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ABSTRACT Due to the inevitable role of emotions in human learning and decision-making, different types
of emotions in the form of emotional weights/neurons have also been considered in shallow neural networks.
Emotional neural networks suffer from a low convergence rate as well as batch learning instability mainly
because of the improper tuning of learning coefficients. To overcome these drawbacks, we introduced two
solutions: (i) a heuristic upgrading method, inspiring by the behavior of dopamine secretion in the human
brain, to adaptively regulate the learning rate based on positive and negative emotional states at each epoch
and (ii) a stochastic learning technique to stabilize the learning process. The proposed dopamine based
adaptive emotional neural network statistically outperforms state-of-the-art methods like emotional neural
network, prototype-incorporated emotional neural network, multi-layer perceptron, and deep convolutional
neural networks such as LeNet, AlexNet, DenseNet, MobileNet and EfficientNet in terms of different
measures such as accuracy and convergence rate on several high dimensional and big datasets.

INDEX TERMS Adaptive learning rate, dopamine behavior, emotional neural network, shallow neural
network.

I. INTRODUCTION
Emotions highly affect the learning process, cognition, and
decision-making in both humans and animals [1], [2], [3], [4],
[5], [6]. They are intelligent and complex adaptive systems
and play critical roles in responding to humans’ unpredictable
and complex behaviors [1], [6], [7]. Therefore, incorporating
the mechanism of emotion into artificial intelligence (AI)
algorithms has gained attention in order to enhance their
performance.

Researchers have claimed that most decisions and cog-
nitions in humans are based on a mixture of intelligence
and emotion [1], [4], [6], [8], [9]. Therefore, incorporating
emotions such as nervousness, agony, despondency, anxi-
ety or confidence in intelligent machines or artificial neural
networks (ANN) can improve their performance in complex
decision-making situations [10], [11].

The associate editor coordinating the review of this manuscript and
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ANN mimic the human brain’s neural structure and simu-
late the neurons’ function to learn patterns, predict a target,
or make decisions [12]. Nonetheless, the actual mechanism
of the brain network is more complex than ANNs because
the functionality of all neurons is not the same [6]. Moreover,
the role of different hormones activities like dopamine in
learning the synaptic weights is mostly ignored in ANNs [13].
Several attempts have been made to equip ANNs with
human emotions and hormones activities [14], [15], [16].
Researchers considered anxiety and confidence as genuine
human emotions mainly because these emotional states pos-
itively/negatively affect learning and decision-making in
humans [11], [15], [17]. As an example, an emotional neural
network (EmNN) was proposed in [15]. This network adopts
two types of emotional states (anxiety and confidence), emo-
tional neurons and backpropagation (BP) learning algorithm
called EmBP to update the weights in batch learning. The
results of EmNN have illustrated more improvement in learn-
ing and decision-making than conventional multi-layer per-
ceptron (MLP) in complex situations.
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Additionally, the root of using anxiety and confidence in
EmNN emerges from the fact that when children learn a new
task, they initially show a high-level of anxiety and low-level
of confidence. However, after practicing and getting positive
feedback during learning, anxiety decreases while the level
of confidence increases [2], [6], [10], [11], [15].

Another emotional neural network called prototype-
incorporated emotional neural network (PI-EmNN) was pro-
posed in [18]. They incorporated prototype and adaptive
learning theories into EmNN to improve the overall learn-
ing and decision-making process. Furthermore, this model
employs only one hidden layer and no convolution operations
for feature learning like EmNN.

FIGURE 1. The simulated dopamine activities (DA) in 0.002 seconds
(a) before or after learning (b) during learning based on the real
dopamine changes in humans [19].

Their model has shown competitive performance com-
pared to deep convolutional neural networks (CNNs) with
many hidden layers and convolution operations. While the
usage of emotions in EmBP and PI-EmNN expedites and
improves learning and decision-making processes compared
to conventional ANNs, they are too slow to handle large
datasets. Additionally, because they employ batch learning,
which is sensitive to even modest changes in learning rate,
their outcomes are associated with the learning rate [25], [26].

On the other hand, various neurotransmitters or hormones
have vital roles in learning, cognition, and decision-making

FIGURE 2. The three-layer structure of the proposed Adaptive Emotional
Neural Network (AEmNN) has emotional neurons en, input, hidden and
output layer with bias ßb which is initialized to one.

in the human and animal brains, and it is widely accepted that
the dopamine neurotransmitter has a special role in learning
[21], [27], [28]. Additionally, the presence of dopamine is
highly required for learning, decision-making, and behavioral
control, and its absence can cause a variety of diseases such
as Parkinson’s, Schizophrenia, addiction, Alzheimer’s and
depression [20]. Hence, modeling the behavior of dopamine
and formulating its variations into synaptic weights’ learning
can enhance the performance of ANNs [24], [29], [30], [31],
[32], [33], [34], [35].

Moreover, cutting-edge [24], [29], [30], [31], [32], [33],
[34], [35] studies have demonstrated that dopamine fluctu-
ations in humans and animals can encode reward prediction
error (RPE) in learning. RPE indicates the difference between
actual and expected outcomes and originates from earlier
learning theories of machine learning [36]. The recent studies
[23], [27], [37] conducted experiments on the dopamine fluc-
tuation behavior of animals and humans. They demonstrated
that dopamine uses reward and punishment factors to deter-
mine its level which causes fluctuations during learning a new
task. These factors are obtained from the performance (dif-
ference between actual and expected outcomes) of humans
and animals during learning. The reward rate can dynamically
change the level of dopamine when the actual and expected
outcomes are the same. Moreover, the punishment rate can
dynamically decrease its level when the actual and expected
outcomes are not the same. These activities create numerous
fluctuations during learning a new task that leads to learning
in humans and animals. On the contrary, when learning a
new task does not occur, dopamine levels are stationary or
continuously increasing or decreasing as can be seen in recent
studies or the simulated dopamine fluctuations in Fig. 1 (a).

Other studies [20], [21], [38], [39], [40], [41] worked on
the interactions between positive/negative human emotions
and human dopamine levels. They used men and women in
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their experiments. They found out that human performance
(difference between actual and expected outcomes) can cre-
ate positive and negative emotions, which can dynamically
change dopamine levels. When their performance was good
(actual and expected outcomes are the same), the positive
feeling controlled the dopamine level, and when their perfor-
mance was not good (actual and expected outcomes are not
the same), the negative feeling controlled the dopamine level.

TABLE 1. Training algorithm and device required to execute each model.

To improve the existing emotional networks, we suggest
a new adaptive emotional neural network (AEmNN). This
network uses an adaptive emotional learning rate. The adap-
tive emotional learning rate mimics the human dopamine
fluctuations behavior based on studies in [23], [27], [37],
[20], [21], and [38]. The learning rate value is determined by
the two emotional states of AEmNN. These states control the
learning rate in each epoch and create fluctuations within a
specified range based on AEmNN performance. This process
is similar to the actual behavior of dopamine fluctuation in
humans. It is noteworthy that this procedure adaptively reg-
ulates the learning rate coefficient at each epoch to speed up
the convergence and help the network learn more efficiently
and make improved decisions than others.

AEmNN directly affects the learning steps of artificial
neurons and guide learning. In contrast, in the former
approaches, emotional neurons just manipulate artificial neu-
rons and the network’s bias. The proposed AEmNN is applied
to several facial recognition datasets and is compared to
MLP [42], EmBP [15], [43], PI-EmNN [18], LeNet-5 [44],
AlexNet [45], DenseNet-121 [46], MobileNet-V2 [47] and
EfficientNet-B0 [48]. Besides, Table 1 shows their learning
mechanisms. To assess the methods’ performance, accuracy,
precision, recall, f-measure (f1-score), r-squared, mean abso-
lute error (MAE), convergence rate, and statistical test are
determined, and the evaluation is performed using ten-fold
cross-validation considering ten independent runs.

The rest of this paper is organized as follows: Section II
introduces the proposed adaptive emotional neural net-
work (AEmNN). Section III describes the characteristics of
the employed datasets. Section IV illustrates the training
algorithms and settings, comparative results and discusses
the pros and cons of the achieved results by our scheme

compared to state-of-the-art techniques (MLP, EmNN,
PI-EmNN, LeNet-5, AlexNet, DenseNet-121, MobileNet-V2
and EfficientNet-B0). Finally, Section V concludes the paper
and gives a horizon to the future of this work.

II. METHODS
Like EmNN, the proposed AEmNN contains emotional-
weights, -neurons, and -parameters (anxiety and confidence),
but uses a sigmoid activation function with cross-entropy
loss. Fig. 2 illustrates the structure of our network. One of
our method’s main distinguishing properties is the use of
stochastic learning instead of batch learning backpropagation
to update its weights for each incoming sample and stabi-
lize the learning process. We note that stochastic learning,
equippedwith adaptive emotional learning rates, can preserve
both exploitation and exploration suitably and stably. More-
over, several research studies have empirically shown that
stochastic learning cannot be destabilized by adaptive chang-
ing the learning rate [25], [26]. It is faster and more accu-
rate than batch learning, especially in dealing with big data.
The proposed method initialized the confidence and anxiety
parameters similar to PI-EmNN. Then, AEmNN adaptively
changes the learning rate based on dopamine fluctuations
in the human brain, the linear combination of the feedback
error and the emotional parameters in each epoch. Adaptively
changing the learning rate is inspired especially by the study
in [20] and [49]. This implies that the emotional parameters
can significantly and directly impact and update the weights
of artificial neurons.

The adaptive learning rate enables stochastic learning that
is not sensitive to the learning rate’s initialization to explore
and exploit the search space [41]. The idea of changing the
learning rate with two fixed step sizes (randomly initial-
ized at first) was suggested by [41] and [42]. However, the
conventional methods suffer from the absence of a flexible
instance-based learning scheme to adjust the learning coeffi-
cients adaptively. To solve this problem, we have developed a
heuristic method based on the process of dopamine changes
(see Fig. 1 (b)) in the human/animal brain [24], [33], [40],
[43], [44], [45], [46], to regulate the learning rate and adjust
it based on emotional parameters in each epoch.

As shown in Fig. 2, prior knowledge (initial values of
the emotional neurons) was elicited from input data. The
emotional neuron en is a visual stimulus that evokes emotions
(positive or negative) [15], [50] and initializes by taking a
global average value over each input pattern x with n dimen-
sions, as described in (1):

en =
1
n

∑n

i=1
xi (1)

The output of each hidden neuron h denoted as yh and the out-
put (activation) of any hypothetical output neuron j denoted
as yj are computed as follows:

yh = f
(∑n

i=1
whi · xi + whb · ßb + whe · en

)
(2)
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TABLE 2. Description of the employed datasets.

TABLE 3. Fine-tuned parameters, settings, training parameters and run time of each network for each dataset achieved through ten-fold cross-validation
on a train set. AEmNN was executed by GPU for datasets including CIFAR-10, CIFAR-100, SVHN and CINIC-10. ∗ indicates GPU execution time.

yj = f
(∑l

h=1
wjh · yh + wjb · ßb + wje · en

)
(3)

where xi is the ith input feature, whi is the weight between
input neuron i and hidden neuron h, wjh is the weight between
hidden neuron h and output neuron j. whb is the weight
between the bias neuron and hidden neuron h,wjb is the bias
weight for the jth output neuron, ßb is the bias of the
hidden and output layer, which is initialized to 1. whe is the

interconnection weight from emotional input neuron en to
the hidden layer neuron h,wje is the emotional weight from

hidden emotional neuron en to the jth output neuron, n is
the number of features, and l is the total number of neurons
in the hidden layer, f is the sigmoid activation function and
calculated as follows:

f (x) = 1/((1+ exp(−x)) (4)
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FIGURE 3. The learning curve of (a) ORL, (b) Yale, (c) Yale-B, (d) MIT, (e) MNIST, and (f) Fashion-MNIST fed to AEmNN, MLP, EmNN, and PI-EmNN.

FIGURE 4. The testing loss curve of (a) ORL, (b) Yale, (c) Yale-B, (d) MIT, (e) MNIST, and (f) Fashion-MNIST fed to AEmNN, MLP, EmNN, and PI-EmNN.

The Network employs cross-entropy loss function e to calcu-
late its loss as follows:

e = −
∑Nclasses

j=1
tj∗ log (yj) (5)

where Nclasses is the number of output neurons, tj and yj are
the target and output value at neuron j. The proposed Network

uses root mean squared error (RMSE) at ith epoch analogous
to the state-of-the-art EmNN. RMSE helps the network to
compute the anxiety and denoted as ei:

rmse = 2

√√√√∑p

m=1
(tm − ym)2

/
p (6)
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FIGURE 5. The learning curve of (a) ORL, (b)Yale, (c) Yale-B, (d) MIT, (e) MNIST, and (f) Fashion-MNIST fed to AEmNN, LeNet, AlexNet, DenseNet-121,
EfficientNet-B0 and MobileNet-V2.

FIGURE 6. The testing loss curve of (a) ORL, (b)Yale, (c) Yale-B, (d) MIT, (e) MNIST, and (f) Fashion-MNIST fed to AEmNN, LeNet, AlexNet, DenseNet-121,
EfficientNet-B0 and MobileNet-V2.

where ym and tm are the predicted and the target (label) of

the mth input pattern and p is the number of all patterns.
AEmNN includes the emotional parameters of anxiety (µi)
and confidence (ki). The confidence parameter k is set to 0 at
the start of training and gradually increases during training.

The anxiety (µ0) is obtained after the first epoch and then
gradually decreases, andµi is the anxiety coefficient at the ith

epoch. These parameters are updated at each epoch according
to the following rules:

µi = yAvPAT + rmse (7)
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FIGURE 7. The learning curve of (a) CIFAR-10, (b) CIFAR-100, (c) SVHN, and (d) CINIC-10 fed to AEmNN, DenseNet-121, EfficientNet-B0 and MobileNet-V2.

FIGURE 8. The testing loss curve of (a) CIFAR-10, (b) CIFAR-100, (c) SVHN, and (d) CINIC-10 fed to AEmNN, DenseNet-121, EfficientNet-B0 and
MobileNet-V2.

ki = |µ0 − µi| (8)

where yAvPAT is determined by (8) and is the average value of
p presented patterns to the network in each epoch, which is
calculated as follows:

yAvPAT =
1
p

∑p

m=1
enm (9)

Here, we have proposed an adaptive emotional learning rate
inspired from studies in [19], [24], [33], [40], [43], [44], [45],
[46], and [48]. The value of the learning rate is adjusted by
two controlling factors such as positive (impos) and negative
(imneg) impression. They are initialized adaptively at each
epoch by decreasing and increasing value of anxiety and con-
fidence parameters. Equations (10) and (11) illustrate their
update method.

impos = exp(µi) (10)

imneg = ki (11)

This procedure controls the adaptive value of learning rate
based on the performance of the network, and positively
affects the learning process and decision-making. Con-
sidering the widely accepted and proven evidence about
the dopamine fluctuations behavior in humans/animals,
we believe that the learning rate canmimic the dopamine fluc-
tuations behavior according to emotional states (confidence
and anxiety). The proposed adaptive emotional learning rate
is determined as follows:

ηi+1 =


ηi ∗ impos if ei < ei−1
ηi ∗ imneg if ei > ei−1
ηi if ei = ei−1

(12)

where ηi and ηi+1 are the learning rate of ith and (i + 1) th

epochs, ei−1 and ei are the error of (i-1)th and ith epochs.
Equation (9), inspired form [51], which originally had two
fixed decreasing and increasing factors, while in this study
they changed into positive and negative impression factors.
The value of impos is computed by the exponential value of
anxiety (µi) in order to create a higher positive impression.
This value updates the learning rate (ηi+1) when the ith epoch
is smaller than (i-1)th to help the network continue its path
towards better learning and performance. Additionally, the
value of imneg is initialized by confidence (ki) and update the
learning rate (ηi+1) when the error in the epoch i is greater
than (i-1). This process helps the network escape from proba-
ble local optima based on the network’s confidence. Thus, this
procedure determines the value of the learning rate based on
the network’s emotions and performance. In addition, it cre-
ates multiple fluctuations in learning rate during training,
which leads to better and faster learning, similar to actual
human dopamine fluctuations [20], [21], [22], [49], [52] or
simulated dopamine fluctuation in Fig. 1 (b).

On the other hand, the value of the learning rate in fluc-
tuations can reach infinity or zero. In order to solve this
problem, the proposed method was inspired by studies in [20]
and [53]. They did some experiments on humans/animals on
different learning tasks and illustrated that dopamine fluctu-
ates between two maximum and minimum values, which are
different for each task.

Similar to these studies, we introduce a rule to control
learning rate fluctuations. This rule allows the learning rate
to fluctuate between the (ηmin, ηmax) range. Here, the lower
(ηmin) and upper (ηmax) learning rate bound is initialized to
0 and 1 as it is often used in ANNs. The new value of the
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TABLE 4. Training parameters and time convergence of each network for
each dataset.

learning rate ηi is determined by (13) and is set to the initial
learning rate ηstart (initialized at the beginning of learning) if
it is not in the assigned range.

ηi =

{
ηstart if ηi < ηminorηi > ηmax

ηi if ηmin ≤ ηi ≤ ηmax
(13)

Moreover, the backpropagated error is denoted as δj for the
output layer and δh for the hidden layer, which is computed

TABLE 5. Comparison of AEmNN and MLP, EmNN, PI-EmNN, LeNet5 and
AlexNet in terms of train accuracy (%), test accuracy (%) and the number
of epochs which was achieved in ten-time ten-fold cross-validation for
each dataset. Train and test accuracy were reported as (mean ± std).

by (14) and (15), respectively. Equations (14) and (15) are
the final derivatives of the sigmoid activation function and
cross-entropy loss function.

δj =
(
tj − yj

)
(14)

δh = yh · (1− yh) ·
∑Nclasses

j=1
wjh.δj (15)

where yh is the output value of neuron h in the hidden layer.
In addition, the interconnection weights of the output lay-
ers and hidden layers are updated by (16-18) and (19-21),
respectively:

wjh (new) = wjh (old)+ ηi · δj · yh + α · [δwjh(old)] (16)

wjb (new) = wjb (old)+ ηi · δj + α · [δwjb(old)] (17)

wje (new) = wje (old)+ µi · δj · yAvPAT+ki · [δwje(old)]

(18)
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TABLE 6. Comparison between AEmNN, EfficientNet-B0, MobileNet-V2
and DenseNet-121 in terms of train accuracy (%), test accuracy (%) and
the number of epochs, which was achieved in ten independent runs for
each dataset. Train and test accuracy were reported as (mean ± std).

where i is the epoch index, wjh (new), wjb (new), wje (new),
δwjh(old), δwjb(old), and δwje(old) are the updated weights
and previous change in weights of the artificial neurons,
bias and emotional neurons of interconnection weights of
the output layers, respectively. Also, whi (new) ,whb (new),
whe (new), δwhi(old), δwhb(old), and δwhe(old) are the
updated weights and previous change in weights of the artifi-
cial neurons, bias and emotional neurons of interconnection
weights of the hidden layers, respectively. ηi is the adaptive
emotional learning rate at epoch i and α is momentum.

whi (new) = whi (old)+ ηi · δh · xi + α · [δwhi (old)] (19)

whb (new) = whb (old)+ ηi · δh + α · δwhb(old) (20)

TABLE 7. The best available public results of modern deep networks on
corresponding datasets. SVHN∗ with extra training data.

whe (new) = whe (old)+ µiδh · yAvPAT + ki · [δwhe (old)]

(21)

III. DATASETS
This section introduces the employed datasets, which were
used to evaluate the proposed method and its competi-
tors in real-life tasks: ORL [54], Yale [55], [56], corrupt
Yale-B [57], [58], MIT [59], [60], MNIST [61], Fashion-
MNIST(F-MNIST) [62], CIFAR-10 [63], CIFAR-100 [63],
SVHN [64] (without extra training data) and CINIC-10 [65].
Table 2 shows all the information concernedwith the datasets.
These datasets evaluate the proposed methods in different
aspects, as described in Table 2. It is necessary to note that all
input images are resized into 36∗36 pixels for AEmNN and
PI-EmNN networks to reduce computational requirements
based on the work idea in [18]. Thus, each image is mapped
into a 1024-dimensional vector which is denoted as input
pattern x.

IV. RESULTS AND DISCUSSION
This section presents the results of AEmNN and com-
pares several techniques (MLP, EmNN, PI-EmNN, LeNet-5,
AlexNet, DenseNet-121, MobileNet-V2 and EfficientNet-
B0) through the ten-fold cross-validation for each dataset.
The results are determined and demonstrated in terms of
the convergence rate, accuracy, precision (22), recall (23),
f1-score (24), r-squared (25), MAE (26), convergence rate,
and two statistical tests. The convergence rate of the net-
works through the training phase was sketched in Fig. 3,
Fig. 5 and Fig. 7. In addition, the testing loss of the networks
were illustrated in Fig. 4, Fig. 6 and Fig. 8, demonstrating
how an adaptive emotional learning rate (see Fig. 9 and
Fig. 10), that mimics dopamine fluctuations, can speed up
learning ability and help the proposed network make better
decisions. To compare the network’s accuracy, two statistical
tests, Student’s t-test [66] and Friedman’s test [66] are used,
which show that the proposed method has better or equal
performance compared to its competitors.

precision = TP/(TP+ FP) (22)
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FIGURE 9. The curves of learning rate fluctuations (adaptive emotional learning rate) related to (a) ORL, (b) Yale, (c) Yale-B, (d) MIT, (e) MNIST, and
(f) Fashion-MNIST in AEmNN.

FIGURE 10. The curves of learning rate fluctuations (adaptive emotional learning rate) related to (a) CIFAR-10, (b) CIFAR-100, (c) SVHN, and (d) CINIC-10
in AEmNN.

recall = TP/(TP+ FN ) (23)

f 1− score = (2 ∗ precision ∗ recall)

/(precision+ recall) (24)

r − squared = 1−

∑Nclasses
j=1 (tj − yj)2∑Nclasses
j=1 (tj − t)

2 (25)

mae =

∑Nclasses
j=1

∣∣tj − yj∣∣
Nclasses

(26)

where, TP, FN, and FP are true positives, false negatives, and
false positives.

A. TRAINING SETTINGS
Training algorithms of eachmethod were provided in Table 1,
and parameter settings of all techniques, including the num-
ber of layers, initial learning rate, momentum, minimum
error, training time, training parameters, mini-batch size
and final anxiety/confidence values of emotional networks

achieved during training are illustrated in Table 3. All param-
eters and weights for each model were fine-tuned through
ten-fold internal cross-validation on a train set for datasets
including ORL, Yale, corrupt Yale-B, MIT, MNIST and
Fashion-MNIST. Besides, all parameters and settings of the
deep networks such as LeNet-5, AlexNet, DenseNet-121,
MobileNet-V2 and EfficientNet-B0 were set based on their
own settings in their related article, and their learning rate
andmomentumwere set to 0.01 and 0.9, respectively. In addi-
tion, Table 4 shows their number of training parameters and
time convergence. It is important to note that all networks
are implemented from scratch with PyTorch [67], Tensor-
flow [68] and Keras [69] libraries in python. Moreover, the
proposed method, classical and emotional neural networks
were executed by intel core i7 6th generation CPU, 16 GB
RAM memory on windows 10 operating system. Also, deep
networks were run with Kaggle website [70] providing 16GB
GPU memory (Nvidia P100) and 13 GB RAM memory.
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FIGURE 11. The learning curve of emotional parameters (anxiety coefficient (µ), and confidence coefficient (k)) of (a) ORL, (b) Yale, (c) Yale-B, (d) MIT,
(e) MNIST, and (f) Fashion-MNIST in AEmNN.

FIGURE 12. The learning curve of emotional parameters (anxiety coefficient (µ), and confidence coefficient (k)) of (a) CIFAR-10, (b) CIFAR-100, (c) SVHN,
and (d) CINIC-10 in AEmNN.

B. PERFORMANCE AND CONVERGENCE RATE
COMPARISON
The train accuracy, test accuracy, and the number of epochs
in the training phase or the convergence rate of the com-
pared methods applied to the described datasets are illus-
trated in Table 5 and Table 6. Besides, Table 7 illustrates
the best available results of modern deep nets on CIFAR-10,
CIFAR-100, SVHN, and CINIC-10. These results were
obtained from their best run with data augmentation, which
is not used in our study. In order to measure all models’
performance in terms of precision, recall, f1-score, r-squared
and MAE on all datasets, Table 8 and Table 9 were reported.

As can be seen, AEmNN has a better number of learning
epochs, train and test accuracy and converges much faster
thanMLP, EmNN, PI-EmNN, LeNet-5 and AlexNet on ORL,
Yale, Yale-B and MIT datasets. On the other hand, AEmNN
is better than modern deep networks including EfficientNet-
B0, DenseNet-121 and MobileNet-V2 in terms of accuracy

and time converging time on Yale and Yale-B datasets. Based
on mentioned terms, it is better than EfficientNet-B0, and
MobileNet-V2 on ORL and Fashion-MNIST. On the con-
trary, it has lower performance on high-scale datasets such
as CIFAR-10, CIFAR-100, SVHN and CINIC-10 compared
to modern deep networks. In fact, AEmNN does not use
any feature learning process or complicated structures like
modern and classic deep networks. Besides, they have higher
number of training parameters than AEmNN (please see
Table 3 and Table 4). Fig. 3 and Fig. 4 show the pro-
posed method’s learning curve and testing loss curve com-
pared to the MLP, EmNN, and PI-EmNN, and Fig. 5 and
Fig. 6 show the proposed method’s learning curve and testing
loss curve compared to the LeNet-5, AlexNet, DenseNet-121,
EfficientNet-B0 and MobileNet-V2 on ORL, Yale, Yale-B,
MIT, MNIST and Fashion-MNIST. Besides, Fig. 7 and
Fig. 8 show the proposed method’s learning curve and testing
loss curve compared to the DenseNet-121, EfficientNet-B0
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TABLE 8. Compare AEmNN with MLP, EmNN, PI-EmNN, LeNet5 and AlexNet in terms of precision, recall, f1-score, r-squared and MAE, which was
achieved from ten-time ten-fold cross-validation for train and test data of each dataset. Train and test results were reported as (mean ± std).

and MobileNet-V2 on CIFAR-10, CIFAR-100, SVHN, and
CINIC-10. These figures depict that the learning curve of
AEmNN is similar to the learning curve of classic andmodern
deep networks while the learning curves of AEmNN dropped
neither fast nor slow because of using adaptive emotional
learning rates, which guides learning and converges in a
lower number of epochs in some datasets. In addition, the
architectures of compared deep networks are complex, have
more training parameters and need high computing resources
to run, leading to a high convergence rate or the number of
epochs.

Fig. 9 and Fig. 10 illustrate learning rate fluctuations of
AEmNN on all datasets. These figures show that the learn-
ing rate in AEmNN can mimic human dopamine fluctua-
tion behaviour based on studies in [19], [20], [22], [26],
[36], and [37] and as shown in Fig. 1 (b). This process
helps the network learn faster and better in some benchmark
datasets.

The curves describing the learning of emotional parameters
(anxiety (µ) and confidence coefficient (k)) of AEmNN for
all datasets are illustrated in Fig. 11 and Fig. 12. It is observed
that the anxiety coefficient is dropped as training progress
in all figures, while the confidence coefficient is increased.
Moreover, based on Table 3 AEmNN achieves the lowest
anxiety coefficient (µ) and the highest confidence coefficient
(k) compared to emotional networks (EmNN and PI-EmNN)
in ORL, Yale, Yale-B, MIT, MNIST and Fashion-MNIST at
the end of training.

C. STATISTICAL TESTS
To show that the proposed method is statistically better than
other conventional and deep networks, the student t-test and
Friedman test are applied to the network’s test accuracy.
These tests are used to show that the AEmNN accuracy is
meaningfully better than the other compared networks or
there is no meaningful difference between them.
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TABLE 9. Compare AEmNN with EfficientNet-B0, MobileNet-V2 and DenseNet-121 in terms of precision, recall, f1-score, r-squared and MAE, which was
achieved from ten independent runs for the train and test data of each dataset. Train and test results were reported as (mean ± std).

TABLE 10. Training Student’s t-test pairwise comparison in 95% confidence interval. p-value probability >0.05 are indicated by bold-face.

These tests compare the test accuracy of AEmNN with
the other methods in pairs. They have null and alternative

hypotheses. The null hypothesis is that the accuracy of
AEmNN and the others is the same if the extracted p-value
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TABLE 11. Training Friedman’s test pairwise comparison in 95% confidence interval. p-value probability > 0.05 are indicated by bold-face.

TABLE 12. Acronyms and abbreviations.

probability is greater than the 0.05 significance level (95%
confidence interval). In addition, the alternative hypothesis
is that the accuracy of AEmNN is better than the others
if the extracted p-value probability is lower than the 0.05
significance level.
T -test and Friedman test results were illustrated in

Table 10 and Table 11 respectively. Based on the t-test and
Friedman test results, AEmNN is not significantly better
or worse than LeNet-5 in ORL, MIT, and Fashion-MNIST
datasets. Still, it is significantly better than LeNet-5 in Yale,
Yale-B, and MNIST datasets. It is noteworthy that AEmNN
converges faster than LeNet-5 based on Table 3 and Table 5.
In addition, AEmNN is not better thanAlexNet inYale-B, and
Fashion-MNIST datasets, but AEmNN is significantly better
than AlexNet in ORL, Yale, MIT, and MNIST.

Moreover, based on Table 10 and Table 11 AEmNN is
significantly better than deep networks such as EfficientNet-
B0 and MobileNet-V2 in ORL, Yale, Yale-B, and
Fashion-MNIST datasets. It is significantly better than
DenseNet-121 in Yale, and Yale-B datasets. On the other
hand, DenseNet-121 is significantly better than AEmNN in
datasets like CINIC-10, CIFAR-10, CIFAR-100, MIT, ORL

and SVHN. It is noteworthy that AEmNN is significantly
better than other techniques (MLP, EmNN, PI-EmNN) in all
datasets.

V. CONCLUSION AND FUTURE WORK
In this research, we have proposed an efficient learning
scheme for emotional neural networks and MLP, which
directly and adaptively tunes the learning rate according to
dopamine fluctuations in the human brain and emotions. The
learning rate is updated adaptively at each epoch through
stochastic learning, stabilizing the learning process. When
the learning rate fluctuation is started, the role of dopamine
fluctuation-inspired learning rate is highlighted, leading to
the superiority of AEmNN to the compared techniques
(which use a fixed learning coefficient or complex structures).

In most comparisons, the proposed method provides faster
convergence, learning, better decision-making, and higher
classification accuracy than compared techniques.

The proposed AEmNN outperforms state-of-the-art
rivals like MLP, EmNN, PI-EmNN, LeNet-5, AlexNet,
EfficientNet-B0, MobileNet-V2 and DenseNet-121 on dif-
ferent benchmarks in terms of the convergence rate and
classification accuracy, but it has lower performance on high
scale datasets compared to deep networks. It is noteworthy
to restate that AEmNN has a simple (3 layers) architecture,
and it does not use any feature learning process like deep
networks. Simultaneously, its results are fairly compara-
ble and, in some cases, better than LeNet-5, and AlexNet,
DenseNet-121, EfficientNet-B0 and MobileNet-V2.

In addition to the dopamine hormone, other hormones
like serotonin and adrenaline affect the decision-making and
learning process of humans. Therefore, as a future work,
investigating the behavior of other hormones and their learn-
ing role will be considered in emotional neural network’s
learning process or using AEmNN instead of the fully con-
nected layer of deep networks or transfer learning networks
in image classification tasks.

REFERENCES

[1] C. M. Tyng, H. U. Amin, M. N. M. Saad, and A. S. Malik, ‘‘The influences
of emotion on learning and memory,’’ Frontiers Psychol., vol. 8, p. 1454,
Aug. 2017.

VOLUME 10, 2022 109473



M. A. Zare et al.: Dopamine Based Adaptive Emotional Neural Network

[2] A. Ben-Eliyahu, ‘‘Academic emotional learning: A critical component of
self-regulated learning in the emotional learning cycle,’’ Educ. Psycholog.,
vol. 54, no. 2, pp. 84–105, Apr. 2019.

[3] D. Schuller and B. W. Schuller, ‘‘The age of artificial emotional intelli-
gence,’’ Computer, vol. 51, no. 9, pp. 38–46, Sep. 2018.

[4] S. Gu, M. Gao, Y. Yan, F. Wang, Y.-Y. Tang, and J. H. Huang, ‘‘The neural
mechanism underlying cognitive and emotional processes in creativity,’’
Frontiers Psychol., vol. 9, p. 1924, Oct. 2018.

[5] A. Khashman, ‘‘Modeling cognitive and emotional processes: A novel neu-
ral network architecture,’’ Neural Netw., vol. 23, no. 10, pp. 1155–1163,
2010.

[6] S. E. Rivers, I. J. Handley-Miner, J. D. Mayer, and D. R. Caruso, ‘‘Emo-
tional intelligence,’’ in The Cambridge Handbook of Intelligence, 2nd ed.
New York, NY, USA: Cambridge Univ. Press, 2020, pp. 709–735.

[7] J. Chen, Y. Liu, and M. Zou, ‘‘User emotion for modeling retweeting
behaviors,’’ Neural Netw., vol. 96, pp. 11–21, Dec. 2017.

[8] D. Levine, ‘‘Neural network modeling of emotion,’’ Phys. Life Rev., vol. 4,
no. 1, pp. 37–63, Mar. 2007.

[9] L. I. Perlovsky, ‘‘Physics of the mind,’’ Frontiers Syst. Neurosci., vol. 10,
p. 84, Nov. 2016.

[10] J. Yin, ‘‘Study on the progress of neural mechanism of positive emotions,’’
Transl. Neurosci., vol. 10, no. 1, pp. 93–98, Apr. 2019.

[11] R. Smith, W. D. S. Killgore, A. Alkozei, and R. D. Lane, ‘‘A neuro-
cognitive process model of emotional intelligence,’’ Biol. Psychol.,
vol. 139, pp. 131–151, Nov. 2018.

[12] Y. Park, S. Baek, and S.-B. Paik, ‘‘A brain-inspired network architecture for
cost-efficient object recognition in shallow hierarchical neural networks,’’
Neural Netw., vol. 134, pp. 76–85, Feb. 2021.

[13] R. Thenius, P. Zahadat, and T. Schmickl, ‘‘EMANN—Amodel of emotions
in an artificial neural network,’’ inProc. Adv. Artif. Life (ECAL), Sep. 2013,
pp. 830–837.

[14] E. Lotfi and M.-R. Akbarzadeh-T, ‘‘Practical emotional neural networks,’’
Neural Netw., vol. 59, pp. 61–72, Nov. 2014.

[15] A. Khashman, ‘‘A modified backpropagation learning algorithm with
added emotional coefficients,’’ IEEE Trans. Neural Netw., vol. 19, no. 11,
pp. 1896–1909, Nov. 2008.

[16] A. G. Ranade, M. Patel, and A. Magare, ‘‘Emotion model for artificial
intelligence and their applications,’’ inProc. 5th Int. Conf. Parallel, Distrib.
Grid Comput. (PDGC), Dec. 2018, pp. 335–339.

[17] E. Hudlicka, ‘‘To feel or not to feel: The role of affect in human–computer
interaction,’’ Int. J. Hum.-Comput. Stud., vol. 59, nos. 1–2, pp. 1–32,
Jul. 2003.

[18] O. K. Oyedotun and A. Khashman, ‘‘Prototype-incorporated emotional
neural network,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8,
pp. 3560–3572, Aug. 2018.

[19] M. D. Humphries, J. A. Obeso, and J. K. Dreyer, ‘‘Insights into Parkinson’s
disease from computational models of the basal ganglia,’’ J. Neurol.,
Neurosurg. Psychiatry, vol. 89, no. 11, pp. 1181–1188, Nov. 2018.

[20] K. T. Kishida, I. Saez, T. Lohrenz, M. R. Witcher, A. W. Laxton,
S. B. Tatter, J. P. White, T. L. Ellis, P. E. Phillips, and P. R. Montague,
‘‘Subsecond dopamine fluctuations in human striatum encode superposed
error signals about actual and counterfactual reward,’’ Proc. Natl. Acad.
Sci. USA, vol. 113, no. 1, pp. 200–205, Jan. 2016.

[21] D. Bang, K. T. Kishida, T. Lohrenz, J. P. White, A. W. Laxton, S. B. Tatter,
S. M. Fleming, and P. R. Montague, ‘‘Sub-second dopamine and serotonin
signaling in human striatum during perceptual decision-making,’’ Neuron,
vol. 108, no. 5, pp. 999–1010, 2020.

[22] R. J. Moran, K. T. Kishida, T. Lohrenz, I. Saez, A. W. Laxton,
M. R. Witcher, S. B. Tatter, T. L. Ellis, P. E. Phillips, P. Dayan, and
P. R. Montague, ‘‘The protective action encoding of serotonin tran-
sients in the human brain,’’ Neuropsychopharmacology, vol. 43, no. 6,
pp. 1425–1435, May 2018.

[23] A. A. Hamid, J. R. Pettibone, O. S. Mabrouk, V. L. Hetrick, R. Schmidt,
C. M. V. Weele, R. T. Kennedy, B. J. Aragona, and J. D. Berke, ‘‘Mesolim-
bic dopamine signals the value of work,’’ Nature Neurosci., vol. 19, no. 1,
pp. 117–126, Jan. 2016.

[24] A. Lak, M. Okun, M. M. Moss, H. Gurnani, K. Farrell, M. J. Wells,
C. B. Reddy, A. Kepecs, K. D. Harris, and M. Carandini, ‘‘Dopaminergic
and prefrontal basis of learning from sensory confidence and reward
value,’’ Neuron, vol. 105, no. 4, pp. 700–711, 2020.

[25] D. Wilson and T. R. Martinez, ‘‘The general inefficiency of batch
training for gradient descent learning,’’ Neural Netw., vol. 16, no. 10,
pp. 1429–1451, 2003.

[26] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient BackProp
BT–Neural networks: Tricks of the Trade, 2nd ed., G. Montavon, G. B. Orr,
K.-R. Müller, Eds. Berlin, Germany: Springer, 2012, pp. 9–48.

[27] S. J. Gershman and N. Uchida, ‘‘Believing in dopamine,’’ Nature Rev.
Neurosci., vol. 20, no. 11, pp. 703–714, Nov. 2019.

[28] D. Mayer, E. Kahl, T. C. Uzuneser, andM. Fendt, ‘‘Role of the mesolimbic
dopamine system in relief learning,’’ Neuropsychopharmacology, vol. 43,
no. 8, pp. 1651–1659, Jul. 2018.

[29] K. C. Berridge, ‘‘The debate over dopamine’s role in reward: The case for
incentive salience,’’ Psychopharmacology, vol. 191, no. 3, pp. 391–431,
Mar. 2007.

[30] M. Guitart-Masip, E. Duzel, R. Dolan, and P. Dayan, ‘‘Action ver-
sus valence in decision making,’’ Trends Cognit. Sci., vol. 18, no. 4,
pp. 194–202, Apr. 2014.

[31] T. T.-J. Chong and M. Husain, ‘‘The role of dopamine in the pathophysi-
ology and treatment of apathy,’’ Prog. Brain Res., vol. 229, pp. 389–426,
Jan. 2016.

[32] J. D. Berke, ‘‘What does dopamine mean?’’ Nature Neurosci., vol. 21,
no. 6, pp. 787–793, Jun. 2018.

[33] M. Pessiglione, F. Vinckier, S. Bouret, J. Daunizeau, and R. Le Bouc,
‘‘Why not try harder? Computational approach to motivation deficits
in neuro-psychiatric diseases,’’ Brain, vol. 141, no. 3, pp. 629–650,
Mar. 2018.

[34] W. Dabney, ‘‘A distributional code for value in dopamine-based reinforce-
ment learning,’’ Nature, vol. 577, pp. 671–675, Jan. 2020.

[35] H. Kasai, N. E. Ziv, H. Okazaki, S. Yagishita, and T. Toyoizumi, ‘‘Spine
dynamics in the brain, mental disorders and artificial neural networks,’’
Nature Rev. Neurosci., vol. 22, no. 7, pp. 407–422, Jul. 2021.

[36] E. O. Neftci and B. B. Averbeck, ‘‘Reinforcement learning in artificial
and biological systems,’’ Nature Mach. Intell., vol. 1, no. 3, pp. 133–143,
Mar. 2019.

[37] A. Mohebi, J. R. Pettibone, A. A. Hamid, J.-M.-T. Wong, L. T. Vinson,
T. Patriarchi, L. Tian, R. T. Kennedy, and J. D. Berke, ‘‘Dissociable
dopamine dynamics for learning and motivation,’’ Nature, vol. 570,
no. 7759, pp. 65–70, Jun. 2019.

[38] C. Beste, N. Adelhöfer, K. Gohil, S. Passow, V. Roessner, and S.-C. Li,
‘‘Dopamine modulates the efficiency of sensory evidence accumulation
during perceptual decision making,’’ Int. J. Neuropsychopharmacology,
vol. 21, no. 7, pp. 649–655, Jul. 2018.

[39] S. Cabib, C. Latagliata, and C. Orsini, ‘‘Role of stress-related dopamine
transmission in building and maintaining a protective cognitive reserve,’’
Brain Sci., vol. 12, no. 2, p. 246, Feb. 2022.

[40] R. B. Rutledge, M. Moutoussis, P. Smittenaar, P. Zeidman, T. Taylor,
L. Hrynkiewicz, J. Lam, N. Skandali, J. Z. Siegel, O. T. Ousdal, and
G. Prabhu, ‘‘Association of neural and emotional impacts of reward pre-
diction errors with major depression,’’ JAMA Psychiatry, vol. 74, no. 8,
pp. 790–797, Aug. 2017.

[41] D. Z. Lieberman and M. E. Long, The Molecule of More: How a Single
Chemical in Your Brain Drives Love, Sex, and Creativity-and Will Deter-
mine the Fate of the Human Race. Dallas, TX, USA: BenBella Books,
2018.

[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning internal
representations by error propagation,’’ in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, D. E. Rumelhart
and J. L. McClelland, Eds. Cambridge, MA, USA: MIT Press, 1986,
pp. 318–362.

[43] A.Khashman, ‘‘Application of an emotional neural network to facial recog-
nition,’’ Neural Comput. Appl., vol. 18, no. 4, pp. 309–320, May 2009.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), 2012, pp. 1097–1105.

[46] G. Huang, Z. Liu, and K. Q. Weinberger, ‘‘Densely connected convolu-
tional networks,’’ 2016, arXiv:1608.06993.

[47] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘Inverted residuals and linear bottlenecks: Mobile networks for classifi-
cation, detection and segmentation,’’ 2018, arXiv:1801.04381.

[48] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ 2019, arXiv:1905.11946.

[49] K. Chakroun, D.Mathar, A.Wiehler, F. Ganzer, and J. Peters, ‘‘Dopaminer-
gic modulation of the exploration/exploitation trade-off in human decision-
making,’’ eLife, vol. 9, Jun. 2020, Art. no. e51260.

109474 VOLUME 10, 2022



M. A. Zare et al.: Dopamine Based Adaptive Emotional Neural Network

[50] P. A. Kragel, M. C. Reddan, K. S. LaBar, and T. D. Wager, ‘‘Emotion
schemas are embedded in the human visual system,’’ Sci. Adv., vol. 5, no. 7,
Jul. 2019, Art. no. eaaw4358.

[51] M. H. B. M. T. Hagan and H. B. Demuth, ‘‘Backpropagation,’’ in Neural
Network Design. Boston, MA, USA: PWS Publishing, 1996, pp. 131–206.

[52] B. Chew, T. U. Hauser, M. Papoutsi, J. Magerkurth, R. J. Dolan, and
R. B. Rutledge, ‘‘Endogenous fluctuations in the dopaminergic midbrain
drive behavioral choice variability,’’ Proc. Nat. Acad. Sci. USA, vol. 116,
no. 37, pp. 18732–18737, Sep. 2019.

[53] I. Loshchilov and F. Hutter, ‘‘SGDR: Stochastic gradient descent with
restarts,’’ 2016, arXiv:1608.03983.

[54] A. L. Cambridge. (1994). The ORL Database of Faces.
Cambridge, U.K. [Online]. Available: http://www.cl.cam.ac.uk/
research/dtg/attarchive/facedatabase.html

[55] P. N. Belhumeur, J. P. Hespanha, and D. Kriegman, ‘‘Eigenfaces vs. fish-
erfaces: Recognition using class specific linear projection,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997.

[56] (1997). Yale Face Database. [Online]. Available: http://vision.ucsd.
edu/datasets/yale_face_dataset_original/yalefaces.zip

[57] K.-C. Lee, J. Ho, and D. Kriegman, ‘‘Acquiring linear subspaces for face
recognition under variable lighting,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 5, pp. 684–698, May 2005.

[58] (2005). The Extended Yale Face Database B. [Online]. Available:
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

[59] MIT. (2004). The MIT-CBCL Face Recognition Database. Massachusetts
Institute of Technology. [Online]. Available: http://cbcl.mit.edu/software-
datasets/heisele/facerecognition-database.html

[60] B. Weyrauch, B. Heisele, J. Huang, and V. Blanz, ‘‘Component-based
face recognition with 3D morphable models,’’ in Proc. Conf. Comput. Vis.
Pattern Recognit. Workshop, Jun. 2004, p. 85.

[61] Y. LeCun. (1998). The MNIST Database of Handwritten Digits. [Online].
Available: http://yann.lecun.com/exdb/mnist

[62] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747.

[63] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.

[64] Y. Netzer, T.Wang, A. Coates, A. Bissacco, B.Wu, andA. Y. Ng, ‘‘Reading
digits in natural images with unsupervised feature learning,’’ in Proc. NIPS
Workshop, 2011, pp. 1–9.

[65] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, ‘‘CINIC-10
is not ImageNet or CIFAR-10,’’ 2018, arXiv:1810.03505.

[66] J. Demšar, ‘‘Statistical comparisons of classifiers over multiple data sets,’’
J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.

[67] A. Paszke, ‘‘PyTorch: An imperative style, high-performance deep learning
library,’’ inProc. Adv. Neural Inf. Process. Syst., H.Wallach, H. Larochelle,
A. Beygelzimer, F. d’single Alché-Buc, E. Fox, R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2019, pp. 8024–8035.

[68] M. Abadi, ‘‘TensorFlow: Large-scale machine learning on heterogeneous
distributed systems,’’ 2016, arXiv:1603.04467.

[69] F. Chollet, Keras. San Francisco, CA, USA: GitHub, 2015.
[70] Kaggle Team. (2021). Kaggle. [Online]. Available: https://www.

kaggle.com/

MOHAMMAD AMIN ZARE was born in 1993.
He received the B.Sc. degree in computer engi-
neering from the Azad University of Marvdasht,
Iran, in 2014, and the M.Sc. degree in computer
engineering (artificial intelligence and robotics)
from Shiraz University, Shiraz, Iran, in 2018. His
current research interests include neural networks,
deep learning, and statistical pattern recognition.

REZA BOOSTANI was born in 1973. He received
the B.Sc. degree in electronics from Shiraz Uni-
versity, Shiraz, Iran, in 1996, and the M.Sc. and
Ph.D. degrees in biomedical engineering from the
Amirkabir University of Technology, Tehran, Iran,
in 1999 and 2004, respectively. He has spent his
research period with the Graz University of Tech-
nology in the BCI field, from 2002 to 2003. Since
2004, he has been a Faculty Member of the Com-
puter Science and Engineering Department, Shiraz

University. His current research interests include biomedical signal process-
ing, statistical pattern recognition, and machine learning.

MOKHTAR MOHAMMADI received the B.S.
degree in computer engineering from Shahed Uni-
versity, Tehran, Iran, in 2003, the M.S. degree
in computer engineering from Shahid Beheshti
University, Tehran, in 2012, and the Ph.D. degree
in computer engineering from the Shahrood Uni-
versity of Technology, Shahrood, Iran, in 2018.
He is currently with the Department of Infor-
mation Technology, College of Engineering and
Computer Science, Lebanese French University,

Kurdistan Region, Iraq. His current research interests include signal process-
ing, time-frequency analysis, and machine learning.

SAMANEH KOUCHAKI is currently a Lecturer
in machine learning for healthcare at the Depart-
ment of Electronic and Electrical Engineering and
a member of the Centre for Vision, Speech and
Signal Processing (CVSSP), University of Surrey.
Her research interests include machine learning,
health informatics, biomedical signal processing,
and computational biology.

VOLUME 10, 2022 109475


