problem.
Definition 3 (ε-Approximate Frequency Estimation Prob-

lem): Given a stream σ = {si}i=1,2,...,n of n items drawn from
the universe [m], the frequency vector f defined by σ , and
a value 0 < ε < 1, the ε-approximate frequency estimation
problem consists in computing a vector f̂ = (f̂1, f̂2, . . . , f̂m),
so that

∣∣∣f̂i − fi∣∣∣ ≤ ε‖f‖`, for each i ∈ [m], where ` can be
either 1 or 2.

Next, we define the φ-frequent items.
Definition 4 (φ-Frequent Items): Given a stream σ =

{si}i=1,2,...,n of n items drawn from the universe [m] and a
real value 0 < φ < 1, the φ-frequent items of σ are all those
items whose frequency is above φn, i.e. the elements in the set
F = {s ∈ [m] : fσ (s) > φn}.
We will often refer to the φ-frequent items of a stream

simply as frequent items, leaving as implicit the reference
to a φ value. Frequent items are also commonly referred to
as Heavy Hitters. The ε-approximate frequent items problem
related to determining φ-frequent items is defined as follows.
Definition 5 (Heavy Hitters): Given a stream σ =

{si}i=1,2,...,n of n items drawn from the universe [m], a thresh-
old 0 < φ < 1 and a tolerance 0 < ε < φ, the ε-approximate
frequent items problem consists in finding the set F, so that:

1) F contains all of the items s with frequency fσ (s) > φn
(φ-frequent items);

2) F does not contain any item s such that fσ (s) ≤ (φ−ε)n.

The definitions and notation related to quantiles are intro-
duced below.
Definition 6 (Rank): Given a set S ⊂ R with n elements,

the rank of the element x, denoted by R(x), is the number of
elements in S less than or equal to x, i.e.

R(x) :=
∣∣∣{z ∈ S | z ≤ x}∣∣∣. (1)

Definition 7 (q-Quantile): Given a set S ⊂ R with n
elements and a real number 0 ≤ q ≤ 1, the inferior
q-quantile (respectively superior q-quantile) is the element
xq whose rank in S is equal to

xq ∈ S : R(xq) = b1+ q · (n− 1)c (2)

(respectively R(xq) = d1+ q · (n− 1)e).
The cumulative function F : R → [0 , 1] is related to

the distribution of an ordered set S with n elements: given
an arbitrary value x, F(x) is defined as the ratio between the
number of values less than or equal to x and n. In general, for
a discrete set not necessarily sorted {xi}i, the cumulative func-
tion is defined as F(x) =

∑
xi≤x p(xi) =

∑
xi≤x

|{x∈S:x=xi}|
n .

The element related to the q-quantile xq ∈ S is the inverse of
the function F(x), i.e. xq is such that F(xq) = q. By defini-
tion, x0 and x1 are, respectively, the minimum and maximum
element of the set S, and x0.5 is the median.
Regarding the accuracy of an algorithm for tracking quan-

tiles, it can be defined in two different ways, as follows.
Definition 8 (Rank Accuracy): Given an item v and a

tolerance α, an estimate of the rank R̃(v) is returned such that

| R̃(v)− R(v) |≤ α · n. (3)

Definition 9 (Relative Accuracy): Given the item related
to the q-quantile xq ∈ S, the α-accurate q-quantile is defined
as the item x̃q such that

| x̃q − xq |≤ α · xq. (4)

An algorithm is (q0, q1) α-accurate if it returns α-accurate
q-quantiles, for q0 ≤ q ≤ q1.
Even though researchers have been focusing for long time

their attention on the design of sketches and other data struc-
tures that could provide rank accuracy, datasets with heavy
tails are such that algorithms providing rank accuracy can
actually return values with arbitrary relative errors. In par-
ticular, it is well known that rank accuracy is not feasible for
tracking high order quantiles of heavy tailed distributions.

We now formally state the heavy hitters q-tail latencies
problem addressed in this paper.
Definition 10 (Heavy Hitters q-Tail Latencies Problem):

Given a universe set U , consider a stream of pairs σ =
{(x1, l1), (x2, l2), · · · } ∈ (U × R)+ in which a pair (xi, li) is
made of an item’s identifier xi ∈ U (whose implicit weight is
unitary) and a latency li ∈ R.
Denote by fx = |{(xi, li) ∈ σ : xi = x}| the frequency of x.

The set of latencies associated to x is denoted by

Lx = {li ∈ R : (x, li) ∈ σ }. (5)

Let σ be a stream of length n, φ ∈ [0, 1] a threshold
parameter and let 0 < ε < φ and 0 < α < 1 be two addi-
tional tolerance parameters. The heavy hitters q-tail latencies
problem requires estimating the frequency f̂x for each heavy
hitter x so that the conditions stated in Definition 5 hold and,
given q ∈ [0, 1], estimating the q-quantile of Lx according
either to Definition 8 or Definition 9.

106388 VOLUME 10, 2022



A. Fornaio et al.: Deterministic, Fast and Accurate Solution of the Heavy Hitters q-Tail Latencies Problem

The following example illustrates the heavy hitters q-tail
latencies problem. Consider the input stream whose items
and relative latencies are listed in Table 1. Assume we are
interested in the 0.99-quantile of the φ-frequent items in that
stream and set φ = 0.25. The length of the stream is n = 24,
hence the 0.25-frequent items are those whose number of
occurrences is greater than 0.25n = 6.

The items that satisfies that condition are I1 and I2. The
latencies referred to item I1 ordered by increasing value are

LI1 = {27, 30, 33, 37, 38, 45, 75, 92, 96}.

The latencies referred to item I2 ordered by increasing value
are

LI2 = {29, 40, 78, 80, 83, 87, 90}.

Therefore, the 0.99-quantile of LI1 is the item x0.99 ∈ LI1
whose rank is R(x0.99) = b1 + 0.99(9 − 1)c = 8, that is,
x0.99 = 92. The 0.99-quantile of LI2 is the item x0.99 ∈ LI2
whose rank is R(x0.99) = b1 + 0.99(7 − 1)c = 6, that is,
x0.99 = 87.

TABLE 1. Data stream example.

III. RELATED WORK
The first algorithm for mining frequent items dates back
to 1982, and is due to Misra and Gries [15]. Many years
later, the Lossy Counting and Sticky Sampling algorithms
by Manku et al. [16], were published in 2002. Interestingly,
in 2003, the Misra and Gries algorithm was independently
rediscovered and its computational complexity improved by
Demaine et al. [9] and Karp et al. [17]. This algorithm is
known in the literature as Frequent. Metwally et al. presented
a few years later the Space Saving algorithm [18], which
significantly improves the accuracy. These algorithms keep
track of frequent items through the use of counters, i.e., data
structures managing pair (item, estimated frequency).

Another group of algorithms is based on a sketch data
structure, usually a bi-dimensional array hosting a counter
in each cell. Pairwise independent hash functions are used
to map stream’s items to corresponding cells in the sketch.
Sketch–based algorithms include CountSketch by Charikar
et al. [7], Group Test [19] and Count-Min [20] by Cormode
and Muthukrishnan, hCount [21] by Jin et al. and CMSS [22]
by Cafaro et al. Table 2 recaps the most prominent algorithms
for determining frequent items.

Algorithms for Correlated Heavy Hitters (CHHs) have
been recently proposed by Lahiri et al. [28] and by Epicoco et
al [27] in which a fast andmore accurate algorithm for mining
CHHs is presented.

All of the previous algorithms give identical importance to
each item. However, in many applications is necessary to dis-
count the effect of old data. Indeed, in some situations recent
data is more useful and valuable than older data; such cases

may be handled using the sliding windowmodel [30], [31] or
the time–fading model [32]. The key idea in sliding window
is the use of a temporal window to capture fresh, recent items.
This window periodically slides forward, allowing detection
of only those frequent items falling in the window. In the
time–fading model recent items are considered more impor-
tant than older ones by fading the frequency count of older
items. Among the algorithms for mining time–faded frequent
items we recall λ-HCount [25] by Chen and Mei, FSSQ
(Filtered Space Saving with Quasi–heap) [33] by Wu et al.
and the FDCMSS algorithm [26], [34], [35] by Cafaro et al.

Regarding parallel algorithms, Cafaro et al. [23], [24], [36]
provide parallel versions of the Frequent and Space Sav-
ing algorithms for message–passing architectures. Shared-
memory versions of Lossy Counting and Frequent have been
designed by Zhang et al. [37], [38], and parallel versions
of Space Saving have been proposed by Dat et al. [39],
Roy et al. [40], and Cafaro et al [41]. Accelerator based algo-
rithms include Govindaraju et al. [42], Erra and Frola [43]
and Cafaro et al. [41], [44]. Pulimeno et al. [45] present a
message-passing based version of the CHHs algorithm [27],
[46]; a parallel message-passing based version of [26] is
presented in [47].

Distributed mining of heavy hitters include algorithms
such as [48], [49], [50], [51], [52]. In the context of
unstructured P2P networks, gossip–based algorithms have
been proposed for mining frequent items
including [29], [53], [54], [55].

The majority of quantile approximation algorithms have
been designed to achieve additive (εn) approximation,
defined as follows. Given a stream σ = x1, x2, · · · , xn (or
a dataset) of length n and an error parameter 0 < ε < 1,
the ε-approximate φ-quantile is any element x ∈ σ with rank
R(x) = |{yi ∈ σ : yi ≤ x}| (i.e., the number of elements less
than or equal to x) such that (φ − ε)n ≤ R(x) ≤ (φ + ε)n.
An approximation R̂(x) is additive if |R(x)− R̂(x)| ≤ εn.
Among the many algorithms that have been proposed for

approximate quantile computation (Table 3 recaps the most
prominent algorithms), actually just a few of them are merge-
able (i.e., they can be used in a distributed or parallel setting),
whilst some are only one-way mergeable (which prevents
their use in a distributed or parallel setting). For instance,
Greenwald-Khanna [62] and t-digest [63], [64] are one-way
mergeable, and therefore can not be used for parallel and
distributed processing.

Mergeable quantile approximation algorithms include
q-digest [56],M-Sketch [57], KLL [58], DCS [59], REQ [60],
DDSketch [61] and UDDSketch with its parallel version
PUDDSketch [65].

Quantile Digest or q-digest is a sketch designed to approxi-
mate quantiles with a guaranteed error bound on the accuracy,
which in turn depends on the space actually used: the bigger
the space bound, the smaller the approximation error. q-digest
is deterministic and works by grouping data into variable-
sized buckets, of almost equal height: so, it’s similar to an
equi-depth histogram except that buckets may overlap.
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The input data belongs to a universe U, represented by the
integer values in the range [0,U − 1]. This model is known
in the literature as fixed-size universe model. Therefore, the
assumption adopted in [56] is that U is a finite countable uni-
verse set of integer values with a known positive range. This
is the strength of the approach but also its main drawback,
in that it severely limits its wide adoption to other cases (e.g.,
negative or real values are not allowed). Another limitation
is related to the impossibility of deleting inserted values: the
algorithm only works cash-register model. Finally, q-digest
uses O( 1

ε
lgU ) space.

M-Sketch, also known as Moment Sketch, is a summary
intended for efficient mergeability. The summary has a very
low memory footprint and low update overhead and makes
use of statistical moments to approximate quantiles. The algo-
rithm is deterministic and works in the cash register model.
Given an integer k (which refers to the highest power used
in the moments), an order-k moment sketch is a summary
consisting of an array of 2k + 3 floating point values, corre-
sponding to information retrieved from the processed dataset
D ⊆ R: xmin and xmax , the minimum and the maximum values
seen so far, n, the count of items processed so far, and the
set of sample moments and sample logarithmic moments,
respectively µi = 1

n

∑
x∈D x

i and νi = 1
n

∑
x∈D logi(x) for

1 ≤ i ≤ k . Since k is a small constant, the space used is
O(k) = O(1).
The moment sketch is aimed at tracking the moments of

an empirical continuous interval to approximate quantiles,
rather than the underlying distribution. To estimate quantiles,
the method of moments is used, along with the principle of
maximum entropy.
The sketch has been evaluated against existing solutions

(such as GK and t−digest) and it proves to be faster, with
a merge operation requiring a smaller memory footprint,
whilst achieving the same ε error. However, Moment Sketch
accuracy is lower than DDSketch [61], owing to a greater
relative error.

KLL [58] is a randomized algorithm, hence it provides an
additive approximation with probability at least 1 − δ, with
0 < δ < 1. Actually, the authors designed two versions
of KLL: one is space optimal with regard to randomized
algorithms, requiring O( 1

ε
lg lg( 1

δ
)) space, but not mergeable,

whilst the other is mergeable but not space optimal, requir-
ing O( 1

ε
lg2 lg( 1

δ
)) space. The algorithm works in the cash-

register model. A recently proposed newer version, called
KLL±, exists and has been proposed to work in the bounded
deletion model, in which at most a fraction α of the items
inserted can be deleted.

KLL makes use of a hierarchy of compactors with varying
capacities. A compactor is a buffer of size k , into which items
ingested from a stream are stored with the same weight w.
Each compactor has a height, h; in particular, h = 1 for
the first compactor and h = H for the last compactor in
the chain. When a compactor is full, its items are sorted and
compacted into a sequence of k/2 items, with weight 2w:
either the even or the odd items in the compactor are chosen

with equal probability, whereas the others are discarded. The
selected items are fed into another compactor (with height
h + 1), and so on with at most H ≤ dlog(n/k)e compactors
chained together, n being the length of the stream. The total
space required is kH . The weight of the items in a compactor
with height h is given by wh = 2h−1.
Dyadic Count Sketch (DCS) is a randomized algorithm,

and assumes that the data are drawn from an integer domain
[U ] = [0, 1, · · · ,U − 1] (fixed-size universe model). DCS
imposes a dyadic structure over the universe U and leverages
a Count-Sketch data structure for frequency estimation in
each level of the dyadic structure. DCS suffer the same limi-
tation of Q-Digest, namely a bounded integer range [U ] =
[0, 1, · · · ,U − 1]. However, it works in the more general
turnstile model, since it allows deletions. The space used is
O( 1

ε
lg1.5 u lg1.5( lg u

ε
)).

Relative-Error Quantiles Sketch [60] is a randomized algo-
rithm striving to provide a multiplicative rather than addi-
tive error approximation; i.e., a relative error approximation.
In particular, a multiplicative approximation requires, given
an approximation R̂(x), that |R(x) − R̂(x)| ≤ εR(x). It is
worth recalling here that achieving multiplicative guarantees
is known to be strictly harder than additive ones. Regarding
the space bound, REQ uses O(log1.5(εn)/ε) space.
Cash register is the underlying model of REQ, so that

no deletions of previously inserted items are allowed. The
algorithm is based, as in KLL, on a structure of relative-
compactor objects. The merge operation is tricky, owing to
the need to ensure that relative-error guarantees are satisfied
for the merged sketch.

UDDSketch is based on the DDSketch algorithm [61],
is a deterministic algorithm and achieves better accuracy by
using a different, carefully designed collapsing procedure.
Being based on DDSketch, UDDSketch works in the turnstile
model, so that deletions of previously inserted items are
allowed (this corresponds to items arriving from the input
stream with an associated negative weight).

The DDSketch data summary is a collection of buckets.
The algorithm handles items x ∈ R>0 and requires in
input two parameters to initialize the sketch: the first one, α,
is related to the user’s defined accuracy; the second one, m,
represents the maximum number of buckets allowed. Using
α, the algorithm derives the quantity γ = 1+α

1−α which is
used to define the boundaries of the ith bucket Bi. All of the
values x such that γ i−1 < x ≤ γ i fall in the bucket Bi, with
i = dlogγ xe, which is just a counter variable initially set to
zero. We recall here that DDSketch can also handle negative
values by using another sketch in which an item x ∈ R<0 is
handled by inserting −x.
Inserting a value is done by simply incrementing the

counter by one; similarly deleting a value requires decrement-
ing by one the corresponding counter (when a counter reaches
the value zero, the corresponding bucket is discarded and
thrown away). Initially the summary is empty, and buckets
are dynamically added as needed. It is worth noting here that
bucket indexes are dynamic as well, depending just on the
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TABLE 3. Prominent quantile algorithms.

input value x to be inserted and on the γ value. In order
to avoid that the summary grows without bounds, when the
number of buckets in the summary exceeds the maximum
number of m buckets, a collapsing procedure is executed.
The collapse is done on the first two buckets with counts
greater than zero (alternatively, it can be done on the last two
buckets). Let the first two buckets be respectively By and Bz,
with y < z. Collapsing works as follows: the count stored
by By is added to Bz, and By is removed from the summary.
Algorithm 1 presents the pseudo-code for the insertion of a
value x into the summary S.

Owing to its bucket collapsing strategy, DDSketch only
provides a α-accurate (q0, q1)-sketch for q0 > 0 and q1 = 1,
with the actual value of q0 depending on how many items fall
into the collapsed bucket. In particular, Proposition 4 of [61]
provides the required condition for a quantile q to be α-
accurate.

UDDSketch uses a uniform collapsing procedure that pro-
vides far better accuracy with regard to DDSketch, in par-
ticular our algorithm provides a α-accurate (q0, q1)-sketch
for q0 = 0 and q1 = 1, i.e. all of the quantile queries can
be answered α-accurately. In practice, we collapse all of the
buckets, two by two. Given a pair of indices (i, i+ 1), with i
an odd index and Bi 6= 0 or Bi+1 6= 0, we create and add to
the summary a new bucket with index j = d i2e, with counter
value equal to the sum of the Bi and Bi+1 counters. The
new bucket replaces the two collapsed buckets. Algorithm 2
reports the pseudocode of the uniform collapse procedure.

The collapsing procedure applied to an α-accurate (0, 1)-
quantile sketch produces an α′-accurate (0, 1)-quantile sketch
on the same input data with α′ = 2α

1+α2
(see Lemma 2 of

[66]). Moreover, we also provide a theoretical bound on the
accuracy achieved by the UDDSketch data summary. Given
an input whose data domain is an interval [xmin, xmax] ∈ R>0
and an UDDSketch data structure using at most m buckets
to process the input, the approximation error committed by
UDDSketch using the uniform collapse procedure is bounded
by α̂ = γ̃ 2−1

γ̃ 2+1
, with γ̃ = m−1

√
xmax
xmin

(see Theorem 3 of [66]).1

1Due to a typo, in Theorem 3 of [66] the value of γ̃ is erroneously reported
as m
√
xmax
xmin

.

Algorithm 1 DDSketchUpdate(x,S)
Require: x ∈ R>0: item to be inserted; S: sketch in

which the item must be inserted
Ensure : Insertion of item x into the sketch S
function DDSketchUpdate(x,S)

i← dlogγ xe
if Bi ∈ S then

Bi← Bi + 1
else

Bi← 1
S ← S ∪ Bi

end
if |S| > m then

let By and Bz be the first two buckets
Bz← By + Bz
S ← S r By

end

Algorithm 2 UniformCollapse(S)
Require: sketch S = {Bi}i
Ensure : resized sketch S
function UniformCollapse(S)

foreach {i : Bi > 0} do
j← d i2e
B′j← B′j + Bi

end
return S ← {B′i}i

end

IV. THE QUASI ALGORITHM
QUASI is a deterministic algorithm, relying on Space Sav-
ing [18] for determining the heavy hitters, and on GK [62]
for the quantiles associated to each potential heavy hitter can-
didate. Intuitively, QUASI uses a Space Saving summary to
determine frequent items, allocating a GK sketch for each of
the k counters of the summary to track the latency q-quantiles
of each potential frequent ITEM.

We now describe the update procedure of QUASI,
Update(x, l). Given the input stream σ = {(x1, l1),
(x2, l2), · · · } ∈ (U × R)+, an incoming (x, l) pair in which x
is an item and l its associated latency is processed as follows:
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• if the item x is already monitored by one of the coun-
ters available in a Space Saving summary S, QUASI
increases the corresponding counter and inserts l in the
GK sketch associated to the counter;

• if the item x is not monitored by the counters in S:
– if there is an available counter in S (i.e., not all of the

counters are already busy monitoring items), then
the item x is stored in one of the available counters
and the counter’s frequency is set to one; next, a
GK sketch is initialized and associated to the Space
Saving counter monitoring x, and l is inserted into
the sketch;

– otherwise, the item in the Space Saving summary S
whose frequency is the minimum among all of the
counters is evicted from the corresponding counter
and replaced by x, and its frequency is increased by
one; next, the GK sketch associated to the counter is
reset and initialized, then l is inserted in the sketch.

In QUASI a query Query(x, q) is performed as follows:
• if x is monitored by one of the Space Saving counters
in S, its frequency is estimated as the value stored in the
corresponding counter, f̂ (x). The GK sketch correspond-
ing to the counter is then used to estimate the q-quantile
Lx,q;

• otherwise, if x is not monitored in the summary, its
frequency is estimated as the minimum value stored
in the counters, and no latency quantile is reported in
output.

Algorithms 3 and 4 provide the pseudo-code of the QUASI
update and query functions.
Since Space Saving deterministically guarantees that every

heavy hitter is monitored (provided that the summary is cor-
rectly initialized by using an appropriate number of counters),
QUASI always provides a recall equal to 1 for the heavy
hitters. However, as we shall see, its main drawback is related
to the accuracy for the latencies associated to the heavy hit-
ters. On the contrary, our algorithm QUHIS returns all of the
heavy hitters (i.e., its recall is equal to 1) and, simultaneously,
provides much more accurate latency quantiles. Moreover,
it is also faster.

V. THE QUHIS ALGORITHM
We present QUHIS, our deterministic algorithm for the
solution of the heavy hitters q-tail latencies problem. Like
QUASI, determining the heavy hitters in the input stream
is done by using Space Saving [18]. However, for tracking
the latency quantiles associated to the heavy hitters we rely
instead on our own UDDSketch algorithm [66].

Given the input stream σ = {(x1, l1), (x2, l2), · · · } ∈ (U ×
R)+, an incoming (x, l) pair in which x is an item and l its
associated latency is processed by QUHIS as follows:
• if the item x is already monitored by one of the coun-
ters available in a Space Saving summary S, QUHIS
increases the corresponding counter and inserts l in the
UDDSketch sketch associated to the counter;

Algorithm 3 QUASI Update
Require: x: an item;

q: the required quantile;
S: the Space Saving summary.

Ensure : insertion of pair (x, l) in S.
function Update(x, l,S)

if x ∈ S then
f̂ (x)← f̂ (x)+ 1
// GK (x) is the sketch

corresponding to x
GK (x)← GetGKSketch(x,S)
// Insert l in the GK (x) sketch
GKUpdate(l,GK (x))

else
if |S| < k then

f̂ (x)← 1
Initialize a sketch GKx for the item x

else
Let xmin be the item with minimum
frequency in S
S ← S \ {xmin}
S ← S ∪ {x}
f̂ (x)← f̂xmin + 1
Reset the sketch GKxmin

end
// Insert l in the GK (x) sketch
GK (x)← GetGKSketch(x,S)
GKUpdate(l,GK (x))

end
end

Algorithm 4 QUASI Query
Require: x: an item;

q: the required quantile;
S: the Space Saving summary.

Ensure : estimated frequency of x and q-quantile if x is
frequent.

function Query(x, q,S)
if x ∈ S then

// let GK (x) be the sketch
corresponding to x

GK (x)← GetGKSketch(x,S)
q̂← GKQuery (q,GK (x))
return (f̂ (x), q̂)

else
return (f̂ (xmin), null)

end
end

• if the item x is not monitored by the counters in S:

– if there is an available counter in S (i.e., not all of the
counters are already busy monitoring items), then
the item x is stored in one of the available counters
and the counter’s frequency is set to one; next,
an UDDSketch sketch is initialized and associated
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to the Space Saving counter monitoring x, and l is
inserted into the sketch;

– otherwise, the item in the Space Saving summary S
whose frequency is the minimum among all of the
counters is evicted from the corresponding counter
and replaced by x, and its frequency is increased by
one; next, the UDDSketch sketch associated to the
counter is reset and initialized, then l is inserted in
the sketch.

In QUHIS a query Query(x, q) is performed as follows:

• if x is monitored by one of the Space Saving counters
in S, its frequency is estimated as the value stored in
the corresponding counter, f̂ (x). The UDDSketch sketch
corresponding to the counter is then used to estimate the
q-quantile Lx,q;

• otherwise, if x is not monitored in the summary, its
frequency is estimated as the minimum value stored
in the counters, and no latency quantile is reported in
output.

Algorithms 5 and 6 provide the pseudo-code of the QUHIS
update and query functions.

VI. COMPUTATIONAL AND SPACE COMPLEXITY
Regarding the space complexity, the QUASI algorithm
solves the heavy hitters q-tail latencies problem using space
O
(
θ−1ε−2 ·

(
1+ log

(
Nε2θ

)))
(see Theorem 2 in [1], where

θ is the threshold to determine the heavy hitters, N is the
stream length and ε is the error tolerance.
The space complexity of QUHIS is given by the following

theorem.
Theorem 1: TheQUHIS algorithm solves the heavy hitters

q-tail latencies problem using space O(ε−1 log−1( 1+α1−α )). This
result holds when the algorithm is configured such that Space
Saving can return all of the heavy hitters with an error
bounded by ε and UDDSketch can return the desired quan-
tiles satisfying the user’s defined α-accuracy requirement.

Proof: Space Saving requires O(ε−1) counters in the
stream summary data structure. Each counter, besides the
identity of an item and its estimated frequency, stores a
UDDSketch data structure configuredwithm buckets. Letting
α be the desired accuracy level, the UDDSketch data structure
requires a number of buckets equal to m = O(log−1( 1+α1−α )).
Indeed, as stated in Section III, the approximation error

committed by UDDSketch using the uniform collapse proce-
dure is bounded by α̂ = γ̃ 2−1

γ̃ 2+1
, with γ̃ = m−1

√
xmax
xmin

. Therefore,

it holds that m = 1+
log( xmaxxmin

)

log γ̃ .

Since γ̃ =
√

1+α
1−α , it follows that m = 1+

log( xmaxxmin
)

log
√

1+α
1−α

.

Finally, taking into account that both xmax and xmin are
constants, the theorem follows.

We now discuss the computational complexity of both the
algorithms. Since Space Saving requires O(1) worst case
constant time to insert an incoming item into its stream

Algorithm 5 QUHIS Update
Require: x: item to be inserted;

l: the latency associated to x;
S: the Space Saving summary.

Ensure : insertion of pair (x, l) in S.
function Update(x, l,S)

if x ∈ S then
f̂ (x)← f̂ (x)+ 1
// UDDS(x) is the sketch

corresponding to x
UDDS(x)← GetUDDSketch(x,S)
DDSketchUpdate (l,UDDS(x))

else
// k is the number of counters

in S
if |S| < k then

f̂ (x)← 1
Initialize a sketch UDDS(x) for x

else
Let xmin be the item with minimum
frequency in S
S ← S \ {xmin}
S ← S ∪ {x}
f̂ (x)← f̂xmin + 1
// UDDS(xmin) is the sketch

corresponding to xmin
Reset the UDDS(xmin) sketch

end
end
// let UDDS(x) be the sketch

corresponding to x
DDSketchUpdate (l,UDDS(x))

end

Algorithm 6 QUHIS Query
Require: x: an item;

q: the required quantile;
S: the Space Saving summary.

Ensure : estimated frequency of x and q-quantile if x is
frequent.

function Query(x, q,S)
if x ∈ S then

// let UDDS(x) be the sketch
corresponding to x

q̂← DDSketchQuery (q,UDDS(x))
return (f̂ (x), q̂)

else
return (f̂ (xmin), null)

end
end

summary data structure, and GreenwaldKanna requires
O
(
log 1

ε
+ log log(εn)

)
, it follows that QUASI requires

O
(
log 1

ε
+ log log(εn)

)
to handle an incoming item.
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TABLE 4. Parameters’ values, with default values highlighted in bold.

FIGURE 1. Relative error varying the distributions, 512 buckets.

QUHIS requires O(1) worst case constant time to insert an
incoming item into its Space Saving stream summary data
structure. The worst case time to update the UDDSketch
data structure, under the constraint defined in Theorem 1
(i.e., UDDSketch returns the desired quantiles satisfying the
user’s defined α-accuracy requirement), isO(1). Indeed, if the
number of bucketsm is fixed as dictated byα, then no collapse
will happen, hence the worst case time to insert an item in the
sketch isO(1). Finally, the overall worst case time complexity
for the insertion of an incoming item into the QUHIS data
structures is O(1).

If we allow m, the number of buckets, to grow
and, fixing the number of buckets m for the UDDSketch

data structure as dictated by α, UDDSketch guarantees that
no collapses will happen. In this case

FIGURE 2. Relative error varying the number of buckets, normal
distribution.

Therefore, the worst case computational complexity of
QUHIS is O(log−1( 1+α1−α )).

VII. EXPERIMENTAL RESULTS
In this Section, we present and discuss experimental results,
thoroughly comparing QUASI versus our algorithm QUHIS.
In particular, we shall compare and contrast the algorithms
with regard to their speed, measured as the number of updates
per second, and with regard to their accuracy.

For each item x, let Lx be the set of latencies associated to
x in the stream σ (see eq. (5)). For a φ-frequent item x and a
quantile 0 < q < 1, let lq be the q-quantile in Lx and l̂q the
q-quantile estimated by an algorithm.
The relative error associated to the computation of the

q-quantile is

ErrRelx(q) =
|l̃q − lq|

lq
. (6)

In general, an estimation is better than another if its relative
error is close to zero, since l̃q is closer to lq. Averaging over
all of the φ-frequent items, we obtain (letting r be the number
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FIGURE 3. Accuracy/byte varying the distribution, 512 buckets.

of φ-frequent items):

ErrRelMean(q) =
1
r

∑
x frequent

ErrRelx(q). (7)

Denoting by size the sketch dimension (GK for QUASI and
UDDSketch for QUHIS), we evaluate the accuracy per byte
of an algorithm computing a q-quantile as follows:

Acc/byte(q) =
1− ErrRelMean(q)

size
. (8)

The greater the value of Acc/byte, the greater is the algo-
rithm’s accuracy. To compare the speed of execution, wemea-
sure the throughput in Updates per ms, i.e. how many pairs
(x, l) coming from the stream σ are processed by an algorithm
in one millisecond. Letting time be the time in milliseconds
required to execute n updates, it holds that:

Throughput =
n
time

. (9)

The fastest algorithm is therefore the one whose Upd/ms
value is greater.

The tests have been carried out on a workstation equipped
with 2 Intel Xeon E5-2620 processors with 15 MB cache L3,
6 cores of execution and 64 GB of RAM, using the operating

FIGURE 4. Accuracy/byte varying the number of buckets, normal
distribution.

system Linux Ubuntu 20.04.4 LTS and the Intel oneAPI C++
v2022.1.0 compiler.

Three different stream have been synthetically generated
according to specific distributions. The items have been gen-
erated using a zipfian distribution, since this is the distri-
bution most commonly used in the literature regarding the
algorithms for determining the frequent items. It is a discrete
distribution with probability mass P(x) = x−(ρ+1)

ζ (ρ+1) , where ρ is
a skewness parameter and ζ (z) is the Riemann Zeta function
ζ (z) =

∑
∞

n=1
1
nz . The latencies have been generated accord-

ing to a uniform distribution U[1, 103], a normal distribution
N (104, 103) and an exponential distribution Exp(104). More-
over, the parameters have been set so that both the algorithms
under test could have the same maximum number of buckets
in their sketches and the same number of counters in their
Space Saving summary.

Table 4 reports the parameters used in the experiments: n,
the stream’s length; ρ, the zipfian distribution skewness; ε,
the error tolerance used in Space Saving;φ, the threshold used
to determine the frequent items; α, an accuracy parameter for
UDDSketch; m, the maximum number of buckets and dist,
the distributions used to generate the latencies.
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FIGURE 5. Update/ms.

The experiments have been carried out varying first the
distribution of the latencies and setting m = 512, then
varying m e fixing dist as the normal distribution. For each
combination, we computed, varying q in {0.01, · · · , 0.99},
the mean relative error (see eq. (7)), the accuracy per byte
(see eq. (8)) an the Throughput (see eq. (9)). All of the tests
have been repeated ten times and the results averaged.

Figures 1 and 2 depict the mean relative error vary-
ing respectively the distribution and the number of buckets
in the sketches. As shown, QUHIS strongly outperforms
QUASI, exhibiting a mean relative error almost equal to zero.
Therefore our algorithm provides very good estimates of
q-quantiles. Figures 3 and 4 show the accuracy per byte vary-
ing respectively the distribution and the number of buckets in
the sketches. Again, QUHIS outperforms QUASI, exhibiting
a much better accuracy with regard to the space actually used.
Regarding the speed of execution, Figure 5 clearly show that
QUHIS is faster than QUASI for both the uniform and the
normal distributions, and is slightly slower with regard to
the exponential distribution. Even though we did not report
additional results obtained with other distributions, we note
here that, in general, QUHIS is faster than QUASI.

VIII. CONCLUSION
In this paper we tackled the heavy hitters q-tail latencies
problem, which has been introduced recently. The problem is
related to data streammonitoring and requires approximating
the quantiles of the heavy hitters items of an input stream

whose elements are pairs (item, latency). In the context of
networking, stream monitoring is now recognized as funda-
mental, owing to a variety of possible applications, spanning
several fields. In particular, the problem asks for detecting
and reporting the input stream’s heavy hitters, and, for each
of them, their associated latency quantiles.

The underlying rationale is that heavy hitters are obviously
among the most important items to be monitored, and their
associated latency quantiles are of extreme interest in several
network monitoring applications. To the best of our knowl-
edge, only two randomized (SQUARE and SQUAD) and one
deterministic (QUASI) algorithms are available to solve the
problem. We introduced QUHIS, a novel deterministic algo-
rithm that solves the heavy hitters q-tail latencies problem and
empirically showed that it outperforms QUASI with regard to
accuracy and speed.

Possible future developments include the design and analy-
sis of a novel randomized algorithm solving the heavy hitters
q-tail latencies problem. This algorithm should be compared
versus the SQUARE and SQUAD algorithms in order to
assess their performances. Another line of research is related
to the design of a corresponding parallel algorithm for the
problem at hand, proving that the underlying data structures
are therefore mergeable.
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